
International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.4, October 2013

1

Semi-Adaptive Substitution Coder for Lossless

Text Compression

Rexline S J
Department of Computer
Science, Loyola College,

 Chennai -600034, India

 Robert L
Computer Science and

Information System
Department, Community
College in Al – Qwaiya,

Shaqra University, KSA

 Trujilla Lobo
Department of Computer
Science, Loyola College,

 Chennai -600034, India

ABSTRACT

In this paper, a new text transformation technique called

Semi-Adaptive Substitution Coder for Lossless Text

Compression is proposed. The rapid advantage of this

Substitution Coder is that it substitutes the codewords by

referring the reference of the word's position in the dictionary

to expedite the dictionary mapping and also codewords are

shorter than words and, thus, the same amount of text will

require less space. In general, text transformation needs an

external dictionary to store the frequently used words. To

preserve this transformation method in a healthy way, a semi-

adaptive dictionary is used and therefore which reduces the

expenditure of memory overhead and speeds up the

transformation because of the smaller size dictionary. This

new transformation algorithm is implemented and tested using

Calgary Corpus and Large Corpus. In this implementation

Semi-Adaptive Substitution Coder in connection with a

popular bzip2 and commonly used Gzip compressors improve

the compression performance by about 7–9% on large files.

Keywords

Transformation, preprocessing, adaptive dictionary,

compression, decompression.

1. INTRODUCTION
Lossless text Compression reduces the disk space to store the

information and communication costs during transferring the

large text file and also the time taken to search the pattern or

portion of a file through the huge compressed file [13]. And

therefore, Lossless text compression is considered to be an

important research area to improve its algorithms and

compressing technologies. Compression is possible based on

bit level [10], character level and word level compression.

Faster compression may also be possible by working with

larger units [8].Lossless data compression techniques are

often partitioned into statistical based compression techniques

and dictionary based compression techniques. Statistical

compression algorithm is based on the probability that certain

character will occur. Huffman Coding [9] and Arithmetic

Coding are the kind of statistical coders.

Dictionary based compression method exploits repetitions in

the data. This coding scheme makes use of the fact that certain

groups of consecutive characters occur more than once and

assign a codeword to that certain occurrences. Most of the

dictionary coders are based on LZ77 and LZ78 and are widely

employed to compress the data. The main areas of lossless

text compression are generation of new compressors or

transformation algorithm. Researchers have proved that word

based preprocessing method saves the run time memory,

boost the compression rates and also speeds up the

transmission time [12, 15].Though there are methods which

have been existing based on word replacement preprocessing

techniques, like Star Encoding [6], LIPT [2] and StarNT [18],

it is known that there can be a better word based

preprocessing techniques are possible as the days and

technologies advancement. The most common preprocessing

algorithm used in practice is the dictionary based scheme.

These algorithms are based on maintaining a dictionary of

words and replacing words of the source file with pointers to

identical words in the dictionary [14]. The dictionary can be

generated as either static or dynamic manner. There are major

methods available for text preprocessing algorithm with static

dictionary like Star Encoding, Length-Preserving Transform

(LPT), Reverse Length-Preserving Transform (RLPT),

Shortened –Context Length-Preserving Transform (SCLPT)

Length Index Preserving Transform LIPT [2] and StarNT

[18]. The main drawback of the algorithms is that of a fixed

initial storage overhead of 1 MB in the form of shared

dictionaries [6]. Adaptive dictionary construction method

avoids the memory overhead and expedites the dictionary

mapping [19], because of the smaller size of the dictionary. In

Semi-adaptive dictionary method, an optimal dictionary is

prepared during the first pass using the word based

distribution in the source file to be compressed and encoding

of the source file in to the intermediate file is performed

during the second pass by using the dictionary.

The paper is organized as follows: Section 2 presents the

existing related text transformation methods; Section 3

proposes the new approach called Semi- Adaptive

Substitution Coder for Lossless Text Compression. Section 4

discusses the performance analysis to validate the

achievability and efficiency of the proposed method and

finally Section 5 contains the conclusions.

2. MATERIALS AND METHODS
The text transformation is a process, which transforms a data

into some intermediate form. The transformed data can be

compressed with most of existing lossless data compression

algorithms, like bzip2, gzip with better compression

effectiveness than achieved using an untransformed data. The

reverse process is that decompression using given compressor

like bzip2, gzip and a reverse preprocessing transformation.

