
International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.6, October 2013

29

FPGA on FPGA: Implementation of Fine-grained

Parallel Genetic Algorithm on Field Programmable

Gate Array

A. AL-Marakeby
Systems and Computers Engineering Dept.

Faculty of Engineering , Al-Azhar University,

Cairo, Egypt.

ABSTRACT

Many optimization problems have complex search space,

which either increase the solving problem time or finish

searching without obtaining the best solution. Genetic

Algorithm (GA) is an optimization technique used in solving

many practical problems in science, engineering, and business

domains. Parallel Genetic Algorithm (PGA) has been widely

used to increase speed of GA, especially after the spread of

parallel platforms such as GPUs, FPGA, and Multi-Core

Processors. In this paper, we introduce a type of PGA called

Fine-grained Parallel Genetic Algorithm, which has the

advantages of maintaining better population diversity, and

inhibiting premature. Fine-grained PGA is implemented on

Field Programmable Gate Array, and the system is used to

solve the classical TSP problem. The results show the

advantages of the Fine-grained PGA over sequential GA, and

the advantages of Field Programmable Gate Array as a

parallel platform.

Keywords

Parallel Genetic algorithm, FPGA, TSP, Parallel Processing.

1. INTRODUCTION
Genetic algorithms (GA) are abstract implementations of

natural evolutionary processes used to solve search and

optimization problems [10]. For complex problems, GA needs

a long time to find solutions. Parallel GA comes into being

and becomes a hit because it can reduce the time requirements

dramatically [5]. Recently, there has been increased interest in

parallel versions of the algorithms, in particular where the

population has a spatial structure [10]. Most research in

parallel processing depends on the multi-core processors,

Graphical Processing Units (GPUs), or Field Programmable

Gate Array (FPGA). Wei and Ying have used the multi-core

processors to analyze the effect of Adaptive Migration on the

performance of Distributed Parallel Genetic Algorithm [9].

Many researchers have applied Genetic Algorithm on Field

Programmable Gate Array (FPGA) [4] [6]. Mohamed .et.al

have optimized Parallel Genetic Algorithms for Graphical

Processing Units (GPU)[7]. In this paper, the Field

Programmable Gate Array (FPGA) is used to implement the

Parallel Genetic Algorithm. The hardware design using FPGA

has the advantage of implementing special processing cores

for the specified task. The processor core is designed

especially for implementing Genetic Algorithm tasks such as

selection, crossover, mutation, and fitness function estimation.

This design reduce the required resources and increase the

speed of the system. The parallelization of Genetic Algorithm

can be done in different ways. Master/Slave , Fine-grained ,

Coarse grained, and hybrid parallel genetic algorithms are the

most common techniques used in parallelization of Genetic

Algorithm[7][11]. In this research the Fine-grained Parallel

Genetic Algorithm is used, which has the advantages of

maintaining better population diversity, and inhibiting

premature [3] [5]. This paper is organized as follow: Parallel

Genetic Algorithm and different type of PGA are discussed in

section 2. The Fine-grained Parallel Genetic Algorithm and

the solution of Traveler Salesman Problem are given in

section 3. Section 4 presents the hardware design for Fine-

grained PGA. Section 5 gives the experiments and results.

Finally, section 6 gives the conclusion.

2. PARALLEL GENETIC ALGORITHM
The parallel genetic algorithm (PGA) can combine the high

speed of parallel computers parallelism with the GA inherent

parallelism, which accelerates the search process of GA,

maintains the diversity of population prevents premature, and

solves such a complicated problem efficiently and

effectively[11]. In PGA, there is always a selection-crossover-

mutation cycle as in GAs, but you must meet new terms there.

