
International Journal of Computer Applications (0975 – 8887)

Volume 80 – No 15, October 2013

36

Porting and BSP Customization of Linux on ARM

Platform

K. Eswar Kumar
M.Tech (ES), Dept. of ECE
Gudlavalleru Engineering

College
Andhra Pradesh, India

M. Kamaraju, Ph.D
Professor & HOD, Dept of ECE

Gudlavalleru Engineering
College

Andhra Pradesh, India

Ashok Kumar Yadav
Technical Manager

Electronics Corporation of India
Ltd

Hyderabad, AP, India

ABSTRACT

Embedded Systems are designed for a specific task based on

characterization. But in the modern advancements these are

doing several tasks at a time, to achieve this it requires an

operating system along with powerful processor. In this paper

proposes the Board Support Packages (BSP) customization of

Embedded Linux OS, especially ARM9 based Freescale

Silicon Vendor platforms with the help of Linux Image Target

Builder (LTIB). The successful build the operating system

will give the Binary images of custom OS. Finally the images

are ported to the target platform.

Keywords
Board Support Packages, Bootloader, Embedded Linux, file

system, Kernel, LTIB, Porting.

1. INTRODUCTION
An Embedded system is application oriented special computer

system which is accessible on both software and hardware. It

can satisfy the strict necessity of functionality, consistency,

cost, size, and power consumption of the specific application.

With the extremely fast development of IC design and

manufacture, CPUs became inexpensive. Lots of consumer

electronics have embedded CPU and thus embedded systems

became more popular. For example, Tablets, Phablets, point-

of-sale devices, industrial control, or even your washing

machine can be embedded system. There is a greater extent

demand on the embedded system market. According to the

present scenario, the demand on embedded CPUs is more

times as large as general purpose CPUs. As applications of the

embedded systems become more multifaceted, to build the

operating system and preparing development environment

became crucial.

Figure 1 shows the layered architecture based upon the OS

directory structure, and also indicates the how the application

in the device accessing the hardware. The main concentration

is only the Board Support Packages. It depends on the

architecture of that OS. If the architecture is ARM, then the

corresponding will be created according to the target platform.

The BSP is in detailed as follows.

Figure 1: Layered architecture (Based on OS tree)

Board Support Packages (BSP) is a collection of the binary,

code, and support files that can be used to create a Linux

kernel firmware and file system images, for a particular target.

In other words a Board Support Package (BSP) is an

implementation specific support code for a given board that

conforms to a given operating system. It has commonly had a

boot loader that contains the minimal device support to load

the operating system and device drivers for all the devices in a

target system. The detailed BSP layered version is shown in

Figure 2.

Figure 2: Specific BSP layer

The tasks which are performed by the BSP are to initialize the

processor, bus, interrupt controller, clock, RAM settings and

configuring the segments. To end with load and run the boot

loader from flash or SD card.

2. ARM9 BASED FREESCALE

APPLICATION PROCESSOR

PLATFORM

The Freescale Silicon Vendor’s application processor

dependent upon the ARM926EJ-S can run at speed up to 454

MHz and is focused for expense sensitive consumer

provisions. The Power administration unit (PMU) integrates a

DC-DC switching converter and different direct controllers to

give control sequencing for the gadget itself and drive I/o

peripherals, for example memories and SD cards and in

addition furnishing electric storage device charging capability

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No 15, October 2013

37

for Li-Ion electric cells. The i.mx2xx additionally

incorporates blended indicator simple sound with a 1.5w

Mono speaker enhancer, a stereo earphone DAC with 99dB

Signal-to-Noise ratio and stereo ADC with 85dB Signal-to-

Noise ratio with integrated amplifiers.

Figure 3: Block Diagram of ARM9 Based Freescale

Application Processor Platform

3. THE EMBEDDED OPERATING

SYSTEM
The term Operating system is referred to as; it’s a special code

that acts as an intermediate between the hardware and the user

[1]. The main goals of the operating system is to make the

system is convenient to use (Hiding the hardware details) and

utilizing the resources in efficient manner [2]. The following

are the most important factors to choose an Embedded

Operating System [3].

Full source availability, Technical support, real-time

performance, compatibility, customizable, open source, the

processor it supports, purchase price, simplicity/easy to use,

availability of the software development tools, small memory

footprint, middleware/software/drivers and finally it is also

supports the other architectures also. The layered architecture

of basic Embedded Linux is shown in the Figure 4. The main

variance between the normal Desktop OS and the Embedded

OS is the Table. 1 gives an in detailed explanation.

