
International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.8, October 2013

1

Computing Dynamic Slices of Object-Oriented Programs

using Dependency Information

Swatee Rekha Mohanty

Department of Computer
science, Rourkela Institute of

Management Studies,
Rourkela, India

Prafulla Kumar Behera
Department of Computer

Science and Application, Utkal
University, Vani Vihar,

Bhubneswar, India

Durga Prasad Mohapatra
Department of Computer

science and Engg.,

National Institute of
Technology, Rourkela, India

ABSTRACT

Now a days, object-oriented programs are becoming very

popular amongst the developers and hence almost all software

are designed using the object-oriented paradigm. Advanced

features of object-oriented programming has made it

complicated to understand, test, debug and maintain. To better

manage these software, slicing techniques have been proved

to be quite efficient. This paper proposed an algorithm for

dynamic slicing of object-oriented software. It uses

SDG(System Dependence Graph) and DG(Dynamic Graph)

as the intermediate program representation while computing

the dynamic slices. In this paper dynamic slicing algorithm is

based on traversing through the outgoing control dependence

edges and incoming data dependence edges of Dynamic

Graph. The major advantage of the proposed algorithm is that

the time required to compute the dynamic slice of the object-

oriented programs is directly proportional to the number of

dependencies (control and/or data) arising during the run time.

Also the proposed algorithm depends on the numbers of nodes

present in the intermediate program representation.

GENERAL TERM

Program analysis, Dynamic slice, Object-oriented programs.

KEYWORDS

Program Slice, Dynamic Slice, System Dependence Graph,

Class Dependence Graph, Dynamic Graph.

1. INTRODUCTION
Software is playing a crucial role in our day to day

transactions. It is very much associated with the hardware and

it enables a system to work properly. Each day we are coming

across several software directly or indirectly. Software were

evolved with their basic applications in scientific and

mathematical calculations. They were adopting the procedure-

oriented approach, and were very simple to test, debug and

maintain. But to eradicate some problems in procedural

languages, object-oriented programming paradigm has come

to the existence. The object-oriented languages are enriched

with some additional features, such as classes, objects, data

abstraction, encapsulation, inheritance, polymorphism,

dynamic binding, message passing etc. The main purpose was

to treat the data as the most critical element in the software,

hence do not let it move freely throughout the system and to

visualize the problem in terms of entity instead of focusing on

the procedures. Due to these features, object-oriented software

became bit complicated to test, debug and maintain. Now a

days almost all software are adopting the object-oriented

features. They are complicated as well as lengthy. Hence it is

a challenge in front of the software developers to test, debug

and maintain those software.

Slicing is a technique that has its application in software

understanding, testing, debugging, maintenance, reverse

engineering etc. It was a concept developed by Mark

Weiser[2] in the year 1979. According to Weiser[2], a slice of

a program P with respect to a slicing criterion <S, V> is the

set of all statements of the program P that affect the slicing

criterion for any possible input to the program.

This slice was named as static slice and it was not precise,

because Wiser had computed the slice without considering the

possible input to the program. Hence the computed slice may

contain some statements which may not be executed for an

actual run of the program. From this, it is very clear that the

slice should be statement minimal i.e. it should contain those

statements which actually affect the variable var computed at

the slicing criterion. In this context, it is realized that the

dynamic slice will be much effective, as it is computed taking

into consideration the input to a program. It is precise and it

contains those statements which actually affect the variables

at the slicing criterion for a specific input to the program.

Dynamic slicing concept was first introduced by Korel and

Laski[3], who computed the slice corresponding to an actual

run of a program. Dynamic slice was found to be useful in

various software engineering activities such as program

understanding, debugging, testing, software maintenance etc.

Before computing the dynamic slice of a program, this paper

represent the object-oriented program using an intermediate

program representation. To represent the intra-procedural

programs, PDG (Procedure Dependence Graph) is useful[11].

To represent inter-procedural programs SDG (System

Dependence Graph) is useful[12]. But these two

representations are not suitable to represent the object-

oriented programs. So, this paper uses the ClDG (Class

Dependence Graph) proposed by Larsan and Harrold [13] for

representing the object-oriented programs.

