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ABSTRACT

In this paper, linear and nonlinear boundary value
problems for fourth-order fractional integro- differential
equations are solved by Variational iteration method
(VIM) and Adomian decomposition method (ADM).
The fractional derivative is considered in the Caputo
sense . The solutions of both problems are derived by
infinite convergent series Numerical example are
presented to illustrate the efficiency and reliability of
two methods.
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1. INTRODUCTION

Most fractional differential equation don’t have exact
analytic  solutions , so approximation and numerical
techniques must be used . The ADM [ 3/4] is a
relatively new approach to provide an analytical
approximation to linear and nonlinear problems and it is
particularly valuable as a tool for scientists and applied
mathematicians . The variational iteration method is
based on Lagrange multiplier These methods have
been successfully applied by many author [ 11,16] for
finding the analytical approximate solutions as well as
numerical approximate solutions of functional equation
which arise in scientific and engineering problems. The
main feather for the use of VIM is that overcome the
difficulties which arise in the ADM during computations
of Adomain polynomials [16] . Momani and Aslam Noor
[8] established the implementation of ADM to derive
analytic  approximate solutions of the linear and
nonlinear  boundary value problems for fourth-order
fractional integro-differential equations . the ADM has
been used to obtain approximate solutions of a large
class of linear and nonlinear differential equations
Recently , the application of the method is extended for
fractional differential equations [ 7,9,10 ] . The purpose of
this article is to extend the analysis of VIM and ADM to
derive analytic approximate solutions to linear and
nonlinear  boundary value problems for fourth-order
fractional integro-differential equations
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DLy(x) =f(x) + }’J’(;C)
+ f [9@©y(© + ROF(y®)]de,
0

x € (0,b),a € (3,4] (1.1)
with initial conditions
y(0) = v, y"(0) =y, (1.2)
y(b) = By, y"(0) = B, (1.3)

where D,,y(x) is the o th Caputo fractional derivative

of ¥(x) and f(¥(x)) is a nonlinear continuous function,
Y, Y0, v2, Po and B2 are real constants and f ,

g and h are given and can be approximated by
Taylor polynomials.

2. BASIC DEFINITIONS

We give some basic definitions and properties of the
fractional calculus theory.

Definition 2.1. A real function f(x),x > 0, is said to be in
the space C,, u € R, if there exits a real number p > p, such
that f (x) = xP f;(x), where f; (x) € C[0, o).

Definition 2.2. The Riemann-Liouville fractional integral

operator of order @ > 0, of a function f ecy ,p=-1,is
defined as

Jof(x) = % of(x — )1 f()dt,a > 0,x >0, (2.1)

J°f() = f(x)
The operator J® satisfies the following properties [1]
for f € Cou>—1, a,f = 0,and ,y = —1:
) J4JPf(x) = J*HF f(x).
(1) J4Pf(x) = JPI*f(x).

r(y+1)
ALy — a+y.
(nn jex T XX > 0.



Definition 2.3. The fractional derivative of f(x) in the
Caputo sense is defined as

D&f(x) =™ D™f (x)
1 X
“Tm-a) Of(x —omTeTt fm(edt, (2.2)

form—1<a<mmeN,x>0f€ech

Also , we need here two of its basic properties
Lemma 2.1. fm—1<a <mme Nand
fEc,u=—1,then

D& f (x) = f(), and
JEDE&Sf(x) = f(x) — X% f(")(0+) ,x>0. (23)

3. VARIATIONAL ITERATION
METHOD

To illustrate the basic concepts of VIM , consider the
fractional differential Eq(1.1) with boundary conditions
(1.2) , (1.3) . According to VIM ,we can construct the
correction functional for Eq(1.1)as:

Vi1 (%)
—Yk(x)‘l']B [ADZ yi(x) — f(x) — yF(x)

- j [9() 5@ + h()f (55 @) dp)]

