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ABSTRACT
In this paper attention has been paid to the study of multiobjec-
tive linear fractional programming problem (MOLFPP) by using
fuzzy set theoretic approach. In this approach, MOLFPP is trans-
formed into multiobjective linear programming problem (MOLPP)
by suitable transformation. In algorithm-I, MOLFPP is transformed
into MOLPP by using fuzzy set theory and the pareto optimal so-
lution of the transformed MOLPP is obtained by applying Zim-
mermann’s min-operator model and simplex method. Further we
have used additive weighted method to modify the above approach.
Algorithm-II has been presented to find the pareto optimal solution
of MOLFPP by applying additive weighted method. To demon-
strate the applicability of the proposed approach, one numerical
example is solved to find the pareto optimal solution by applying
this two algorithms.
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weighted method.

Keywords
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1. INTRODUCTION
Linear fractional programming (LFP) problems is an important
planning tool for the past decades which is applied to different
disciplines like engineering, business, finance, economics, etc.
Fractional programming is the ratio criteria which are often used
for modelling of real life problems with one or more objective(s)
such as profit-cost, inventory-sales, actual cost-standard cost,
output-employees, debt-equity, etc. In many practical applications
like stock problems, ore blending problems, shipping schedules
problems, optimal policy for a Markovian chains, sensitivity of
linear programming problem, optimization of ratios of criteria
gives more insight into the situations than the optimization of
each criterion [3]. Multiobjective linear fractional programming

is an area of multiple criteria decision making is concerned
with mathematical optimization problems involving more than
one objective function to be optimized simultaneously where
multiple objectives are written by fractional formulas. MOLFP is
an interesting topic which has been used in production planning,
financial sector, inventory management, banking sector, etc.

Charnes and Cooper [1] solved a programming problem with linear
fractional funtionals by resolving it into two linear programming
problems. Craven et. al [2] have given the details of LFP and
its equivalence. Kornbluth et.al [11] have studied a generalized
approach for solving LFP under goal programming. However, there
are many methods of solving fuzzy linear fractional programming
(FLFP) problems are available in the literature [7,8,11,17,18].
Dutta et.al [5] studied restricted class of MOLPP. Luhandjula [14]
solved fuzzy approaches for multiple objective linear fractional
optimization. Dutta et.al [4] have tried to modify the problem
of Luhandjula’s approach to solve MOLFPP. Nykowski and
Zolkiewski [10] has proposed a compromise procedure for
MOLFPP. Furthermore, there are a few studies [6,12] on MOLFPP
in recent years. By suitable transformation, Chakraborty and
Gupta [15] have transformed MOLFPP to formulate an equivalent
MOLPP under fuzzy set theoretic approach. We have studied the
paper [15] and modify the approach by using additive weighted
method. In algorithm-I, we have presented MOLFPP which is
transformed into MOLPP. Using Zimmermann’s min operator [9]
model in the transformed MOLPP, the fuzzy model is transformed
into an ordinary crisp model and the pareto optimal solution of
MOLPP is obtained by applying simplex method. In algorithm-II,
by using additive weighted method in the transformed MOLPP
and find the pareto optimal solution of the respective problem.
The paper is organised as follows:

Section 2 outlines the definitions and preliminaries of LFP,
MOLFPP. In section 3, we have discussed methodology I- where
MOLFPP is transformed into MOLPP by suitable transformation
under fuzzy set theoretic approach. By using Zimmermann’s min
operator model in the transformed MOLPP, it reduces to a crisp
model. From that model solution is obtained. In methodology II-
we have used additive weight method in the transformed MOLPP
and from that solution is obtained. Two algorithms have been
presented to find the pareto optimal solution of the MOLFPP.
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Section 4 demonstrates one numerical example to illustrate the
above two algorithms. Section 5 discusses the conclusions of this
paper.

2.DEFINITION AND PRELIMINARIES
Definition 1. Linear Fractional Programming- The general for-
mat of linear fractional programming (LFP) may be written as:

Max cx+α
dx+β

,
subject to the constraints:

x ∈ S = {x|Ax = b, x ≥ 0} (1)

where A ∈ Rm×n, b ∈ Rm, x ∈ Rn, c, d ∈ Rn, α, β ∈ R and S
is a non-empty and bounded set.