A dynamic slice can be computed by applying the slicing

algorithm on the intermediate program representation. It has

been found in the literature that researchers have emphasized

on developing the algorithm in terms of less time complexity

and space complexity. This paper proposed an efficient

algorithm to compute the dynamic slices of object-oriented

programs.

This paper developed an algorithm to compute the dynamic

slices of object-oriented programs. Before implementing the

algorithm, it created a suitable system dependence graph to

represent object-oriented programs. Then, it created a

dynamic graph out of the system dependence graph which

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.8, October 2013

2

represents the data and control dependencies between the

actual executable statements of the program. The algorithm

computes precise dynamic slices of object- oriented programs

by traversing the dynamic graph through the outgoing control

dependence edges and incoming data dependence edges.

The rest of the paper is organized as follows: Section 2

contain review the available related work. This paper present

some basic concepts and definitions in Section 3. Section 4,

contain proposed algorithm. Section 5 implements the

proposed algorithm. The work is compared with the existing

ones in Section 6. In Section 7 present conclusion and future

work.

2. REVIEW OF RELATED WORK
Weiser[2] introduced the concept of static program slice for

intra-procedural programs. He used CFG(Control Flow

Graph) as the intermediate representation of the program. His

approach was based on solving the data flow equations

iteratively. But his approach was not able to handle the inter-

procedural programs i.e. programs having multiple

procedures. To overcome this problem Weiser[2] developed a

two-phase interprocedural static slicing algorithm.

Ottenstein and Ottenstein[11] introduced PDG (Program

Dependence Graph) to represent the intra-pocedural programs

while computing static slices. They have performed the graph

reachability analysis using PDG. But their approach was not

able to compute the dynamic slices of inter-procedural

programs.

Horwitz et al[12]. extended the representation proposed by

Ottenstein and Ottenstein[11] to construct SDG(System

Dependence Graph), which was capable of representing the

inter-procedural programs efficiently.

Korel and Laski[3] introduced an algorithm to compute the

dynamic slices of inter-procedural programs. They had

extended the approach proposed by Weiser[2] to compute the

static slices of intra-procedural programs. Korel and Laski[3]

computed dynamic slices of inter-procedural program by

solving the data flow equations. Korel and Laski needed O(N)

space to store the execution history and O(N2) to store the

dynamic flow of data, where N is the number of statements

executed. It may be noted that the, in case of loop control

structure, N may be unbounded. The dynamic slice computed

by Korel and Laski may be imprecise, that means it may

contain some of the statements which do not affect the value

computed at the slicing criterion.

Agrawal and Horgan[6] proposed an algorithm for computing

the dynamic slices of programs using the dependence graph.

Then, many researchers had proposed algorithms for

computing the dynamic slices of programs. But many of them

found to be imprecise.

To compute precise dynamic slice, Agrawal and Horgan[6]

introduced the DDG(Dynamic Dependence Graph) which can

be constructed by using the PDG(Program Dependence

Graph). But, The DDG of a program can be computed by

creating a new node for each occurrence of a statement along

with its associated control and data dependence edges. The

major disadvantage of this approach was that the number of

nodes in the DDG may be unbounded for programs having

loops.

Agrawal and Horgan[6] modified their approach by

introducing RDDG(Reduced Dynamic Dependence Graph).

They tried to reduce the number of nodes in the DDG by

including a node if and only if it can create a new dynamic

slice.

Mund et al[10] taken MPDG (Modified Program Dependence

Graph) as intermediate program representation. They had used

the concept of stable and unstable edges. They had proposed

an edge-marking algorithm where they marked and unmarked

the unstable edges of MPDG when a dependence arise and

cease during the execution time.

Mund et al.[9] proposed another algorithm for computing

intra-procedural dynamic slices. They had used PDG as the

intermediate program representation. The space complexity of

their algorithm is quadratic in the number of statements in the

program, and the time complexity of their algorithm was

O(n2), where n was the number of the statements in the

program.