0

yk(x)+r(ﬁ) [NEERFICITSACEIO
~7s) - f (9 74
0
+ R (7(p))Idp)ds (3.

where J# is the Riemann - Liouville fractional integral
operator oforder 8 = « + 1 —m,A is a general multiplier
and . denotes restricted variation i . e &y, = 0.We
make some approximation for the identification of an
approximate Lagrange multiplier , so the correctional
functional (3.1) can be approximately expressed as:

Yer1 () = ye(@) + f A0 yi(s) = £(5) — ¥7e(s)

N

- f [9() 5 (@)

0
+h@)f (7(p))1dp)ds (3.2)
Making the above correction functional stationary, we
obtain the stationary condition :
1=2"(8)]s=x = 0,47 (8)]s=x = 0,=A'(s)|5=x = O,
A(S)[5=x = 0,2 (s) = 0
This gives the following Lagrange

A =82 ")3 (33)

By substltutlon of (3.3) into functional (3.1), we obtain
the following iteration formula

multiplier
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Vi1 (x)

= () + f(x—s)“ * (s = )3(DS i (s)

6 F(a

N

— F(5) = yyi(s) — f [9() v )

0
+h@)f (yk())]ldp)ds

(@-D@-2)(a-1) [
6T (a) f“

— 57 (D5 5) = £(5) = ()
- f 90 @)

0
+h®)f (v (®))]ldp)ds

This yields the following iteration formula:
Vi1 (X)

= y(x) -

= yp(x) -

(a=3)a-2)(a-1)
6

J*(D% yir(x) = f(x)

vy () — f [g(®@) yi(P)

0
+h@)f (vx®))1dp) (3.4)

The initial approximation yg can be chosen by the
following way which satisfies initial conditions(1.2):

YO(X)—V1X+_X + (3.5)
Where y; =y’(0) andy3 y"'(0) are to be
determined by applying suitable boundary
conditions(1.3).We can obtain the following
first-order approximation by substitution of
(3.5) into (3.4):

y1(x)

= yo(x) — (@-3)q -2l )]“(D*xyo(x)
— G = yy0 () - )[ (5 yo)
+h(p)f(yo())]dp

(3.6)

Similarly , we can obtain the higher-order
approximations. If Nth-order approximate is
enough, then imposing boundary conditions (1.3)
in Nth-order approximation yields the following
system of equations:

Yy(b) = Bo (3.7
Y”N(b) = B, (3-8)

from EQgs.(3.7),(3.8),we can find the unknowns
y. =y'(0) , and y; =y'"(0). Substituting the
constant values of y1 and y3 in Nth-order
approximation results the approximate solution
of (1.1),(1.2) and (1.3).



4. ADOMIAN DECOMPOSITION
METHOD

We consider the boundary value problem for fourth-
order fractional integro-differential equation (1.1) subject
to the boundary conditions (1.2),(1.3).In the case of a
= 4, the fractional equation reduces to the classical
fourth-order integro-differential equation . Applying the

operator J %, the inverse of the operator D% , to both
sides of Eq.(l.l) yields

y() = Z UG + Y]

+J%( f (900 y(®
0
+h(®)f(y(©))]dD). (4.1)

The Adomian's decomposition method [3,4]
suggests the solution y(x) be decomposed by
the infinite series of components

y(x) = X520 ya(x), (4.2)

and the nonlinear function in Eq.(1.1) is decomposed as
follows:

F=3Y304n (4.3)
where Ap are so-called the Adomain polynomials.
Substitutions the decomposition series (4.2) , (4.3) into
both sides of (4 1) gives

Zyn(x) —Zy, —,+J

f@+y Y yn(x)]
n=0

[90) D 3@
n=0

+ h(t) z Aylat (4.4)
n=0

From this equation, the iterates are determined by the
following recursive way

3 .
xj
Yolx) = ;y,- T,

Yna1 () =¥ J%n () + J[J; [g(©yn () + R(DA,)dE], 7 =
0, (4.5)