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.4, October 2013

2

The Burrows-Wheeler transform [11] is a block-sorting

lossless data compression algorithm that works by applying a

reversible transformation to a block of input data. The BWT

can be seen as a sequence of three stages: the initial sorting

stage which permutes the input text so similar contexts are

grouped together, the Move-To-Front stage which converts

the local symbol groups into a single global structure, and the

final compression stage which takes advantage of the

transformed data to produce efficient compressed output[4].

The transform does not perform any compression but modifies

the data in a way to make it easy to compress with a

secondary algorithm such as “move-to-front” coding and then

Huffman, or arithmetic coding. The BWT algorithm achieves

compression performance by using alphabetic reordering as

per Chapin [5].

The dictionary based transformation can be performed based

on static dictionary or dynamic dictionary creation. Here are

major methods available for text preprocessing algorithm with

static dictionary like Star Encoding, LIPT [2], StarNT.

Skibinski and Grabowski [17] suggested word based

replacement transformation method with static dictionary and

introduced the recognized preprocessing methods like EOL

coding, Capital Conversion, Q-gram replacement, Binary data

Filter and Surrounding words with spaces.

Text preprocessing methods with dynamic dictionary are Abel

and Teahan preprocessor [1] and the method suggested by

Umesh S. Bhadade and A.I. Trivedi [19] .Furthermore ,the

transformation can be performed on character or word based

method. Umesh S. Bhadade and A.I. Trivedi suggested the

method using character based as well as word based dynamic

dictionary creation to perform text transformation. In the word

based dynamic creation method, they suggested to create four

different dictionaries to store the words, prefix and suffix part

of the words and non-words which includes non-alphabets

that all appear more than once in the source file. In character

based dynamic dictionary creation method, they suggested to

consider the frequency of all possible 4 character pair, 3

character pair and 2 character pair.

Abel and Teahan [1] proposed five different text

transformation algorithms to improve the compression ratio of

the source. The recognized transformation algorithms are

Capital conversion, EOL coding, word replacement, phase

replacement and alphabet reordering. This method needs no

external dictionary to maintain the frequently used words and

non-words and also this approach is language independent

one.

3. PROPOSED CODER
In this section, we proposed our new techniques in text

transformation method in which the Semi-Adaptive Coder is

designed as two pass preprocessor. During the first pass,

frequently used words are extracted from the source file to

create an optimal adaptive dictionary and in the second pass

only, the source file should be encoded based on the

transformation techniques using the adaptive dictionary. The

proposed Semi-Adaptive Coder used almost all the most

popular well recognized existing transformation techniques

like Capital Conversion, EOL coding, N-gram replacement,

prefix and word replacement transformation techniques but

needs no external storage in the form of static dictionary. So

that, this proposed algorithm reduces the cost of maintaining

the dictionary and also reduces the transformation time

because of the smaller size of the dictionary. If there is not

previous knowledge about the source file, then usage of

adaptive dictionary is more effective than the static dictionary.

3.1 Semi- Adaptive Dictionary Creation

Algorithm
Almost in all the previous transformation techniques, an

external static dictionary is used to store the frequently used

words [7, 16]. This paper presents the adaptive dictionary in

which the lower case version of the words in the source file to

be compressed are stored in a table like structure according to

its frequency which occurs more than 25 times in the source

file and used the indexes of the entries to refer the dictionary

words. The shorter codewords are used to represent the index

value in the encoded file. When it is analyzed the available

codeword, the set of ASCII value 0 to 31 and 127 to 255 that

are not used in the text files are determined. Since the ASCII

value 0-31 is non-printable characters, it is avoided that

characters using as codewords, but used it for flag

representation. Remaining characters 127 to 255 are used as

codeword for word replacement and N-gram replacement.

Here, in this method full word as well as partial words

mapping is also permitted in the dictionary [3]. The dictionary

is created dynamically in the transformation process and

transfers it with the encoded message for decompression.