The operating system can be divided into three modules. They

are Bootloader, Kernel, Filesystem.

Boot Loader is an initializing code for a particular board,

which is executed at the power on or reset the board. Here the

proposed boot loader is U-Boot boot loader. To boot the

Linux, the boot loader has to load the modules into the

memory, one is the Linux kernel and another one is the file

system [4].

Kernel is a software layer that interfaces with the hardware. It

is responsible for interfacing all peripherals that are currently

connected to the system and running in “user mode” down to

the physical hardware, and allowing processes, to get

information from each other using inter-process

communication.

Figure 4: Basic Embedded Linux Structure

File system is the way in which files are named and where

they are placed logically for storage and retrieval. The DOS,

Windows, Macintosh, and UNIX-based operating systems all

have file systems in which files are placed somewhere in a

hierarchical (tree) structure. A file is placed in a directory or

subdirectory at the preferred place in the tree structure. File

systems require conventions for naming files. A file system

also includes a format for identifying the path to a file through

the structure of directories.

4. BUILDING THE LINUX PLATFORM
This section incorporates to set up the building environment,

install and run the LTIB, and finally generate the output

binary files to prepare the SD card bootable image

compatibles. The main objective of this paper is to make the

Embedded Linux OS according to the target platform; in this

instance, it is the I.MX2xx application processor platform,

which is developed by the Freescale Semiconductors. The

required components to build the OS are bootloder, kernel and

file system, Of course the development of the Operating

System image individually by selecting the bootloder, kernel

and file system, but it is very tedious job to do such kind of

selection, as per time to market constraint, vendors are

developing the target image builders. In this paper proposed

building tool is the Linux Target Image Builder (LTIB). The

LTIB project is a tool that can be used to develop and deploy

the Board Support Packages for various target platforms

incorporating with Power PC, ARM and Coldfire

architectures.

LTIB has been released under the terms of the GNU General

Purpose license (GPL). In general it is a lightweight command

line interface, which is used to control the scripts and

configuration and also perform the function like building the

kernel, bootloader and application packages from the source,

preparing the appropriate kernel, RFS images for flash based

devices like SD card or other MTD (Memory Technology

Devices) devices, capture the source modification patches and

auto update the .Spec files and it also manages the changes to

a package of the user generated patches. LTIB consists the

bundle of packages normally consists of main archives along

with Patches and the file formats are the .tar.bz2/.tar/.bz2 +

.Patch extension, and these are all located in one of the 3

package pools data flow is shown in Figure 5.

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No 15, October 2013

38

Table 1. Variance in Embedded OS and Desktop OS

S.No Embedded OS Desktop OS

1. Scalability
Less scalable

2. Real-time performance

Not real-time

capable, or limited

real-time

capability.

3. Board Architecture support
Board application

support

4.

Many Features like Networking,

Filesystem, USB, WiFi and GUI

support etc. and also

implementation is possible by

adding the third party libraries

The largest

number of

developers are

available

5.
Separate development host

environments required

Same

Development and

target

environments

6.
Specific choice of development

tools and languages

It has a wide

choice of

language tools

7.
Executable footprint is less in

size
Large footprint

8.

Examples are Symbiyan OS, I

OS, Embedded Linux, Android,

Palm OS, Windows CE, etc.

Windows,

Unix/Linux, Mac

OS, etc.

Private Package Pool: which is located in the inside the

Freescale network. The original archives and patches are kept

inside it and all these are private accesses but it can be within

the Freescale network local machines.

Figure 5: LTIB Package Pool data flow

General Package Pool: This is nothing but the packages are

accessed through the internet, it is external to the Freescale

network but it is sub-set of the Private Package Pool. All he

packages within the GPP are the public content and having a

suitable license for copying.

Local Package Pool: This but our local directory on the

machine where the packages are cached packages and patches

downloaded from the GPP, not only that and also add the

additional packages to the LTIB during the development. The

downloaded open source packages can share with the local

users also.

Steps to be followed:

1. Setting up the building Environment

2. Host Dependencies

3. Installing and Running LTIB

4. Configuration changes

5. Building Manufacture firmware

6. Preparation of Boot stream images

Step1: Setting Up the building environment
This section includes preparing the host machine to build the

LTIB; the supported operating systems are the any Linux

distributions such as Fedora 4/5, Redhat, or Ubuntu 8.0 on

words. To build the LTIB all the resources are directly

downloaded from the General Package Pool (GPP). As per

earlier discussion all archives are in the format of

tar.bz2/.tar/.bz2 compression format. To uncompress this tar

package must be installed in the host.

root# sudo apt-get install required packages

During the development of the image builder lot of packages

must be installed according the requirement. Install the

corresponding repositories by using the above command.