For some values of x, dx+ β may be equal to zero. For that we
need to make an additional assumption that-

If Ax = b, x ≥ 0 then dx+ β > 0 or dx+ β < 0.
For convenience, assume that LFP (1) satisfies the condition:

x ≥ 0 then

dx+ β > 0 (2)

Definition 2. (Craven [3]).
The two mathematical programming problems -

(i)Max A(x), subject to, x ∈ ∆,
(ii)Max B(x), subject to, x ∈ Γ,
will be said to be equivalent iff there is a ono-one map q(.)

of the feasible set of (i), onto the feasible set of (ii), such that
A(x)=B(q(x)) for all x ∈ ∆.

Theorem 1. Equivalence of LFP and LPP (Charnes and Cooper [1]
and Craven and Mond [2]).
Assume that no point (y,0) with y ≥ 0 is feasible for the following
linear programming problem (LPP):

Max cy + αt
subject to the constraints:

dy + βt = 1,

Ay − bt = 0 (3)

where t ≥ 0, y ≥ 0, y ∈ Rn, t ∈ R.
Assumption: If Ax = b, x ≥ 0 then dx+ β > 0 or dx+ β < 0,
then the LFP(1) is equivalent to linear program (3).

Proof: For x is feasible(for LFP (1)),
define q(x)=(y,t), where t = (dx+ β)−1 and y=tx.
Then y ≥ 0, t > 0,

Ay − tb = A(tx)− tb = t(Ax− b) = 0,
dx+ β = d( y

t
) + β = dy + βt = t(dx+ β) = 1,

Thus, (y, t)is feasible for LPP(3).

Conversely, if (y, t) is feasible for LPP(3), then x = y
t

, t > 0
satisfies

x ≥ 0, Ax− b = A( y
t
)− b = Ay−bt

t
= 0.

Consequently, q(.) maps the feasible set of LFP(1), one-one,
onto the feasible set for LPP(3).

Also the objective function are related by
cx+α
dx+β

= c(y/t+α)
d(y/t)+β

= cy+αt
dy+βt

= cy+αt
1

= (cy + αt).

Thus, LFP(3) is equivalent to LPP(1).

2.1 Concave-Convex Problems(Craven [3]).
Consider the fractional programming problem

Max N(x)
D(x)

subject to the constraints :
Ax ≤ b, x ≥ 0 and

x ∈ ∆ = {x : Ax ≤ b, x ≥ 0}

⇒ D(x) > 0 (4)

Now consider
Max tN( y

t
)

subject to the constraints:
A( y

t
)− b ≤ 0,

tD(
y

t
) = 1 (5)

where t > 0, y ≥ 0

and Max tN( y
t
)

subject to the constraints:
A( y

t
)− b ≤ 0,

tD(
y

t
) ≤ 1 (6)

where t > 0, y ≥ 0

where (5) is obtained from (4) by substituting t = 1
D(x)

, y = tx.
Equation (5) and (6) are obtained by replacing the equality
constraint tD( y

t
) = 1 by an inequality constraint tD( y

t
) ≤ 1.

Definition 3. (Craven [3]).
The fractional programming problem (4) will be said to be stan-
dard concave-convex fractional programming problem (SCCFP) if
N(.)is concave on ∆ with N(ξ) ≥ 0 for some ξ ∈ ∆ and D(.) is
convex and positive on ∆.

Theorem 2. (Schaible [18,19 ]).
Let for some ξ ∈ δ, N(ξ) ≥ 0, if (4) reaches a (global) maximum
at x = x∗, then (6) reaches a (global) maximum at a point
(t, y) = (t∗, y∗) where y∗

t∗ = x∗ and the objective functions at
these points are equal.

Theorem 3. (Schaible [19]).
If (4) is a SCCFP which reaches a (global) maximum at a point x∗,
then the corresponding transformed problem (6) attains the same
maximum value at a point (t∗, y∗), where y∗

t∗ = x∗. Also (6) has a
concave objective function and a convex feasible set.

If instead in (4), N(.) is concave, D(.) is concave and positive on ∆
and N(.) is negative for each x ∈ ∆ then

Maxx∈∆
N(x)

D(x)
⇔Minx∈∆

−N(x)

D(x)
⇔Maxx∈∆

D(x)

−N(x)
,

where -N(x) is convex and positive.

Now, by Theorem 3 and under the present hypothesis, the fractional
programming (4) transformed to the following LPP :

Max tD(
y

t
)

subject to the constraints:
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A(y/t)− b ≤ 0,

−tN(y/t) ≤ 1 (7)

where t > 0, y ≥ 0.