Mund and Mall[10] proposed an efficient inter-procedural

dynamic slicing algorithm for structured programs. They

proposed an intra-procedural algorithm for computing

dynamic slices of structured programs and then extend it to

handle the inter-procedural calls. They had used the

CFG(Control Flow Graph) as the intermediate representation

of the program. They explained that their dynamic slicing

algorithm was efficient than the existing dynamic slicing

algorithms.

Larsen and Harrold [13] had proposed the construction of

SDG(System Dependence Graph) for computing inter-

procedural dynamic slice of object-oriented programs. They

had correctly represented all the features of object-oriented

programs in the SDG. The major advantages of their approach

was that the SDG can be constructed incrementally because

representation of the classes can be reused. Another advantage

of their approach is that the slices can be computed for

incomplete programs such as classes or class libraries. Their

slicing algorithm consisting of two passes. The first pass

traverses backward along all edges except parameter-out

edges and marks those vertices reached. The second pass

traverses backward from all vertices marked during the first

pass along all edges except parameter-in edges and marks the

reached vertices. They had computed the dynamic slices as

the union of vertices marked during pass one and pass two.

3. BASIC CONCEPTS AND

DEFINITIONS
This section focuses on two major aspects: first on description

of the intermediate representation needed to represent an

object-oriented program, and second on description of the

various basic concepts and definitions used in our algorithm.

3.1 Intermediate representation of object-

oriented programs
A suitable intermediate representation of the program is

needed to compute precise dynamic slices. For the

representation of OOPs, This paper uses SDG (System

Dependence Graph) and DG (Dynamic Graph).

3.1.1. System Dependence Graph(SDG)
Ferrante et al. proposed Program Dependence Graph(PDG) to

represent the intra-procedural programs. But it was not

suitable to represent the programs having multiple procedures.

Horwitz et al.[12] proposed System Dependence Graph

(SDG) to represent the inter-procedural programs. Larsen and

Harrold[13] extended the System Dependence Graph to

represent the features of object-oriented programs. This paper

uses the representation of Larsen and Harrold [13] with little

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.8, October 2013

3

modification. Let us consider the example program given in

Figure 1.

 import java.lang.*;

CE1: Class Product

{

 int number;

 float cost;

 public:

ME2: void getdata(int a, float b)

 {

S3: number=a;

S4: cost=b;

 }

ME5: void putdata()

 {

S6: System.out.println(“PRODUCT NUMBER=”+number);

S7: System.out.println(“PRODUCT COST=”+cost);

 }

 }

MCE8: class Example

 {

MME9: public static void main(String args[])

 {

 S10: Product p1=new Product();

 S11: p1.getdata(100,299.95);

 S12: p1.putdata();

 S13: Product p2=new Product();

 S14: p2.getdata(200,175.50);

 S15: p2.putdata();

 }

 }

Figure 1: An example program

Representation of a class

This paper taken ClDG to represent the class defined in the

example program. A class is basically a combination of data

and methods. Using the ClDG the data and control

dependencies can be represented within the class. Each

method of a class is represented by the procedure dependence

graph. Each method has a method entry vertex which

describes the entry to that method. Each class is having a class

entry vertex. There is an edge between the class entry vertex

and the class members (i.e. data or methods). That edge is

known as class member edge.

Figure 2 shows the ClDG of the class product in the example

program of Figure 1.

Figure2: ClDG of the example program given in Figure 1

Larson and Harrold[13] had constructed the SDG of a

complete object-oriented program by connecting the

procedure dependence graphs of main method to methods in

the ClDG. This paper done little bit modification in the

representation as the example program is in Java instead of

C++. The representation of Larson and Harrold is best suited

to the programs written in C++.

The example program have two ClDGs. One for the user

defined class and another for the main class where the objects

of the user-defined class will be created and used to call the

methods of the respective classes. Figure 3 describes the class

dependence graph (ClDG) for the main class of in the

Example program given in Figure 1.