Step 2: Host Dependencies
To install Linux Target Image builder, the host system having

the following packages and Libraries like Perl: To run the

LTIB script. sudo: To run the rpm-install packages with

administrative permissions. Wget: to download the

packages/patches on demand. rpm-build: to build the

packages. glibc: to build or run the host packages. libstdc++-

devel: having the header files for C++ development, binutils:

programming tool set for creating and managing the binary

programs, obj files, asm files..etc. gcc:(GNU C compiler)

built- in versions of many of the function in the standard

library. zlib-devel: it is zlib compression and decompression

library. ncurses: library provides an API to the programmer

to display the text based interface, which is terminal

independent. Bison: it is parser generator. Flex: (Fast lexical

analyzer) it is a tool for generating the scanners (is a program

which recognizes lexical patterns in the text and generates the

executable file) libtool: it adds the new generic library

building commands to the Makefile. gettext: utilities are a set

of tools that provides a framework within which other free

packages may produce multi-lingual messages. Textinfo: it

provides a way to easily typeset software manual.

Step 3: Installing and Running LTIB
To install LTIB enters the following commands under the

uncompressed source path. Please don’t install LTIB under

root user, because it may corrupt your host file system. At

first time the LTIB will build and install the host packages, it

will take some time. Then run the LTIB script within the

appropriate directory, it will ask End user License agreement

(ELUA) simply press yes, and specify the proper path where

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No 15, October 2013

39

to install it. When installation is complete, you can find the

directory named as Freescale in the path /opt/Freescale, in

this directory it installs the all the required packages.

host@name#./intall

The corresponding next step will be the configurations to the

appropriate target platform. The host prompts for you like the

fig6, select the platform and exit, to save the changes

according to the selection. In the meantime all the platform

dependent files will be compiled and configured to the

particular platform, the subsequent GUI screen will prompt

you, here select the kernel version, toolchain selection, and

also must set the boot options, target image type. Also select

the required packages from the list specified in it. Like a busy

box (containing the basic commands in the Linux which

works on the target board), if suppose you write an

application in Qt or GTK project, so you must have to select

the supporting libraries also. After setting all these things

select exit and the save the settings. This building process is

not only follow the I.Mx23 but also it supports the different

platforms of Freescale architectures.

Step 4: Configuration Changes
To fit the Embedded Linux on the hardware platform, the

configuration must be changed according to the type of

application, for instance take a Digital Camera [5] after switch

on the device, at first initialize the LCD, camera lens and

opening the shutter. So that drivers must be included but

default kernel configurations having the Ethernet also, it's not

required in this case. Like that according to the necessity of

the application, the corresponding configurations changes

may require. It also effects the boot time of the device [6].

In the kernel some of the configuration changes may required

to the target device. it’s depends on the application running on

that device and it effects the final footprint of the binary

image. Here some of the configurations like in the Figure 6, in

those some are ‘Enable the loadable module support’, System

type: select imx233, Boot options: This is the one of the

significant configuration, for example console=ttyS0

115200n8: For displaying log screen while booting the board

with the baud rate of 115200, rootwait: for detecting the

devices asynchronously like USB or MMC, rw: mount root

device read write on boot, initrd: to specify the location of the

initial ramdisk, rootfstype: to select the type of root filesystem

[10].

It depends on the target boot device, if the device is an SD

card, it supports Extended filesystem (ext2) or it may be the

NAND flash it supports Journaling flash file system (jffs2).

lcd_pannel=lms430: which shows the type of LCD used and

its resolution. The configured drivers are the Memory

Technology device drivers (MTD), Block Devices, I2C

Support, GPIO Support, Multimedia support, USB Support,

MMC Card support, Real time clock, Sound card support,

Power supply Class support, Watchdog timer support. These

are the required drivers for customizing. The selection of

options either <*> or <M>, modules as per our requirement

[7]. Figure 6 represents the configuration or the kernel.

Figure 6: Kernel Configuration Menu

The Figure 7 shows the successful building the LTIB, the

terminal displays above message, also it shows the time of the

created with date and time elapsed.