Definition 4. Multiobjective Linear Fractional Programming
Problem:
The general format of a multiobjective linear fractional program-
ming which is stated as follows-

Max Z(x)={Z1(x), Z2(x), ....., Zp(x)}
subject to the constraints:

x ∈ ∆ = {x ∈ Rn : Ax

(
≤
=
≥

)
b, x ≥ 0}

with b ∈ Rn, A ∈ Rm×n and

Zp(x) =
cpx+ αp
dpx+ βp

=
Np(x)

Dp(x)
; (8)

where cp, dp ∈ Rn and αp, βp ∈ R.

3.METHODOLOGY
3.1 Methodology-I
3.1.1 Transformation of MOLFPP to MOLPP. Max Z(x) =
{Z1(x), Z2(x), ........., Zp(x)}
Take Z1(x) = N1(x)

D1(x)
= P1x1+Q1x2

R1x1+S1x2+T1
= P1y

′
1 +Q1y

′
2

where t = 1
R1x1+S1x2+T1

and y
′
1 = tx1, y

′
2 = tx2.

Z2(x) = N2(x)
D2(x)

= P2y
′′
1 +Q2y

′′
2

where t = 1
R2x1+S2x2+T2

and y
′′
1 = tx1, y

′′
2 = tx2.

Similarly, Z3(x) = N3(x)
D3(x)

= P3y
′′′
1 +Q3y

′′′
2

.....................

.....................
Zp(x) =

Np(x)

Dp(x)
= Ppy

′p
1 +Qpy

′p
2

subject to the constraints:

x ∈ ∆ = {x ∈ Rn : Ax

(
≤
=
≥

)
b, x ≥ 0}

with b ∈ Rn, A ∈ Rm×n
which can be written as-

A1x1 ≤ b1 ⇒ A1y
′
1 − b1t ≤ 0,

Similarly, A2y
′′
1 − b2t ≤ 0,

.....................

.....................
Apy

′p
1 − bpt ≤ 0,

t(R1x1 + S1x2 + T1) = 1,
t(R2x1 + S2x2 + T2) = 1,

........................

........................
t(Rpx1 + Spx2 + Tp) = 1,

where y
′
1, y

′
2, y

′′
1, y

′′
2, ........, y

′p
1 , y

′p
2 , t, x1, x2 ≥ 0.

The given MOLFPP is equivalent to the following MOLPP as
follows:
Max {f1(y, t) = P1y

′
1 + Q1y

′
2, f2(y, t) = P2y

′′
1 +

Q2y
′′
2, ........., fp(y, t) = Ppy

′p
1 +Qpy

′p
2 }

subject to the constraints:
A1y

′
1 − b1t ≤ 0,

A2y
′′
1 − b2t ≤ 0 ,

.....................

.....................

Apy
′p
1 − bpt ≤ 0, (9)

t(R1x1 + S1x2 + T1) = 1,
t(R2x1 + S2x2 + T2) = 1,
.......................
.......................
t(Rpx1 + Spx2 + Tp) = 1,

where y
′
1, y

′
2, y

′′
1, y

′′
2, ........, y

′p
1 , y

′p
2 , t, x1, x2 ≥ 0.

Solving the above problem we get the results of
f1(y, t), f2(y, t), ........., fp(y, t).

3.1.2 Fuzzy Approach to MOLFPP and its Crisp Solution. Let
I be the index set such that

I = {i : Ni(x) ≥ 0 for some x ∈ S} and
Ic = {i : Ni(x) < 0 for each x ∈ S} where

I ∪ Ic = 1, 2, ....., n.
Let D(.) be positive on S where S is non-empty and bounded.
Let the least value of 1

Di(x)
and 1

−Ni(x)
is t.

i.e.,

∩i∈I
1

Di(x)
= t

and

∩i∈Ic
1

−Ni(x)
= t

which is equivalent to-

1

Di(x)
≥ t for i ∈ I

and
1

−Ni(x)
≥ t for i ∈ Ic (10)

Using the transformation y=tx (t > 0) and by inequalities (10), an
equivalent MOLPP for MOLFPP may be written as-

Max {tNi(y/t), for i ∈ I; tDi(y/t), for i ∈ Ic}
subject to the constraints:

tDi(y/t) ≤ 1 for i ∈ I
,

−tNi(y/t) ≤ 1 for i ∈ Ic (11)

A(y/t)− b ≤ 0
where t ≥ 0, y ≥ 0.

