
International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.4, October 2013

6

EATOOS-Testing Tool for Unit Testing of Object

Oriented Software

S.Suguna Mallika

CVR College of Engineering,

 Department of CSE

Ibrahimpatnam, R.R. District, A.P., India

ABSTRACT
With the advent of Object Oriented programming, most of the

software being built is using object oriented programming

languages. The major challenge lies with testing the software

and it is a known fact that testing consumes around 40% of

the time in the total software development process. If more

number of errors are uncovered in the unit testing phase itself

then the probability of propagation of errors to other

components or phases gets reduced drastically. Similarly

object oriented software also needs to be tested thoroughly at

unit level. Unit level testing in OO software refers to the

individual classes or group of classes which need to be tested.

In the current work an attempt has been made to come up with

an automated testing tool for unit testing of object oriented

classes developed in java. It offers a single click automation

solution for unit testing of OO software by providing the

flexibility for the tester to choose the methods of his choice to

test.

General Terms
Software Testing, Automated Testing Tools, Automated

Object Oriented Testing.

Key Words
unit testing, automated testing, testing tool, class testing.

1. INTRODUCTION
Verifying implementation of a class means verifying the

specification for that class. If so, each of the instances should

behave properly. When it comes to testing of a class, it is

analogous to testing the methods of the class. This paper

presents a new testing execution tool for testing object

oriented software. A testing framework EATOOS permits

completely automated unit testing for classes of objects

oriented software. The tool highlights the execution of test

cases specifically method by method and especially the

desired method which is present in all of the methods listed in

the class.

2. LITERATURE SURVEY
Several unit testing tools like DART and JTest have been

examined and used for unit testing. But some of the

predominant drawbacks found with respect to these tools were

that, the tester was supposed to sit and write a particular piece

of test case in the proposed format of the tool and then

execute the test case [2]. Some of the major challenges are

 The tester finds it difficult and tedious to generate

the input and the corresponding oracles

simultaneously.

 The tester would just have to go through the

laborious process of sitting and coding every test

case.[4].

 The tester cannot select a particular method that he

was interested in testing with respect to a class.

3. IMPLEMENTATION
The software was divided into 4 different modules for the

convenience of construction. The four modules are:

3.1 Test Data Generation
For the tester to execute test cases on a given source code file,

he needs to primarily generate some data for executing the test

cases [2]. For this, the tester needs to write a small script in

line with the source code class file to be tested. By running

this script, it would provide the tester with an interface to

enter the inputs as test data for each particular method defined

as part of the class. The test data entered would be stored in an

xml format with the name of the class appended by the

method name appended by either input or output. The inputs

which were to be executed on the source code are stored as

input xml file. And the expected outputs are stored as an

output xml file.

3.2 Compilation and Method Retrieval
The Source code file i.e a class written in java when given as

input to the tool is compiled and the class file corresponding

to the java file is generated and the methods pertaining to the

class are retrieved and displayed for the tester. The tester is

then given a choice to select the methods which he would

particularly like to test.

3.3 Dispatching Methods

Once the tester makes a selection of the methods to be tested,

the corresponding input xml files if have been generated by

the tester prior to choosing the methods are invoked and taken

into the tool. The tool utilizes the data present in the input xml

files and executes the test cases on the source code.

3.4 Report Generation and Logging
Once the test cases are run, the results obtained are compared

with the expected results which have been stored as output

xml files. If the actual result and the expected output are the

same, then the tool displays a test case pass message

otherwise a fail message. After showing the output to the

tester, the results are stored in a file as log files.