Figure 3: ClDG of the main class given in Figure 1

Representation of the complete program
The ClDGs of the user-defined class and the main class in the

example program (in Figure 1) are shown in Figure 2 and 3,

respectively. But, both are incomplete until unless there is

some connection between the call vertex in the main class and

the method entry vertex in the user-defined class. Figure 4

represents the complete intermediate representation of the

example program given in Figure 1. This paper referred the

intermediate representation of Larsen and Harrold[13]. They

have constructed intermediate representation for the C++

programs. This paper extends the representation of Larsen

and Harrold[13] to handle Java programs. The basic

difference is that, as Java is a pure object-oriented

programming language, this paper constructs an intermediate

representation by considering two types of ClDGs (Class

Dependence Graph). One for representing the user-defined

class and another for the main class where objects for the

user-defined class will be created. That means, this paper not

taken PDG(Procedure Dependence Graph) to represent the

main method. After constructing the individual ClDGs, the

procedure call vertex joined with its respective procedure by

means of a control dependence edge.

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.8, October 2013

4

After constructing the SDG of the example program its

Dynamic Graph can be constructed as follows.

3.1.2.Dynamic Graph(DG):
After constructing the SDG of the program, this paper

construct the Dynamic Graph of the program. Purpose of

constructing the DG is that, to consider only the control

dependencies and data dependencies between the statements,

which are actually executed depending on a specific input to

the program. In that way, the intermediate representation of

the program will be simple to manage during implementation,

and will be convenient for traversal to compute the dynamic

slices. The Dynamic Graph of the example program is given

in Figure 5.

Figure 5: Dynamic Graph of the example program

3.2. Basic concepts and definitions used in

our algorith
This section, explain the basic concepts and definition used in

our algorithm.

3.2.1 Control Dependence

Let x and y are the two different nodes in a system

dependence graph. Node y depends on node x if there is a

directed path \from x to y, indicating that execution of y

depends on execution of x. Then, node y is said to be control

dependent on node x.

3.2.2.Data dependence

Let x and y are two different nodes in a system dependence

graph, then node y is data dependence on node x, if a variable

var defined at x is used at y. There exists a directed path exist

from x to y.

3.2.3 Def(var)

Let var be a variable in a program P. Then a node u is said to

be Def(var)node, if u defines variable var.

3.2.4 Use(var)

Let var be a variable of the program P. Then a node u is said

to be Use(var) node, if u uses the value of the variable.

3.2.5 DefVarSet(u)

Let var and u be the variable and the node respectively.

DefVarSet(u)={var : var is a variable of the program P and u

is a Def(var) node}.

3.2.5 UseVarSet(u)

Let var be a variable and u be a node then UseVarSet(u)={var:

var is a variable of the program P and u is a Use(var) node}.

Considering the example program taken in Figure 1, This

paper state that

S11 is data dependence on S10, S12 is data dependence on S10,

S14 is data dependence on S13, S15 is data dependence on

S13.

S10 to S15 are control dependence on MME9.

Def(p1)=S10, Def(p2)=S13.

Use(p1)=S11, S12, Use(p2)=S14, S15.

DefVarSet(S11)=p1,

DefVarSet(S12)=p1,

DefVarSet(S14)=p2,

DefVarSet(S15)=p2.

3.2.6 ActiveControlSlice

If s be the test node in the SDG of the program P and

UseVarSet(u)={var1, var2, ……, vark}. Before execution of

the program P ActiveControlSlice(s)= φ, After each execution

of the node s in an actual run of the program,

ActiveControlSlice(s)={s} U ActiveDataSlice(var1) U ……U

ActiceDataSlice(vark) U ActiveControlSlice(t).

Where t is the most recently executed predicate node of s in

the SDG.

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.8, October 2013

5

3.2.7 ActiveDataSlice(var)

Let var be a variable of the program P. Before execution of

the program P ActiveDataSlice(var)= φ. Let u be a Def(var)

node and UseVarSet(u)={var1, var2, ……, vark}. Let the

program P will run with a given set of input value. After each

execution of the node u in the actual run of the program,

ActiveDataSlice(var)={u}U ActiveDataSlice(var1)

U…………UActiveDatSlice(vark) U ActiveControlSlice(t).

Where t is the most recently executed predicate node of s in

the SDG.

ActiveDataSlice(var) represents the set of nodes that affect the

most recently updated value of the variable var. For execution

of the node s, the set of nodes on which the execution of s has

the direct or indirect control dependence is

ActiveDataSlice(t), where t is the most recently executed

predicate node of s in the SDG.