Using Zimmermann’s min operator [9], the fuzzy model (11) trans-
formed to the crisp model as follows:

Max λ
subject to the constraints :

µi(tNi(y/t)) ≥ λ for i ∈ I ,
µi(tDi(y/t)) ≥ λ for i ∈ Ic,
tDi(y/t) ≤ 1 for i ∈ I,
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−tNi(y/t) ≤ 1 for i ∈ Ic, (12)

A(y/t)− b ≤ 0,
where y ≥ 0, t ≥ 0.

For i ∈ I , the membership function is:

µi(tNi(y/t)) =


0 if tNi(y/t) ≤ 0

tNi(y/t)−0

Ži−0
if 0 < tNi(y/t) ≤ Ži

1 if tNi(y/t) ≥ Ži
(13)

and for i ∈ Ic, the membership function is:

µi(tDi(y/t)) =


0 if tDi(y/t) ≤ 0

tDi(y/t)−0

Ži−0
if 0 < tDi(y/t) ≤ Ži

1 if tDi(y/t) ≥ Ži
(14)

3.2 Algorithm
3.2.1 Algorithm-I. Attention has been paid to compute the solution
of MOLFPP. Algorithm-I for finding optimal solution of MOLFPP
can be summerized in a series of steps which are as follows:-
Step 1: First convert each objective function of MOLFPP to
MOLPP by using transformation y=tx (t > 0).
Step 2: Convert each constraint by substituting y=tx.
Step 3: The above problem reduces to the following:

Max {f1(y, t), f2(y, t), ........., fp(y, t)}
subject to the constraints:

A1y
′
1 − b1t ≤ 0,

A2y
′′
1 − b2t ≤ 0,

.....................

.....................
Apy

′p
1 − bpt ≤ 0,

t(R1x1 + S1x2 + T1) = 1,
t(R2x1 + S2x2 + T2) = 1,

........................

........................
t(Rpx1 + Spx2 + Tp) = 1

where y
′
1, y

′
2, y

′′
1, y

′′
2, ........, y

′p
1 , y

′p
2 , t, x1, x2 ≥ 0.

Step 4: Apply simplex method to find the values of
f1(y, t), f2(y, t), ........., fp(y, t).
Step 5: Determine the membership functions of each
objective which are µi(tNi(y/t)) for i ∈ I and

µi(tDi(y/t)) for i ∈ Ic.
Step 6: Apply Zimmermann’s min operator [9] to transform the
fuzzy model (10) can be transformed to the crisp one as follows:

Max λ
subject to the constraints:

µi(tNi(y/t)) ≥ λ for i ∈ I ,
µi(tDi(y/t)) ≥ λ for i ∈ Ic,
tDi(y/t) ≤ 1 for i ∈ I,
−tNi(y/t) ≤ 1 for i ∈ Ic,

A(y/t)− b ≤ 0
where y ≥ 0, t ≥ 0.

Step 7: Apply standard LP package to find the values of
y1, y2, ........, yp, t, λ.
Step 8: Convert the above values y1, y2, ........, yp, t, λ by using
the transformation y=tx and then substitute the values in the given
equation.
Step 9: Using the values of x1, x2, ....., xp compute the values of

Z1, Z2, ......., Zp.

3.3 Methodology-II
3.3.1 Weighted Additive Method to Solve Multiobjective
Fuzzy Linear Fractional Programming Problem
Chen et.al [13] have used weighted average method in ”Fuzzy goal
programming with different importance and properties”. Tiwari,
Dharmar and Rao [16] have mentioned an additive model in fuzzy
goal programming which incorporates each goal’s weight Wk into
the corresponding objective function

i.e., Z =

n∑
k=1

WkZk

where Zk denotes the kth fuzzy goal and
n∑
k=1

Wk = 1.

In the additive model weights show the relative importance of
the goals. Now for simplicity, the importance of these objectives
(goals) are taken to be different. Hence all objective function can
be reformulated as a single objective function without adding any
more constraints.

Max Z = W1Z1 +W2Z2 + ...........+WpZp (15)

such that under given constraints,
where

p∑
k=1

Wk = 1.