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.4, October 2013

7

4. CASE STUDY
A sample case study of matrix multiplication class has been

taken and code for the matrix class is as follows:

import java.util.Scanner;

public class Matrix {

private int[][] matrixElements;

private int rows;

private int cols;

public Matrix() {

rows = 2;

cols = 2;

matrixElements = new int[2][2];

}

public Matrix(int rows, int cols) {

this.rows = rows;

this.cols = cols;

this.matrixElements = new int[rows][cols];

}

public boolean equals(Matrix matrix){

boolean equalFlag = true;

if(this.rows != matrix.rows && this.cols != matrix.cols){

return false;

}

for(int rowIndex = 0;rowIndex<matrix.rows;

++rowIndex){

for(int colIndex =0;colIndex < matrix.cols;++colIndex){

if(this.matrixElements[rowIndex][colIndex] !=

matrix.matrixElements[rowIndex][colIndex]){

equalFlag = false;

return false;

}

}

}

return equalFlag;

}

public Matrix(int rows, int cols, int[][] matrix) {

this.rows = rows;

this.cols = cols;

this.matrixElements = new int[rows][cols];

for(int rowIndex=0; rowIndex <rows; ++rowIndex)

for(int colIndex=0; colIndex <cols; ++colIndex)

this.matrixElements[rowIndex][colIndex] =

matrix[rowIndex][colIndex];

}

public Matrix add(Matrix matrix1, Matrix matrix2) {

Matrix matrix3;

matrix3 = new Matrix(matrix1.rows, matrix2.cols);

for(int row=0; row < matrix1.rows; ++row)

for(int col=0; col < matrix1.cols; ++col)

matrix3.matrixElements[row][col] +=

matrix1.matrixElements[row][col] +

matrix2.matrixElements[row][col];

System.out.println(matrix3);

return matrix3;

}

public Matrix multiply(Matrix matrix1, Matrix matrix2)

{

if(matrix1.cols != matrix2.rows) {

System.out.println("\nMatrix Multiplication Not

possible\n");

System.exit(1);

}

Matrix matrix3;

matrix3= new Matrix(matrix1.rows, matrix2.cols);

for(int rowIndex=0; rowIndex < matrix1.rows;

++rowIndex)

for(int colIndex = 0; colIndex < matrix2.cols;

++colIndex)

for(int tempIndex=0; tempIndex < matrix1.cols;

++tempIndex)

matrix3.matrixElements[rowIndex][colIndex] +=

matrix1.matrixElements[rowIndex][tempIndex]

matrix2.matrixElements[tempIndex][colIndex];

return matrix3;

}

public Matrix transpose(Matrix matrix) {

Matrix transposedMatrix = new Matrix(matrix.cols,

matrix.rows);

for(int rowIndex=0; rowIndex < matrix.rows;

++rowIndex)

for(int colIndex = 0; colIndex < matrix.cols; ++colIndex)

transposedMatrix.matrixElements[colIndex][rowIndex] =

matrix.matrixElements[rowIndex][colIndex];

return transposedMatrix;

}

public String toString() {

String matrixResultString = "\n";

for(int row = 0; row < rows; ++row) {

1. for(int col = 0; col < cols; ++col)

2. matrixResultString += matrixElements[row][col] +

" ";

3. matrixResultString += "\n\n";

4. }

5. return matrixResultString;

6. }

}

5.RESULTS
The screenshots of the tool are as follows:

Step1: Select the required java class file to be tested as shown

in fig. 1.

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.4, October 2013

8

Fig 1: GUI showing Import File Feature

Step2: After browsing the appropriate file and clicking on

‘Ok’ button, the methods of the Class with checkboxes and

the code of the class are displayed as shown in fig. 2.

Fig 2: GUI displaying the code and methods

Step3: After selecting the appropriate methods by the tester,

the test cases corresponding to that method are executed

and the results are displayed as shown in the fig. 3

Fig. 3: GUI displaying results of test cases

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.4, October 2013

9

Step4: In order for the tester to run the test cases for a

particular method, it is mandatory to generate the

corresponding input test script file by using the console

provided for the tester as shown in fig. 4.

Fig. 4: GUI for generating InputTestScript File

Step5: The corresponding Expected Output file for each

method also has to be generated by the tester by using the

output console as shown in the fig. 5

Fig 5: GUI for generating the ExpectedOutputScript File

6. CONCLUSIONS
 EATOOS is certainly a powerful tool overcoming

some of the most important shortcomings of the existing tools

like ARTOO, JUNIT et. al. [3].