They are a deme, a migration and a topology [12]. A deme is

one separated population, Migration means an exchange of

individuals between the demes, and the topology represents

the connections between nodes/demes. PGA can be classified

into four classes:

2.1 Master/Slave PGA:
are typically used for problems involving expensive to

compute fitness function, where the master node runs the

entire algorithm while the slaves execute the fitness

evaluations[7]. In Master/Slave PGA, the fitness function is

evaluated in parallel using the slave nodes. The remaining

tasks are performed serially on the master node[11]. In this

way, a master process distributes the fitness evaluations

among different enabled processors and collects the fitness

evaluations in order to support the normal process of the

genetic algorithm[3].

2.2 Coarse-grained PGA(CPGA):

 In a coarse-grained model, the GA population is divided into

multiple subpopulations (or demes). Each subpopulation

evolves independently, with only occasional exchanges of

individuals between subpopulations. This isolation promotes

diversity, thereby helping to prevent premature convergence

across the population as a whole[10]. Fig.1 shows the

different subpopulation and the migration between adjacent

nodes.

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.6, October 2013

30

Fig.1 Coarse-grained PGA

2.3 Fine-grained PGA (FPGA):
In this model each processor is allocated only one individual.

That is to say that each subpopulation is composed of only

one individual and it communicates with another one, with 1

Hamming distance between them[11]. It has advantages of

maintaining better population diversity, inhibiting premature,

keeping the utmost parallelism, and therefore outperforms all

other traditional genetic algorithms when dealing with high-

dimensional variable spaces [5]. Fig.2 shows a connect 4

Fine-grained PGA.

Fig.2 Fine-grained PGA

2.4 Hybrid PGA:
 The hybrid model simply utilizes two or more of the

Master/Slave, coarse-grained and fine-grained in a hierarchal

method. Hybrid models are not the most common due to the

need for additional new parameters to account for a more

complex topology structure[7].

3. FINE-GRAINED PARALLEL GENTIC

ALGORITHM.
Fine-grained PGA is more suitable for custom hardware

design. While each node has a single individual, it is better to

design a simple processor core to perform the required tasks.

In this research we used Fine-grained PGA to solve the

classical traveling salesman problem. The traveling salesman

problem (TSP) is a typical example of a very hard

combinatorial optimization problem. The problem is to find

the shortest tour that passes through each vertex in a given

graph exactly once[2]. The connection model used in this

design is the connect 4 model. Each node (processor) is

communicating with 4 adjacent nodes. The random

initialization of individuals, fitness evaluation, selection,

crossover , and mutation are performed for each node as

shown in Algorithm.1[1]. Solving TSP with GA adds some

constraints on individuals' values during initialization,

crossover and mutation. Each city should appear only once in

the chromosome and can't be repeated. So random

initialization of values, or simple crossover by combining a

part of chromosome 1 with chromosome 2 can repeat cities or

delete others.

Algorithm.1 Fine-grained PGA [1]

A swap operation is used during initialization or mutation to

solve this problem. A chromosome is initialized with values

contains all cities and 2 random values are selected and

swapped with each others. This ensure that there is no

repetition or removal of cities. During crossover, the moon

crossover technique is used. Before the addition of the part of

the second chromosome, a scanning is done for the first part

to cancel repeated values. This is illustrated in fig.3[2]. The

cost function used for the TSP is simple summation of the

distances between cities. A table contains all locations of the

cities is used to calculate this cost value. The cost function is

given by equation(1).

 Where Xi, Yi the coordinates of city (i).

Fig.3 Illustration of the moon crossover[2]

Sub population 2 Sub population 1

Sub population 4 Sub population 3

for each node do in parallel

generate an individual randomly

end parallel do

while not stop_criterion_satisfied do

 for each node do in parallel

evaluate the fitness of the individual

get the fitness values of four neighbouring

individuals

find out the optimum fitness value

get the neighbouring individual

corresponding to optimum fitness

uniform crossover with the local

individual according to the crossover rate

mutate the individual according to the

mutation rate

 end parallel do

 test the stopping criteria

end while

Node 01

0

Node 00

0

Node 02

0

Node 11

0

Node 10

0

Node 20

0

Node 21

0

Node 20

0

Node 22

0

(1)

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.6, October 2013

31

4. HARDWARE DESIGN
Field Programmable Gate Array (FPGA) provide a cheap and

efficient way to implement parallel algorithms. FPGAs

maintain the performance of ASICs (Application Specific

ICs) while avoiding their high development cost and inability

to accommodate design modifications after production[8].