Step 5: Building manufactures firmware:
Before starting the building firmware, the original

customization is done here, like for instance USB (Universal

Serial BUS), it acts as host, at the same time also act as a

device. The advanced feature of the USB is OTG (On-The-

Go) support means, depending upon the peripheral connected

to it acts as either host or device. At last establish the

communication path between the main processor and the

peripheral’s controller.

Figure 7: successful build LTIB Message

So to do that customizing the board support packages like

Original Equipment Manufacturer (OEM) file nothing but the

mach files. The location of this files are in the Linux kernel

file system tree under the path /arch/arm/mach-mxxx directory

(here platform is imx233 so it is named like this). This

directory has the complete set of hardware registers along

with the Makefile. For instance it includes one stratup.s file is

an asm file format, having the entire address location of the

registers, in those some of the registers are irqs, regs.dram,

regs.lcdif, regs.gpmi, regs.emi, regs.power, regs.pinctrl,..etc.

All these files defined as header files located in the ‘include’

directory. The Linux kernel supports not only the arm

architecture but also it supports the no ‘of architectures like

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No 15, October 2013

40

MIPS, SPARC, PowerPC Nexell, AVR, CRIS, Microblaze

and so forth.

All these architecture’s files and directories are located under

the arch directory. And its sub directory having the all

supported files with their default platform dependencies and

its corresponding makefiles. The Main advantage of the image

builder is that, there is no need to write the entire code for

every platform. It’s having the similar code, i.e. simply by

selecting the similar code which is closer to our target board

and by simply re-modifying the code according to our target

board. It full fills the one of the most important constraint in

the embedded system design i.e. Time to market, because of

there’s no requirement to write the entire code again and

reusing the existing code, that’s why, particular product can

deliver into the market in time. This is the advantage of doing

the Board Support Package customization.

Step 6: Preparing bootstream images:
The iMXxx application processor’s SoC (System On Chip)

contains a built-in ROM firmware capable of loading and

executing binary images in special format from different

locations including MMC/SD card and NAND flash. Such a

binary image is called a boot stream and consists of a number

of smaller bootable images (bootlets) and instructions for how

the ROM firmware should handle these bootlets (e.g. load a

bootlet to On-Chip RAM and run it from there). To build the

Linux kernel and new boot stream images, the corresponding

kernel parameters must pass through the kernel.

Actually u.boot.bin and the kernel image will be combined to

gather and generates the imx_linux.sb file. In general this file

contains the three preparation file along with the zImage

(Linux kernel). The Figure 8 shows the way of calling kernel

image.

Figure 8: Bootstream images loading kernel

power_prep: this bootlet configure the power supply.

boot_prep: this bootlet configure the clock and sdram.

linux_prep: this bootlet is to prepare the kernel to boot.

5. RESULTS
The successful building the LTIB generates a file, which is an

encrypted file that is bootable on i.mx2xx (i.e. ARM9 based

development board). It can be found in the following path.

#ltib_directory/rootfs/bin/imx_linux.sb. This file contains the

second stage bootloader and the Linux kernel. The size of the

kernel will be 2.79MiB. According to the research the size of

the kernel will be less than 3MB is accurate. Figure 9 shows

the kernel image of custom OS and its version is 2.6.35 and

the generated file path.

Figure 9: Kernel Image

The remaining is the root filesystem which can be found in

the #ltib_directory/rootfs/rootfs.ext2 directory. Figure 7

shows the filesystem generation and the size of it. The size of

the final firmware effects the boot time of the target device.

Finally proved that the size of the firmware is very small

footprint so the boot time is also improved.

Figure 10. Kernel and Filesystem Footprints Vs Boot time

with different configurations

In general the memory footprint of the operating system

affects mainly the boot time and also increase the power

consumption, cost of the BOM (Bill Of materials) The Figure

10, represents the footprints of the kernel and filesystem sizes

with different configurations, here four generalized

configurations like minimum configuration means it is having

the basic kernel and the filesystem, it requires low memory

space, so less time required to boot the target. Default

configuration: in this some of the additional components are

added to the minimum configuration like USB, NFS, network,

etc. so the time taken to boot the target device is more

compared to minimum configuration, because of driver

modules need some time to load and initialize the target

device. Maximum Configurations: it allows the all

functionalities ans device drivers are added the OS, so along

with the footprint size and boot time is also increased.Finally

Customized configuration: Here all the usage of resources are

limited i.e the selection for the responsibilities of the kernel is

as per the requirement of the target application, sometimes

additional drivers re also patched o the kernel depends on the

requirement, so this paper proposed Customized OS size is

2.29MB. The final size of the kernel and the file system is

32.29MB, so target device boot time is also very less.