3.3.2 Algorithm-II. Algorithm for finding the solution of MOLFPP
by additive weighted method. The suggested algorithm-II can be
summarized in the following way:-
Step 1: Step 1 to step 3 to be followed from algorithm-I. Step 4:
Apply additive weighted method:

Max Z = W1f1(y, t) +W2f2(y, t) + ...........+Wpfp(y, t)
(16)

such that under given constraints,
where

p∑
k=1

Wk = 1.

Step 5: Apply standard LP package to find the values of
y1, y2, ........, yp, t.
Step 6: Convert the above values y1, y2, ........, yp, t by using the
transformation y=tx and then obtain the values ofZ1, Z2, ......., Zp.

4. NUMERICAL EXAMPLE
4.1 Example 1
The following numerical example studied by Luhandjula [14] is
considered to illustrate the above approach:
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Consider a MOLFPP with two objective functions as follows:
Max Z(x)=(Z1(x) = x1−4

−x2+3
, Z2(x) = −x1+4

x2+1
)

subject to the constraints:
−x1 + 3x2 ≥ 0,

x1 ≤ 6, (17)

where x1, x2 ≥ 0.
Solution:
Here, Z1(x) > 0 for some x in the feasible region and Z2(x) ≤ 0
for each x in the feasible region.
The above MOLFPP is equivalent to the following MOLPP-

Max {f1(y, t) = y1 − 4t, f2(y, t) = −y1 + 4t}
subject to the constraints:

y2 + t ≤ 1,
−y1 + 4t ≤ 1,

−y1 + 3y2 ≤ 0 (18)

y1 − 6t ≤ 0,
−y2 + 3t = 1,
y1, y2, t ≥ 0.

After solving the problem we get, f1(y, t) = 1 and f2(y, t) =
0.99.
Using the membership functions defined in (13) and (14), the above
multiobjective linear programming problem reduces to the crisp
model as follows:

Max λ
subject to the constraints:

−y1 + 3t− λ ≥ 0,
−1.01y1 + 4.04t− λ ≥ 0,

−y2 + t ≤ 1,

−y1 + 4t ≤ 1, (19)

−y1 + 3y2 ≤ 0,
y1 − 6t ≤ 0,
−y2 + 3t = 1,
y1, y2, t, λ ≥ 0.

After solving the above problem by LP package, we get,
y1 = 0.33, y2 = 0, t = 0.33 and λ = 0.67.

the pareto optimal solution of the given problem is :
x1 = 1, x2 = 0, Z1(x) = − 4

3
, Z2(x) = 3.

4.2 Example 1:. Multiobjective fuzzy linear fractional pro-
gramming formulation of example 1:

The above MOLFPP is equivalent to the following MOLPP -
Max {f1(y, t) = y1 − 4t, f2(y, t) = −y1 + 4t}
subject to the constraints:

y2 + t ≤ 1,
−y1 + 4t ≤ 1,

−y1 + 3y2 ≤ 0 (20)

y1 − 6t ≤ 0,
−y2 + 3t = 1,
y1, y2, t ≥ 0.

Solution:
Substituting W1 = 0.8,W2 = 0.2

and f1(y, t) = y1 − 4t, f2(y, t) = −y1 + 4t in (19), we get

Max Z = W1f1(y, t) +W2f2(y, t) = 0.6y1 − 2.4t

subject to the constraints:
y2 + t ≤ 1,
−y1 + 4t ≤ 1,

−y1 + 3y2 ≤ 0 (21)

y1 − 6t ≤ 0,
−y2 + 3t = 1,
y1, y2, t ≥ 0.

After solving the problem by simplex method we get,
y1 = 3, y2 = 0.50 and t = 0.50.

Max Z = 0.60.
The pareto optimal solution of the MOLFPP is as follows:

x1 = 6, x2 = 1, Z1(x) = 1, Z2 = −1.

5.CONCLUSIONS
Here attention has been paid to the study of the pareto optimal
solution of MOLFPP. Two algorithms has been proposed for pre-
senting our approach. Algorithm-I gives the steps of transforming
a MOLFPP into MOLPP by applying suitable transformation and
Zimmermann’s min-operator model. Later on it has been solved by
using some standard LP package. Algorithm-II is followed from
algorithm-I after first 3 steps. Then additive weighted method has
been applied to transform MOLPP to single objective linear pro-
gramming problem and then it has been solved by standard LP
package. The proposed approach to solve MOLFPP yields an ef-
ficient solution which reduces the complexity in problem solving
and it is easy to compute.
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