Custom processor cores are designed to run the Fine-grained

PGA on the Field Programmable Gate Array. A single node or

processor core in Fine-grained PGA performs all GA tasks in

addition to the communication with neighbors. Fig.4 shows

the different components and I/Os of a single processor core

for Fine-grained PGA.

Fig.4 Genetic Algorithm processing core

Input/Output signals: the processor core has reset signals

and clocks. One reset signal initialize the chromosome and

start the GA cycle while the other starts the GA cycle without

initializing the values of the chromosome. One clock is used

as the system clock, and the other clock used for random

number generation.The outputs of the processor core are the

fitness value and the chromosome.

Neighbors connections: each processor core

communicates with its four neighbors. This is shown in the

figure as node 0 – node 3 inputs. Each node has two signals:

the fitness value and the chromosome.

Initialization module: this module initialize the values of

the chromosome randomly. The chromosome is initialized to

a sequence of arranged cities, and then several random swap

operations are applied to it. A simple counter with different

clocks and random initial values is used as random number

generator.

Fitness evaluation module: this module reads the

current chromosome values and extracts the corresponding

cities locations from the cities table. Addition, Subtraction ,

and square root operations are executed to calculate the

fitness value. An integer square root module is used to avoid

floating point calculations while the cities coordinates are

large and the approximation is acceptable.

Selection module: the fitness value of the current

chromosome with the fitness of the four neighbors are

compared. The best two values are selected and the

corresponding chromosomes are chosen.

Crossover module: The best two chromosomes are

merged using a single point moon crossover described in

section 3.

Mutation module: two addresses are chosen randomly and

the values of these addresses are swapped. The new

chromosome generated after mutation are stored instead of the

old chromosome. The GA cycle is started again until the stop

condition is achieved.

5. EXPERIMENTAL RESULTS

A PC-based system is developed to simulate the solution of

TSP using Fine-grained PGA. The PC-based software is

easily modified to test the effect of different parameters on the

performance of the system. The parallelization of the system

is simulated on the PC-based system using sequential

execution. The implementation of the system on FPGA chip

has been done after many experiments and parameter tuning

on the PC-based version. The processor core shown in fig.4 is

implemented on Altera DE2 board. A main controller unit is

designed to organize the communication between processor

cores, repeat the GA cycles, and store the best fitness and

chromosome. The total required resources for a single core is

3% of the FPGA chip total logic elements. A cities table

consists of 16 cities with different location is used to test the

system. The chromosome consists of 16X4 bits register. The

cost function and the chromosome are displayed on 7

segments display of the board. The system runs with 27 MHz

clock. A single GA cycle needs (in average) of 440 time

clocks for all selection, crossover, mutation and the main

controller processing. The crossover has not a fixed time

while it depends on the arrangements of cities inside the two

best chromosomes. The speed of the system is in the range of

61,300 generations/s. a PC based program with the same

parameters are running in average speed of 3300

generations/s. Fig. 5 shows this comparison.

Fig.5 Speed Comparison between PC based system

and FPGA based system

0

10000

20000

30000

40000

50000

60000

70000

PC Based
System

FPGA Based
System

Speed Comparison in Generations/s

Control Unit

Initialization

module

Cities table

Fitness

Evaluation

Selection

Crossover

module

Mutation

fitness

Chromosome

 Node 0 Node 1 Node 2 Node 3

rst0

rst1

clk0

clk1

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.6, October 2013

32

While the single core consumes only 3% of the chip

resources, the multi-processor cores require additional

resources due to the communication elements and the main

controller . A system with 9 processor cores has consumed

63% of the chip logic elements. Fig.6 shows a randomly

initialized, and a final solution for the TSP problem.

a. Randomly Initialized path for TSP

b. The Best path after running GA.