Where y; =y'(0) and y; =y'""(0) are to be determined
and the Adomain polynomials A,, are given by [4]

Ay Lo <Za yk>h 0 46)

The decomposntlon series solutions are generally converge
very rapidly. The convergence of the decomposition series
have investigated by several author [2,5,6,12,14,15]. For

later numerical computation, let the expression
N-1

MOE Z (0, “7)

denote the Nterm approximation to y(x). Now we
determined y; and y3 by imposing boundary
conditions (1.2),(1.3) on (4.7) gives the system

on(b) = yo(b) + y1(B) + -+ yy_1(b) =By (4.8)

@"w() =y"o(b) +¥"1(b) + -+ ¥"y-1(b)
= B2, (4.9)
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from which the unknowns y; and y3 can be found. Once
we have the values for y1  and y3 , expression (4.7)
serves as an approximate solution of (1.1) , (1.2) and
(1.3).

5. APPLICATIONS AND

RESULTS

We have applied VIM and ADM to fourth-order linear
and nonlinear fractional integro-differential equations |,
we have applied the methods to two different examples
with known exact solution for the special case o =4 .
Example5.1.

Consider the following linear fourth-order Fractional
integro-differential equation

D&y(x) =1+ (5+x)e* +y(x) — [, y()dt,0 < x <

1,3<a<4 (5.1)

subject to the boundary conditions
y(0) =0 y"(0)=2 (5.2)
y()=e y"(1) =3e (53)

The exact solution ,when,a = 4,is
y(x) = xe*. (54)
In order to avoid the difficult fraction integration in two
methods , we can take the truncated Taylor expansion for
the exponential term as
x? x3
e*~1+x+ o + = 30

First, by ADM, the recursive Adomain decomposition
algorithm is

B x3
yo(x) = Ax + x2? + = +J%[1 + 5e* + xe*],

Y (0) = [y ) — J( f Y(®dD,n =0,  (55)

0
where the constants A = y'(0) and B = y""’(0) are to be
determined. Using the recursive algorithm (5.5),yields the
2-term approximation

3 a a+1
92(0) = Ax +x2 + 24 T+ A
(9-4) x+2 (6+B) x&+3 (4—B) x%+* 6 x2% x2a+2
I'(a+3) I'(a+4) I'(a+5) rQa+1) TI'(2a+3)

X2a+3 4x2a+4 4x2a+5

T(2a+4) T(a+5) T(2a+6) (5.6)

Second by VIM, the iteration formula can be expressed
in the following form:

3 2 1
Yirr () =y () = DD e pay, (1) — 1 -

5e* — xe® — y,(x) + foxyk(t)dt),n >0, (5.7)
and assume that an initial approximation has the
following form which satisfies the initial conditions
(5.2),(5.3):

3

Bx
Yo(x) = Ax + x2 + 3

Now, by iteration formula (5.7) first-order approximation
takes the following form

Y1) = yo () - EEDED

xe* —yo(x) + fx}’o(f)df)

(a 3)(a-2)(a—-1) x@
y1(0) = Ax +x2 + 2= 6 x (l"(a+1)
(A+6) (A-9) (B+6) (B-4)

T@+2)” TT@n ™ ~ Tara) x? T'(@+5) xt

(5.8)

JE(D&yo(x) —1—5e* —

(5.9)



Tablel. Values of the constants A and B for different

values of a by two methods using(5.6),(5.9).
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Table 2. Approximate solution of (5.1) for different
values of a by the two methods.

o VIM
A B
325 | 0.759452666724677
5.07080968251894
35 | 0.868738025237750 3.82120800255373
375 | 1.00138785157674 2 60083459995043
o ADM
A B
325 | 1.26589301045649
-3.15911802210204
35 1.24354885848781 1 26316162748865
375 | 1.20012540791374 0.216519469700978
4 1.13566559250585 156311706233720