3.2.8 DyanSlice(s, var)

Let s be a node of the program P and var be a variable in the

set DefVarSet(s) U UseVarSet(s). Before execution of the

program P, DyanSlice(s, var)= φ. Let us run the program with

a given set of input value. For each execution of the statement

s, DyanSlice(s, var) =ActiveDataSlice(var) U

ActiveControlSlicet(t), where t is the most recently executed

predicate node of s.

3.2.9 ActiveCallSlice

Let ucall be a call node. Then

ActiveCallSlice(ucall)=ActiceDataSlice(var) U

ActiveControlSlice(ucall), where var is the variable/ object

used to call the method.

4. PROPOSED ALGORITHM

This section presents algorithm to compute dynamic slice of

object-oriented programs.

Step 1: Consider an object-oriented program P.

Step 2: Construct the SDG of the program.

Step 3: Do the followings before execution of the

program

 a)For each node u do the

followings:

 If u is a predicate node

then ActiveControlSlice(u)= φ

For each variable var

є DefVarSet(u) U

UseVarSet(u),

 set DyanSlice(u,

var)=φ

 b)For every variable var of the

program P, set ActiveDataSlice(var)= φ.

 c)Set ActiveCallSlice= φ.

Step 4: Run the program P with the given set of

input value.

Step 5: Construct the DG(Dynamic Graph) by

considering the dependencies(control/data) between

the actual executable statements based on the input

to the program.

Step 6: Computation of the dynamic slice

a) If u is a Def(var) node and

not a call node

Compute DyanSlice(u, var)=

ActiveDataSlice(var)

ActiveDataSlice(var) cab be

computed by traversing

through the incoming data

dependence edges and list the

reached nodes.

b) If u is a call node

Compute DyanSlice(u, var)=

ActiveCallSlice(u)

ActiveCallSlice(u) can be

computed by traversing

through the outgoing control

dependence edges and

incoming data dependence

edges and list the reached

nodes.

c) If u is a test node

Compute DyanSlice(u, var)=

ActiveControlSlice(u)

ActiveControlSlice(u) can be

computed by traversing

through all the control

dependence edges and list the

reached nodes.

d) If u is a Def(var) and

Use(var) node

Compute DyanSlice(u,

var)=ActiveDataSlice(var) U

ActiveControlSlice(t), where

t is the most recently

executed predicate node.

 Step 7: Exit when execution of the program P

terminates.

5. IMPLEMENTATION OF THE

ALGORITHM
This paper implemented the slicing algorithm in Java. and

computed slice of several object-oriented programs. The

proposed algorithm works efficiently and generates precise

slices. The proposed algorithm is not based on traversing the

complete SDG rather it works on the Dynamic Graph, which

is created using the real executable statements with respect to

particular input to the program.

Let us consider the program in Figure 1. This paper

constructed the system dependence graph of the program as

shown in Figure 4. Then, this paper run the program to get the

actual executable statements. The data and control

dependencies between those statements are represented by the

dynamic graph as shown in Figure 5. When the Dynamic

Graph is traversed using the proposed algorithm the following

updates can be found:

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.8, October 2013

6

Table 1: Slice computation time of the nodes of Example

program 1

No. of

Nodes

in DG

Type of

Node

Slice

Node

Slice Computation

Time(in

Millis)

13 Def(var) S10 { S10} 3.5013

Def(var) S13 { S13} 1.0616

Call S11 { S10,

S11,ME2,S3,S4}

4.5513

Call S12 { S10, S12,

ME5, S7, S6}

4.7100

Call S14 { S13, S14,

ME2, S3, S4}

3.4615

Call S15 { S13, S15,

ME5, S6, S7}

4.6642

To illustrate the above point, this paper considered the

example program, where the total number of nodes in the

Dynamic Graph is 13. This paper computed dynamic slice of

a particular node say Def(var) node 2 by considering the

nodes 5, 9, 13.