Fig.6 Solution of the travelling salesman problem

6. CONCLUSION
Field Programmable Gate Array (FPGA) is an efficient

platform for implementing Parallel Genetic Algorithm. Fine-

grained Parallel Genetic Algorithm increases the speed of

processing GA and improve diversity of population. The

designed processor core for Fine-grained PGA has a high

performance in the terms of speed and consumption of FPGA

chip resources. Many improvements can be added to this

system to obtain better performance as a future work. A

pipeline architecture can be used to increase the speed of the

system. While each module of the processor core is running at

a specific time, and it is idle otherwise, the pipeline

architecture can utilize the module all the time. The

communication between process cores are consuming chip

resources, and special designed buses can organize the

communication with less resources consumption.

7. REFERENCES
[1] A. Muhammad, A. Bargiela, G. King, Fine-Grained

Parallel Genetic Algorithm: A Stochastic Optimisation

Method, Proc. of 1st World Congress on Systems

Simulation, p.199-203, Singapore, September 1997

[2] Chiung Moon , Jongsoo Kim , Gyunghyun Choi ,

Yoonho Seo , An efficient genetic algorithm for the

traveling salesman problem with precedence constraints,

European Journal of Operational Research -140 (2002).

[3] Giovanni Cantor , Jonatan Gómez, Maintaining Genetic

Diversity in Fine-grained Parallel Genetic Algorithms by

Combining Cellular Automata, Cambrian Explosions and

Massive Extinctions, IEEE Congress on Evolutionary

Computation , 2010

[4] H. Emam , M. A. Ashour , H. Fekry , A. M. Wahdan

Introducing an FPGA based - genetic algorithms in the

applications of blind signals separation, Proceedings of

The 3rd IEEE International Workshop on System-on-

Chip for Real-Time Applications 2003

[5] Jian-Ming Li, Xiao-Jing Wang, Rong-Sheng He, Zhong-

Xian Chi , An Efficient Fine-grained Parallel Genetic

Algorithm Based on GPU-Accelerated, International

Conference on Network and Parallel Computing - 2007

[6] Miroslav Joler, Damir Malnar, and Silvio E. Barbin,

Real-Time Performance Considerations of an FPGA-

Embedded Genetic Algorithm for Self-Recovery of an

Antenna Array, ICECom, Conference Proceedings, 2010

[7] Mohamed Wahib ,Asim Munawar, Masaharu Munetomo

, Kiyoshi Akama, Optimization of Parallel Genetic

Algorithms for nVidia GPUs, IEEE Congress on

Evolutionary Computation (CEC), 2011

[8] M S Hamid and S Marshall, FPGA Realisation Of The

Genetic Algorithm For The Design Of Grey-Scale Soft

Morphological Filters, International Conference on

Visual Information Engineering, 2003.

[9] Wei Li , Ying Huang ,A Distributed Parallel Genetic

Algorithm Oriented Adaptive Migration Strategy, 8th

International Conference on Natural Computation, 2012

[10] Xiaodong Li, Michael Kirley, The Effects of Varying

Population Density in a Fine-,grained Parallel Genetic

Algorithm, Proceedings of the Congress on Evolutionary

Computation, 2002.

[11] XUE Shengjun , GUO Shaoyong , BAI Dongling, The

Analysis and Research of Parallel Genetic Algorithm.

Wireless Communications, Networking and Mobile

Computing, 2008 .

[12] Zdenˇek Konfrˇst ,Parallel Genetic Algorithms:

Advances, Computing Trends, Applications and

Perspectives , Proceedings of the 18th International

Parallel and Distributed Processing Symposium 2004.

IJCATM : www.ijcaonline.org

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5573635
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5573635
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5724108
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5936494
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9297
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7875
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7875