Porting Concept: In order to port the embedded Linux to the

target board, the following steps will give an overview [8]-

[9].

1. Download the image builder and run it as mention

earlier.

2. Patch the Linux kernel with the corresponding

platform architecture.

3. Select the appropriate toolchain and configured it.

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No 15, October 2013

41

4. Build the Linux target image builder, until it will

succeed, with proper configurations.

5. Create the boot stream images like u.boot.sb,

uImage.sb, rootfs.ext2.

6. Select the suitable boot mode either SD card or

NAND flash (It depends on the target filesystem

type in the kernel configurations)

7. For simplicity the selected boot mode is the SD

card. Preparing, configuring and flashing the SD

card is as follows.

5.1 Preparing the SD card:
Whenever you boot your target device, Manually specify

where the binary images are located, and where the filesystem

is mounted, it may be read or write, serial console log

message and so on. The right place to mention this path

should be kernel command line. This concept is discussed

earlier in the kernel configuration section. In this section,

simply place the firmware on partition 1 and the roofs on

partition 2. Assuming you are using the LMS430 touch screen

display for the target board, as per the above discussion in the

kernel configurations, here set the boot options [10].

To create the SD card bootable images into the SD card using

the linux_imx.sb file, then follow the two steps below.

(Assuming Linux host having the package with DD

command)

#dd if=/dev/zero of=firmware.img bs=512 count=4

1. By using the above command, the starting of the

raw file, it inserts the 4 blocks and 512 Bytes are

filled with zeros. Here call it as firmware.img,

however it is name it as whatever you want.

dd if=rootfs/boot/imx233_linux.sb of=mx.img ibs=512

seek=4 conv=sync,notrunc

2. It appends imx_linux.sb file to the next section after

the zeros.

5.2 Flashing the SD card with Bootable

images:
Finally flash these bootable images to the SD card but built

alone and flashing is not sufficient to boot Linux. As previous

mentioned the SD card will be divided into two partitions, the

first partition is flashed with Linux firmware and the second

will be the filesystem and also create the third partition

(FAT32) also for storage purpose. Before going that insert the

card into the card reader in the host. The partitions should be

done by using the fdisk utility in the host system, in order to

boot the Linux on the target; alter the partition table in the

card. So the altered partition formats are OnTrack DM6 Aux3,

which is the first one and another one will be the filesystem

in general it ought to be extended file system i.e. Linux-ext.

Then flash these bootable images to the card. Develop any

application in the Qt creator (SDK) according to the target

platform. The generated binary executable in the Qt SDK is

simply ported along with firmware on to the target.

Figure 11: ARM9 Based Application Processor Platform

with Customized boot logo.

After porting the custom images to the target platform it

displays a custom boot logo. The Figure 11 shows the boot-up

the target platform with custom build OS images.

6. APPLICATION DEVELOPMENT
The final task is to develop a Linux application. The Software

Development Kit (SDK) is the Qt Creator, which is developed

by Nokia [11]. It is a cross compiled platform. Here there is a

possibility to develop a Good looking Graphical User

Interface (GUI) to any platform. Qt’s new user interface

technology consists of the QML language, that provide basic

building blocks of the language, the Qt Declarative (C++)

module that provides a runtime for the QML language, and a

scripting language based on JavaScript that allows developers

to implement logic in their projects with no C++ coding

required. This technology set is supported by the Qt Creator

tool that now includes a visual designer and other extensions

to support creating, testing, debugging, and optimizing

projects. Qt is also having the Add-on’s for Visual Studio and

Eclipse IDE. The initial release of the Qt is in May 1995, and

the updated version 5.1 is released on 3rd July 2013.

7. CONCLUSION
Embedded Linux OS has been successfully applied to the

embedded field with its powerful functions, open source and

also several advantages like, it needs very little memory,

which is very flexible and small. It's also having networking

capability, so target devices can be controlled over the

network. Features and drivers can be added during the kernel

runtime as loaded modules. By doing this the size of the OS

can be reduced and the boot time is also being improved. The

cross compiled binary images or OS binaries are generated by

using the Linux target Image builder (LTIB) as on x86 based

system. The main advantage of BSP customization is to create

a solid software foundation for specific application, it

accelerates the designing of Embedded device development

projects, it is very easy to add the additional functionalities

like scripts, drivers and other components to the platform

according to the end product’s application by patching to the

LTIB, easy to integrate the modifications in the kernel without

affecting the existing functionality of the system. Before

going to port the OS binaries, include the GUI application to

calibrate the better system performance.