3.2 Encoding Algorithm
The words in the source file are searched in the Dictionary. If

the input text word is found in the dictionary, replace the word

with the codeword assigned. Well known recognized

transformation techniques like capital letter conversion [6, 17,

and 20] also used in this transformation method. Since the

proposed method makes use of the capital conversion

technique, only the lower case letters of the source file are

stored in the dictionary, There are two flags (ASCII values

254 and 255) in the encoded file to indicate that either a given

word starts with a capital letter while the following letters are

all lowercase, or a given word is of capitals only. Those flags

are inserted before the word respectively. Moreover, there is

another one flag (ASCII values 253), used to encode lower

words with few capital letters. When the word starts with few

capital letters and ends with lower case letters, the capital

letter flag is placed before the first part of the word and the

flag ASCII value 253 is used to separate the lower case part of

the word. Furthermore, there is another one flag (ASCII

values 6), used for encoding occurrences of flags and the

codeword symbol present in the source in the text. If all the

letters of a word are in lower case then no flag is present

before their codeword. Another one recognized

transformation technique that improves the compression

performance is End-Of-Line (EOL) coding [1, 17]. The basic

scheme is to replace EOL symbols with spaces and a binary

flag is used to distinguish an original EOL from a space. It is

also necessary to encode information necessary to perform the

reverse operation of EOL symbol in a separate stream. N-

gram replacement [17] is based on substituting n consecutive

characters with single character (ASCII values 227-252). In

this method, length of the n does not exceed 3, so that only

bigram and trigram characters are replaced with single

characters. The remaining codewords ASCII value 127 -226

used for word replacement based on the words present in the

adaptive dictionary created during transformation of the

source file.

3.3 Decoding Algorithm
The received compressed text is first decompressed using the

same compressor as was used at the source end and the

transformed text is recovered. The reverse transformation is

applied on this decompressed transformed text. If the

codeword starts with the ASCII character 128 to 255, then

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.4, October 2013

3

finds match for words in the dictionary. The transformed

codewords are replaced with the respective words in the

dictionary. The unaltered word can be easily recognized and

transformed as it is in the decoded file. The change of

capitalization of the word is performed. It is also necessary to

decode the EOL coding based on the information to perform

the reverse operation in a separate stream.

4. RESULTS AND DISCUSSION
Semi-Adaptive Substitution Coder for Lossless Text

Compression was implemented in C and experiments were

carried out on an 800MHz equipped with 3.00 GB RAM,

under Windows Vista operating system. To evaluate the

performance and excellence of good compression algorithm,

there are several criteria to be under consideration such as, the

compression ratio and encoding and decoding speed in the

case of lossless text compression. In this section to compare

the performance of the proposed Coder, the backend

algorithms Bzip2 and Gzip are used. The reason to use bzip2

as our backend compressor is that bzip2 compresses files

using the Burrows-Wheeler block sorting text compression

algorithm and Huffman coding and also bzip2 outperforms

other compression algorithms when compared with Gzip,

Gzip-9, and DMC by giving the best compression ratios with

lowest execution time [6] and Gzip is widely used. The

compression ratios are expressed in terms of average BPC

(bits per character).

Table 1 Comparative compression ratio of Calgary

Corpus with bzip2

Table 2I Comparative compression ratio of Gutenberg

files with bzip2

Table III Comparative compression ratio of Calgary

Corpus with Gzip

File

Names

File

size

Bytes

Bzip2
Encoded

file

Sub

coder+

Bzip2

%

gain

bib 111261 1.97 27283 1.96 0.51

book1 768771 2.42 222177 2.31 4.55

book2 610856 2.06 152744 2.00 2.91

News 377109 2.52 116329 2.47 1.98

paper1 53161 2.46 16397 2.47 -0.41

paper2 8219 2.44 24551 2.39 2.05

Progc 39611 2.53 12490 2.52 0.40

prog1 71646 1.74 15504 1.73 0.57

Progp 49379 1.74 10729 1.74 0

trans 93695 1.53 18039 1.54 -0.65

Average

(BPC)
 2.14 2.11 1.91

File

Names

File size

Bytes
Bzip2

Encoded

file

Sub

coder+

Bzip2

%

gain

World

192

2473400 1.58 452155 1.46 7.59

Bible 4047392 1.67 797929 1.58 5.39

Average

(BPC)

1.63 1.52 6.49

File

Names

File

size

Bytes

Gzip
Encoded

file

Sub

coder+gzip

%

gain

bib 111261 2.51 34896 2.51 0.00

book1 768771 3.25 290989 3.03 6.77

book2 610856 2.70 186017 2.44 9.63

News 377109 3.06 137687 2.92 4.58

paper1 53161 2.79 17814 2.68 3.94

paper2 8219 2.89 27660 2.69 6.92

Progc 39611 2.68 13147 2.66 0.75

prog1 71646 1.80 15807 1.77 1.67

Progp 49379 1.80 11111 1.80 0.55

trans 93695 1.61 19156 1.64
-

0.19

Average

(BPC)
 2.51 2.41 3.98

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.4, October 2013

4

Table 3V Comparative compression ratio of Gutenberg

files with Gzip

The compression performance of the proposed semi-Adaptive

Substitution Coder is compared with the results of Bzip2 and

Gzip. According to experimental results based on the Calgary

Corpus Shown in Table I, the average BPC using original

Bzip2 is 2.14. According to Gutenberg files based results

taken from R. Franceschini and A. Mukherjee [6] shown in

Table II, the average BPC using original Bzip2 is 1.63. But

based on the proposed method, average BPC for Calgary

Corpus is 2.11, compression gain up to 1.91% and for

Gutenberg files is 1.52, compression gain up to 6.49%.