Exact ADM ADM ADM ADM
0=3.25 0=3.5 0=3.75 o=4
0.1 | 0.1105171 0.1364819 0.1343119 0.1310146 0.1238527
0.2 | 0.2442806 0.2930708 0.2889740 0.2830248 0.2696370
0.3 | 0.4049576 0.4713378 0.4656599 0.4579892 0.4399115
0.4 | 0.5967299 0.6740786 0.6672492 0.6588760 0.6379957
0.5 | 0.8243606 0.9052706 0.8978026 0.8897026 0.8680642
0.6 | 1.0932713 1.1701176 1.1626087 1.1556119 1.1352506
0.7 | 1.4096269 1.4751311 1.4682648 1.4629695 1.4457639
0.8 | 1.7804327 1.8282372 1.8227817 1.8194796 1.8070167
0.9 | 2.2136428 2.2389029 2.2357093 2.2343179 2.2277683
1 2.7182818 2.7182818 2.7182818 2.7182819 2.7182818
X Exact VIM VIM VIM VIM
0=3.25 0=3.5 0=3.75 a=4
0.1 | 01105171 0.0868394 0.0975630 | 0.1106119 0.1237288
0.2 | 0.2442806 0.1991309 0.2194499 | 0.2442926 0.2693976
0.3 | 0.4049576 0.3424951 0.3703951 | 0.4046883 0.4395736
04 | 05967299 0.5226934 0.5555049 | 0.5960490 0.6375844
05 | 0.8243606 0.7456229 0.7802510 | 0.8232521 0.8676129
06 | 1.0932713 1.0173234 1.0504844 | 1.0918480 1.1347999
0.7 | 1.4096269 1.3439874 1.3724624 | 1.4081181 1.4453601
08 | 1.7804327 1.7319739 17528824 | 1.7791444 1.8067082
0.9 | 2.2136428 2.1878247 21989212 | 2.2128888 2.2275992
1 | 27182818 2.7182818 27182818 | 2.7182818 27182818

10




Fig.1. Comparison of approximate solutions obtained
by ADM and VIM with exact solution when 0=3.25 of
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Fig.3. Comparison of approximate solutions obtained
by ADM and VIM with exact solution when 0=3.75 of

example 5.1. example 5.1.
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Fig.2. Comparison of approximate solutions obtained
by ADM and VIM with exact solution when a=3.5 of
example 5.1.
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Fig.4. Comparison of approximate solutions obtained
by ADM and VIM with exact solution when a=4 of

example 5.1.
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Example5.2.

Consider the following nonlinear fourth-order Fractional
integro-differential equation
D&y(x) = —2x+e™™ + foxe‘tyz(t)dt,o <x<1,3<

a<4 (5.10)
subject to the boundary conditions
y@=2 y"(0)=1, (5.11)
y(1) =e+1 y'l=e, (5.12)
The exact solution, when,a = 4, is
y(x)=e*+1 (5.13)

11



First, by ADM, the recursive Adomain decomposition
algorithm is

x?  Bx® _
Yolx) =2 +Ax+7+?+]“[—2x+e ],
Ynr(0) =J4(Jy €7 Ap(t)dt), n2 0 (5.14)
where the constants A = y'(0) and B = y'"’(0) are to be
determined. Using the recursive algorithm (5.14),(4.6)
to calculate the Adomain polynomials for the nonlinear

term f(y) = y?, we obtain the 2-term approximation
t3

$20) = yo@) + (7 (1 -t +5 = 5) 4p(0)de),  (5.15)

6

x?  Bx® x% 3 xa+1
Where Yo (x)=2+Ax+ el + P NarD) ~ Tar)
a2
r'(a+3)

Apg(x) = (¥o(x))?