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No 15, October 2013

42

8. REFERENCES
[1] Chun-yue Bi; Yun-peng Liu; Ren-fang Wang; “Research

of key technologies for embedded Linux based on

ARM”, Computer Application and System Modeling

(ICCASM),2010 International Conference, 22-24 Oct.

2010, E-ISBN : 978-1-4244-7237-6.

[2] De Goyeneche, J.-M, De Sousa, E.A.F, “Loadable

Kernel Modules”, Software IEEE, Vol16, Issue1, pp:65-

71, Jan/Feb- 1999.

[3] Hu Jie ; Zhang Gen-bao, “Research transplantation

method of embedded linux kernel based on ARM

platform”, Information Science and Management

Engineering (ISME), 2010 International Conference,

Vol2, pp:35-38, 7-8. Aug 2010.

[4] The DENX U-Boot and Linux Guide, available at

www.denx.de

[5] Chanju Park, Youngjun Jang, kyungiu Hyum, Kyungiu

Kim,” Linux Bootup Time Reduction for Digital Still

Camera”, Proceedings of the Linux Symposium,Vol 2,

2006.

[6] Vincent Sanders, “Booting ARM Linux”, rev1.1.,

june,2004.

[7] De Goyeneche, J.-M, De Sousa, E.A.F, “Loadable

Kernel Modules”, Software IEEE, Vol16, Issue1, pp:65-

71, Jan/Feb- 1999.

[8] Divya Sharma, Kamal kanth, “Porting the Linux Kernel

to Arm System-On-Chip And Implementation of RFID

Based Security System Using ARM”, International

Journal of Advanced Research in Computer Science

and Software Engineering (IJARCSSC), Vol3, issue5,

May-2013.

[9] Jyotsana Thaduru, B. Narasimhachary, “Porting the linux

kernel to ARM platform”, International Journal of VLSI

and Embedded Systems-IJVES http://ijves.com ISSN :

2249-6556. Vol3, Sept-oct 2012

[10] Kernel parameters list available in the kernel

Documentation and Available at kernel.org

[11] Alan Ezust, Paul Ezust, “Introduction to Design Patterns

in C++ with Qt (2nd Edition)”, ISBN : 0-13-282645-3 /

978-0-13-282645-7.

[12] Pravin, S ; Balakrishnan, R, “Set top box system with

android support using Embedded Linux operating system

paper”, Advances in Engineering, Science and

Management (ICAESM), 2012 International Conference,

pp: 447-478, 30-31 March 2012

9. AUTHOR’S PROFILE
K. Eswar Kumar obtained his Bachelor’s degree from Rao &

Naidu Engineering College, Ongole. His areas of interest are

Microcontrollers, Microprocessors, Embedded System Design

and RTOS. Presently he is doing M.Tech in Embedded

Systems at Gudlavalleru Engineering College, JNTU

Kakinada, Andhra Pradesh, India.

M.Kamaraju obtained his Bachelor’s Degree & Master’s

degree from Andhra university and Ph.D from JNTUH,

Hyderabad in the area of Low Power VLSI Design, Areas of

interest are Microprocessors, Microcontrollers, Digital system

Design, Embedded System Design, Low Power VLSI Design.

He published 51 technical papers in national/ international

journals/conferences. He reviewed number of papers for

international journal and conferences. He is a Fellow of IETE

and IE and member of IEEE. Presently working as Professor&

Head of ECE Department, Gudlavalleru Engineering College,

Gudlavalleru, India and chairman of IETE, Vijayawada

center.

Ashok Kumar Yadav is working as a Technical Manager at

Electronics Corporation of India Limited (ECIL), Hyderabad,

since July 2000. He has over 11 years of experience in

embedded system design and development. His main areas of

interest are digital signal processing, FPGA, RTOS, and

biometric applications. He has master degree in Digital Signal

Processing from Osmania University, Hyderabad, India and

Master of Business Administration (MBA) from IGNOU.

IJCATM : www.ijcaonline.org

http://qt-project.org/books/view/introduction-to-design-patterns-in-c-with-qt
http://qt-project.org/books/view/introduction-to-design-patterns-in-c-with-qt