 According to experimental results based on the Calgary

Corpus Shown in Table III, the average BPC using original

gzip is 2.51. According to Gutenberg files based results taken

from R. Franceschini and A. Mukherjee [6] shown in Table

IV, the average BPC using original gzip is 2.33. But based on

this method, average BPC for Calgary Corpus is 2.41,

compression gain up to 3.98% and for Gutenberg files are

2.10, compression gain up to 10.14%. When compared with

bzip2, gzip gives better improvements in compression ratio.

The results are compared with Abel and Teahan’s Universal

Text Preprocessing for Data Compression. Their approach is a

universal one and also needs no external dictionary.

According to this coding technique, a large text file gives

better compression than the files with smaller size.

As an example, a section of the text from Canterbury corpus

version of world192.txt looks like this in the original text:

For these and other matters, please mail to:

David Turner, Project Gutenberg

Illinois Benedictine College

5700 College Road

Lisle, IL 60532-0900

Running this text through the Semi-adaptive coder yields the

following text:

ÿ‰ è¾ • ‘ m”ters, pleËe mail …:

 ÿéàµ ÿturner, ÿéáŽ ÿguten¸rg

ÿillƒo‹ ÿ¸nedictƒe ÿcollege

5700 ÿcollege ÿéßŒ

ÿl‹le, þil 60532-0900

The speed of encoding is low when compared with decoding

time during transformation. Since the costs for the encoding

time is in terms of amount of time taken to create the adaptive

dictionary and to encode the source file into the intermediate

file. Decoding time avoids the creation of dictionary. This

proposed method competes with almost the same speed as the

existing compressors like bzip2 and Gzip. But it takes

additional time during first pass to create the adaptive

dictionary

Table V Comparative compression ratio of Abel and

Teahan preprocessor and substitution coder

When compared the results with Abel and Teahan’s

Preprocessor, Larger files give better results compared with

smaller files. One reason for not getting better improvements

for smaller file may be the fact that there are few word

repetitions in the source file. Storing words in a static

dictionary is the contrary to our intention. So that words that

occurs more than 25 times over the source file used to form a

table like dictionary structure gives better performance for

large files. Table V shows the comparative compression ratio

with Abel and Teahan preprocessor taken from [1]. According

to the results, it is proved that large files gives better

performance than smaller one.

5. CONCLUSION
The proposed method is admirable extensions of the

transformation method experimented on various text files. The

most common transformation algorithm used in practice is the

dictionary scheme using an external static dictionary. But to

avoid the dictionary overhead, adaptive dictionary is proposed

to store the frequently used words of the source file. In future

work it is worthy to remove the spaces between the words so

that the redundancy of space can also be compressed in which

smaller files can also be compressed with better performance.

Tested Corpus indicated that better compression ratios were

possible with large text files. This is an inconclusive research

area which leaves lots of space for researchers to develop

different preprocessors and new compressors in lossless text

compression area.

File

Names

File size

Bytes
Gzip

Encoded

file size

Sub

coder+

Gzip

%

gain

World192 2473400 2.33 660823 2.14 8.15

Bible 4047392 2.33 1039506 2.05 12.02

Average 2.33 2.10 10.14

File

Names

File size

Bytes

Gzip

Abel

&Teahan+

Gzip

Sub

coder+

Gzip

bib 111261 2.51 2.42 2.51

book1 768771 3.25 3.02 3.03

book2 610856 2.70 2.49 2.44

news 377109 3.06 2.94 2.92

paper1 53161 2.79 2.63 2.68

paper2 8219 2.89 2.65 2.69

progc 39611 2.68 2.61 2.66

prog1 71646 1.80 1.74 1.77

progp 49379 1.80 1.73 1.80

trans 93695 1.61 1.63 1.64

Bible 4047392 2.33 2.11 2.05

World192 2473400 2.33 2.22 2.14

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.4, October 2013

5

6. REFERENCES
[1] Abel,J, Teahan,W, “Universal Text Preprocessing for

Data Compression”,IEEE Trans.Computers,54(5)pp

:497-507,2005.