Figure 6: Graph during computation of slice in Def(var)

node in S10 example program 1

From the graph it can be clearly observed that, the proposed

algorithm takes approximately same time while computing the

dynamic slice, even if the numbers of node increases.

Time of computing slice is directly proportional to the

number of dependencies (control and/or data)

The complexity of our algorithm is O(n2) where n is the

number of edges (control and/or data) of the program.

6. COMPARISON WITH RELATED

WORK
This paper analyze the work done by Korel and Laski[3] and

found the time required to compute the dynamic slice is O(N2)

where N is the numbers of nodes in the program. Major

disadvantage of the approach of Agrawal and Horgan[6] is

that the numbers of nodes in the DDG(Dynamic Dependence

Graph) may be unbounded for program having loops. Hence

the time of computation of slice must be increase. Mund et

al.[9] proposed algorithm for computing intra-procedural

dynamic slice. And the time complexity of their algorithm is

O(n2) . Where n is the number of the statements in the

program.

But the proposed algorithm computes the dynamic slice in

such a way that the slice extraction time is directly

proportional to the number of edges (control and/or data) of

the Dynamic Graph. It does not depend at all on the number

of nodes in the intermediate representations.

7. CONCLUSION AND FUTURE

WORK
This paper explained how to construct the Dynamic Graph

which will show the control and data dependencies among the

real executable statements. The objective was to minimize the

time of computation of slice. And also to avoid the complete

traversal of the SDG. The proposed algorithm efficiently

works on the Dynamic Graph and generate precise slice. This

paper observed that the time of computing dynamic slice is

not depends on the numbers of nodes in the DG. It depends on

the number of edges (control and/or data) exists in the

Dynamic Graph.

This paper does not consider the concept of polymorphism

and Inheritance of object-oriented features. Next, we will be

extending our algorithm to compute the dynamic slice of

object-oriented programs with those object-oriented features.

Along with that in future, we will focus on computing

dynamic slices of concurrent object-oriented programs and

distributed object-oriented programs.

8. REFERENCES
[1] M. Weiser, “Programmers use slices when debugging”,

communications of the ACM 25 (7)(1982) 446-452.

[2] M. Weiser, “Program Slicing”, IEEE Transactions on

Software Engineering 10 (4) (1984).

[3] B. Korel, J. Laski, “Dynamic program slicing”,

Information Processing Letters 29 (3) (1988).

[4] J Lyle, “Evaluating variations on program slicing for

debugging”, PhD Thesis.

[5] M .Karmakar, “Interprocedural dynamic slicing with

applications to debugging and testing”.

[6] H. Agrawal, J. Horgan, “Dynamic program slicing”,

Proceeding of the ACM SIGPLAN’90 Conference on

programming Languages Design and Implementation,

SIGPLAN Notices, Analysis and Verification, White

Plain, New York, vol 25, no. 6, 1990, pp. 246-256.

[7] Zhang, X., Gupta, R., Zhang, Y.,2003. “Precise dynamic

slicing”. In:Proceeding of the 25th International

conference on software Engineering, Porland, Oregan,

pp. 319-329.

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.8, October 2013

7

[8] Mund et. al., “An efficient dynamic program slicing

technique”, Information and Software Technology

44(2002) 123-132.

[9] Mund et. al., “Computation of intra-procedural dynamic

program slices”, Information and Software Technology

45(2003) 499-512.

[10] Mund et. al., “An efficient inter-procedural dynamic

slicing method”, The Journal of Systems and software

79(2006) 791-806.

[11] Ottenstein, K., Ottenstein, L.,. “The program

Dependence Graph in software development

environment”. In: Proceedings of the ACM

SIGSOFT/SIGPLAN Software Symposium on Practical

Software Development Environments, SIGPLAN

Notices, vol. 19(5), pp 177-184(1984).

[12] Horwitz , S., Reps, T., Binkley, D., “Interprocedural

slicing using dependenc e graphs”. ACM Transactions on

Programming Languages and Systems 12(1), 26-61,

1990.

[13] Loren Larsen, Mary Jean Harrold, “Slicing Object-

oriented Software”, Published in proceeding of ICSE,

1996, PP-495-505.

IJCATM : www.ijcaonline.org