 It has the capability of extracting the methods

defined in the class file automatically.

 It gives the flexibility to the tester to select only

those methods of his choice for running the test cases.

 The tool is competent enough to automatically

retrieve and place objects in the input and the output xml files.

7. LIMITATIONS AND FUTURE WORK
 The current tool has certain limitations in terms of

its inability to automatically generate an automated test data

generation script for the source code file given as input to the

tool.

 Future Work should include developing a

completely generic framework which would automatically

generate the test cases as well.

 Generate the test generation script by parsing the

input source code file.

 If the methods are not having parameters which can

be passed then the generation of input script file is difficult.

This limitation has to be rectified in the future work.

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.4, October 2013

10

8. ACKNOWLEDGEMENTS
My sincere thanks to Mr.K. Narendar Reddy, Professor,

Department of IT, CVR College of Engineering, for his kind

support and encouragement in the development of this paper.

My heartfelt gratitude to Mr. J. Vamshi Vijaya Krishna,

Assistant Professor, Department of IT, for his support in the

development of this tool.

9. REFERENCES
[1] C. Boyapati, S. Khurshid and D. Marinov: Korat:

Automated Testing Based on Java Predicates, in 2002

ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA 2002), Rome, Italy, 2002.

[2] Robert V. Binder: Testing Object-Oriented Systems:

Models, Patterns and Tools, Addison-Wesley, 1999.

[3] TY Chen, H. Leung and I. Mak: Adaptive random testing,

in M. J. Maher (ed.), Advances in Computer Science –

ASIAN 2004: Higher-Level Decision Making, 9th Asian

Computing Science Conference, Springer-Verlag, 2004.

[4] Yoonsik Cheon and Gary T. Leavens: A Simple and

Practical Approach to Unit Testing: The JML and JUnit

Way, in ECOOP 2002 (Proceedings of European

Conference on Object-Oriented Programming, Malaga,

2002), ed. Boris Magnusson, Lecture Notes in Computer

Science 2374, Springer Verlag , 2002, pages 231-255.

[5] Yoonsik Cheon and Gary T. Leavens: The JML and JUnit

Way of Unit Testing and its Implementation, Technical

Report 04-02, Computer Science Department, Iowa State

University,atarchives.cs.iastate.edu/documents/disk0/00/

00/03/27/00000327-00/TR.pdf.

[6] Bertrand Meyer, Ilinca Ciupa, Andreas Leitner and Lisa

(Ling) Liu, Automatic Testing of Object-Oriented

Software, in SOFSEM 2007 (Current Trends in Theory

and Practice of Computer Science, Harrachov, Czech

Republic, 20-26 January 2007), ed. Jan van Leeuwen, to

appear in Lecture Notes in Computer Science, Springer-

Verlag, 2007.

[7] Jitendra S.Kushwah, Mahendra S. Yadav, TESTING FOR

OBJECT ORIENTED SOFTWARE, Indian Journal of

Computer Science and Engineering (IJCSE), Volume2,

No.1.

[8] Automatic Test Factoring for Java – David Saff, Shay

Artzi, Jeff H.Perkins, Michael D. Ernst

[9] Selective Capture and Replay of Program Executions –

Alessandro Orso and Bryan Kennedy

[10] Eclat: Automatic Generation and Classification of Test

Inputs – Carlos Pacheco, Michael D. Ernst

[11] Orstra: Augmenting Automatically Generated Unit-Test

Suites with Regression Oracle Checking

[12] Substra: A Framework for Automatic Generation of

Integration Tests – Hai Yuan, Tao Xie

[13] Symstra: A Framework for Generating Object-Oriented

Unit Tests Using Symbolic Execution – Tao Xie, Darko

Marinov, Wolfram Schulte, David Notkin

IJCATM : www.ijcaonline.org