Second ,by VIM, the iteration formula can be expressed
in the following form:

-3 -2 -1
Yiewr (1) = o (x) - DD

e — [Yetyf(t)dt), (5.16)

JE(D&yi (x) + 2x —

and assume that an initial approximation has the
following form which satisfies the initial conditions

(5.11),(5.12):

2 3

x)=2+4 + T4
YolX) = S REY

Now, by iteration formula (5.16) first-order
approximation takes the following form

Y1 (x) = yo(x) — w]“(ﬁf&yo(x) +2x —e ¥ —
Iy e tyo(t)dt) (5.18)

(5.17)

Table 3. Values of the constants A and B for different
values of a by two methods using(5.15),(5.18)

a VIM
A B

3.25 | 0.9411915962 1554002072

35 | 09576121209 1.360417112

3.75 1.168049074
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Table 4. Approximate solution of (5.10) for different
values of a by the two methods.

X ADM ADM ADM ADM
Exact
0=3.25 0=3.5 0=3.75 o=4
0.1| 2.105170918| 2.1067548  |2.1069231 21062837 | 2.1052023
Exact VIM VIM VIM VIM
0=3.25 o=3.5 0=3.75 o=4
01 | 2.105170918| 2.0993863 | 2.1009966 |2.1030301 2.1051195
02 | 2.221402758| 2.2103897 | 2.2134368 |2.2173056 2.2213033
0.3 | 2.349858808| 2.3346540 | 2.3388306 |2.3441660 2.3497182
04 | 2.491824698| 2.4738447 | 2.4787465  [2.4850470 2.4916532
05 | 2.648721271| 2.6296470 | 2.6348088  |2.6414825 2.6485325
0.6 | 2.822118800| 2.8037663 | 2.8086983  [2.8151092 2.8219295
0.7 | 3.013752707| 2.9979289 | 3.0021549 |3.0076737 3.0135822
0.8 | 3.225540928| 3.2138834 | 3.2169804 |3.2210403 3.2254099
09 | 3.459603111| 3.4534019 | 3.4550432 |3.4572004 3.4595309
1 | 3.718281828| 3.7182818 | 3.7182818 |3.7182818 3.7182818
0.2 | 2.221402758| 2.2243216  |2.2246555 22234820 | 2.2214626
0.3| 2.349858808| 2.3537433  |2.3542197 2.3526659 | 2.3499415
0.4 | 2.491824698| 2.4962500 24968280 | 2.4950673 | 2.4919220
05| 2.648721271| 2.6532486  [2.6538748 2.6520830 | 2.6488226
0.6 | 2.822118800| 2.8263283 2.8260419 | 2.8252841 | 2.8222124
0.7 | 3.013752707| 3.0172708  |3.0178087 3.0164291 | 3.0138273
0.8 | 3.225540928| 3.2280644  |3.2284669 3.2274805 | 3.2255883
0.9| 3.459603111| 3.4609192  [3.4611360 34606227 | 3.4596219
1 | 3.718281828| 3.7182818  |3.7182818 37182818 | 3.7182818

0.9782883390
4 | 0.9994797370 1.003434856
o ADM

A B

3.5

1016397286 | 0-2735113225

35 1 1.018047562 | 0.5430999829

3.75 | 1011417998 | 0.7858792769
4 | 1.000318280 | 0.9971537827
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Fig.5. Comparison of approximate solutions obtained
by ADM and VIM with exact solution when a=3.25 of
example 5.2

o=3123
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Fig.5. Comparison of approximate solutions obtained
by ADM and VIM with exact solution when 0=3.5 of

example 5.2
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Fig.5. Comparison of approximate solutions obtained
by ADM and VIM with exact solution when a=3.75 of
example 5.2
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Fig.5. Comparison of approximate solutions obtained
by ADM and VIM with exact solution when 0=4 of
example 5.2
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6. CONCLUSION

In this paper , we have applied the Variational iteration
and Adomain decomposition methods for finding the
solution of linear and nonlinear boundary value problem
for fourth-order fractional integro-differential equations.
The integro-differential equations converted to infinite
convergent series by two methods .Comparisons of VIM
and ADM with exact solution have been shown by
graphs which show the efficiency of the methods and we
find that VIM results better than ADM.
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