[2] F. Awan and A. Mukherjee, “LIPT: A Lossless Text

Transform to Improve Compression,” Proceedings of

International Conference on Information and

Theory:Coding and Computing, IEEE Computer Society,

pp. 452-460, April 2001.

[3] T. Bell, J. Cleary, and I. Witten, “Data compression

using adaptive coding and partial string matching,” IEEE

Transactions on Communications, Vol. 32 (4), p. 396-

402, 1984.

[4] M. Burrows and D.J. Wheeler, “A Block-Sorting Lossless

Data Compression Algorithm”, SRC Research Report

124, Digital Systems Research Center, Palo Alto, CA,

1994.

[5] Chapin, B. “Higher Compression from the Burrows-

Wheeler Transform with new Algorithms for the List

Update Problem”, Ph.D. Dissertation, University of

North Texas, 2001.

[6] R. Franceschini, H. Kruse, N. Zhang, R. Iqbal, and A.

Mukherjee, “Lossless, Reversible Transformations that

Improve Text Compression Ratio” ,Project paper,

University of Central Florida, USA. 2000.

[7] V.K. Govindan, B.S. Shajee mohan, “IDBE – An

Intelligent Dictionary Based Encoding Algorithm for

Text Data Compression for High Speed Data

Transmission Over Internet”, Proceeding of the

International Conference on Intelligent Signal

Processing and Robotics IIIT Allahabad February

2004.

[8] Horspool N, Cormack G. “Constructing Word-Based

Text Compression Algorithms”, Proceedings of the 1992

IEEE Data Compression Conference, IEEE Computer

Society Press, Los Alamitos, California, pp. 62–71,1992.

[9] Huffman, D.A.,” A method for the construction of

minimum-redundancy codes”. Proc. Inst. Radio Eng., 40:

pp: 1098-1101.1952.

[10] Hussein Al-Bahadili, Shakir M. Hussain,” A Bit-level

Text Compression Scheme Based on the ACW

Algorithm”, International Journal of Automation and

Computing, pp: 123-131, February 2010.

[11] Isal RYK, Moffat A, Ngai ACH. “Enhanced Word-Based

Block-Sorting Text Compression”, Proceedings of the

25th Australian Computer Science Conference,

Melbourne, pp. 129–138, January 2002.

[12] H. Kruse and A. Mukherjee, “Preprocessing Text to

Improve Compression Ratios”, Proceedings of Data

Compression Conference, IEEE Computer Society,

Snowbird Utah, pp. 556, 1998.

[13] U. Manger, “A Text compression scheme that allows fast

searching directly in compressed file” , ACM

Transactions on Information Systems, Vol.52, N0.1,

pp.124-136, 1997.

[14] Md.Nasim Akhtar,Md.Mamunur Rashid, Md,Shafiqul

Islam, Mohammad Abul kashem,Cyrill Y. Kolybanov ,

“Position Index preserving Compression for Text

Data”,JCS&T,Vol 11, No 1,April 2011.

[15] Radu R¸ADESCU, “Transform Methods Used in

Lossless Compression of Text Files ”, romanian journal

of information science and technology ,Volume 12,

Number 1,pp :101-115, 2009.

[16] Robert Franceschini, Amar Mukherjee, “ Data

Compression Using Encrypted Text” ,proceedings of the

third forum on Research and Technology, Advances on

Digital Libraries,ADL 96,pp .130-138, May 1996.

[17] P. Skibiński, Sz. Grabowski and S. Deorowicz.

“Revisiting dictionary-based compression”. Software–

Practice and Experience, pp.1455-1476, 2005.

[18] Sun W, Mukherjee A, Zhang N. “A Dictionary-based

Multi-Corpora Text Compression System” . In Storer JA,

Cohn M, editors, Proceedings of the 2003 IEEE Data

Compression Conference, IEEE Computer Society Press,

Los Alamitos, California, pp .448 ,2003.

[19] Umesh S. Bhadade, A.I. Trivedi, “Lossless Text

Compression using Dictionaries”, International Journal

of Computer Applications ,Volume 13– No.8, January

2011.

[20] Md. Ziaul Karim Zia, Dewan Md. Fayzur Rahman, and

Chowdhury Mofizur Rahman, “Two-Level Dictionary-

Based Text Compression Scheme”, Proceedings of 11th

International Conference on Computer and Information

Technology, Khulna, Bangladesh.,pp.25-27 December.

IJCATM : www.ijcaonline.org

