
International Journal of Computer Applications (0975 – 8887)

Volume 80 – No 14, October 2013

18

Cloud Auditing: Privacy Preserving using Fully
Homomorphic Encryption in TPA

Shivani Gambhir
University of Petroleum and

Energy Studies, India

Ajay Rawat
University of Petroleum and

Energy Studies, India

Rama Sushil
DIT University, India

ABSTRACT
 Cloud computing is the future of the next generation

architecture of IT solutions. Cloud provides computing

resources on subscription basis over the internet. The Cloud

data storage network includes a Third Party Auditor which has

the power and capabilities that a client does not have. It is a

trusted entity that has the access to, other than cloud and

check on the exposed risk involved in cloud storage data on

behalf of the client. In this paper, the problem of data security

and integrity has been presented. Also, a scheme to provide

maximum data integrity. In proposed scheme, existing fully

homomorphic encryption is integrated with TPA auditing

system is proposed. This scheme can audit data integrity

without decrypting it.

Keywords
TPA, Cloud Auditing, Data security and Integrity, Fully

Homomorphic Encryption

1. INTRODUCTION
Cloud is an emerging trend and envisioned as a next

generation of IT. It defines a framework to deliver IT as a

service in most efficient and the fastest way possible, without

a need to actually own the resource. It provides level of

transparency and monitoring which was not possible in earlier

computing paradigms. According to the definition provided

by the NIST, “Cloud computing is a model for enabling

ubiquitous, convenient, on-demand network access to a shared

pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort and

service provider interaction”[9]. The services of Cloud

Computing are broadly divided into three categories:

Infrastructure-as-a-Service (IaaS) provides infrastructure

services to the end user on a subscription basis), Platform-as-

a-Service (PaaS) provides platform services to the end user on

a subscription basis and Software-as-a-Service (SaaS)

provides services to the end user on a subscription basis).

Cloud computing is thus being used significantly in IT

industry [11]. However, data security is a major concern in

adaption of cloud. Client customer does not have full access to

outsourced data; it have major concern of ensuring that

provider has taken security measures to protect and store data

safely. Auditing is thus, employed as a verification tool. It is

a process where tracing and logging of data is significant and

is used for analyzing and validating security measures to

achieve security in all area. Even after applying auditing

process there are some loopholes like, data can still be

revealed to outsider via auditor for their own benefits [8].

User does not want to add more vulnerability to data leakage

and stored data by giving authority to auditor. Many schemes

have been introduced to address this problem. We are

providing a scheme which could audit data integrity without

decrypting it.

The rest of the paper is organized as follows: In section 2

Cloud system model is described. Section 3 gives an overview

of TPA role with some basic definition and background.

Section 4 presents the basic scheme in use. In section 5 and 6

we described existing work and its problem statement

respectively. Then there is preliminaries for the proposed

scheme in section 7 and in section 8 our proposed scheme.

Finally the future scope and conclusion of the paper is given

in section 9 and 10 respectively.

2. CLOUD SYSTEM MODEL
Whole system of cloud architecture can be divided into three

significant components:

1) Client: An entity, which contains large data and data files

that are to be stored in the cloud for the computation and

monitoring purpose. Client totally relies on the cloud provider

for security of their data and they can be either individual

consumers or organization.

2) Cloud Services Provider (CSP): It is an entity, which stores

and manages all the data stored by the client. The Cloud

storage service provider makes all the computation resources

available to manage the data files.

3) Third Party Auditor (TPA): It is an entity, which has power

and capabilities that a client does not have and a trusted entity

that has the access to other than cloud to check on the

exposed risk of cloud storage data on behalf of the client [7,3].

In the following section we present the details of TPA and

other related preliminaries and background.

3. THIRD PARTY AUDITOR
As Cloud Service Provider belongs to separate entity, the

stored data are at stake. The data outsourcing takes away

client’s full control over data. As a result the data integrity is

hard to check. First, the correctness of the data is being put at

a risk since cloud has internal and external threats. Second,

there may be some motivations or personal benefits which can

make CSP to behave unfaithful e.g. Byzantine failure where

CSP can hide errors from the client for own benefits [5].

Another and more serious issues can be deliberately deleting

or neglecting data which are rarely accessed by clients, just to

save money and storage. Thus, TPA was introduced to cloud

system architecture. TPA reduces the burden of Client for

managing their data and ensures that the data in cloud is intact

and data integrity is maintained. TPA not only helps clients

for securing their data, but is also beneficial for the cloud

service provider to maintain and increase standards of their

platforms and to gain trust over the cloud by consumers [2].

In other words, providing public auditing services plays a

substantial role for this aborning cloud economy to become

fully established; users will be needing ways to assess risk and

gain trust in the cloud [1].

Public auditability allows TPA to check on correctness of the

data stored in cloud on client’s behalf. But this scheme does

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No 14, October 2013

19

not provide privacy and protection to data. TPA has potential

to reveal client’s vital data to outsider. Thus, the clients don’t

want to give authority to TPA for creating new issues of

vulnerability, related to data leakage and data storage security

[7,8,1]. Some important programs used in TPA are discussed

below [10, 6].

4. THE BASIC SCHEME
Before going to proposed schemes we study two classes of

algorithm that is being used in Third Party Auditing. The first

one is a MAC-based solution which goes through undesirable

systematic demerits– bounded usage and state full

verification, which poses additional online burden to client, in

a public auditing setting. It shows that the auditing problem is

not easy to solve even with TPA. The second system based on

RSA algorithm, which covers many recent proofs of storage

systems [1]

4.1 MAC Algorithm
There are many possible ways to use Message Authentication

Code [13].One of them have been discussed here in this

section. Data blocks mi (i € 1…n) are being uploaded with

their specific per-computed (MACs) i= MACsk (i||mi) to the

server and thus, correspondingly generate secret key sk, that

are send to TPA. Later, TPA can check correctness via

retrieving random blocks and verifying it by sk. There are

certain drawbacks to this system. The TPA has to maintain

knowledge about MACs key generated by every data block.

The computation complexity and high communication makes

it difficult to execute. It is difficult for cloud server to reveal a

fresh MAC key for every comparison when TPA reveals its

secret key. Once all possible secret key are exhausted, cloud

server need to retrieve data from server to re- compute and re-

publish mac keys again.

4.2 RSA Algorithm
RSA is a Partial homomorphic encryption, with multiplicative

encryption technique.

In this algorithm, TPA selects two prime no’s p1 and q1 thus

values are computed [12]

n1 = p1 * q1

fn1 = (p1-1) * (q1-1)

Then, the public key α1 is selected. So, the Private Key of the

TPA is:

β1 = (1/α1) % fn1

Similarly, the client selects prime numbers p2 and q2 with

these the private key and the public key of the client is

calculated as:

n2 = p2 * q2

fn2 = (p2-1) * (q2-1)

The public key of the client is declared as α2. So, the Private

Key of the client: β2 = (1/α2) % fn2

Now, Key set of TPA is: {α1, n1}, {β1, n1}

Key set of client is: {α2, n2}, {β2, n2}

Thus, with the help of keys, data is being encrypted. But this

algorithm still has some security problems; if attackers could

interrupt two ciphers which are encrypted by same private

key, it is then become easy for hacker to decrypt all messages

exchanged between the server and it’s client and it is only

because the fully homomorphic encryption is multiplicative,

i.e. the product of the ciphers equal the ciphers of the product

[4].This scheme could not solve all the problems related to the

unauthorised data leakage. It just reduces complex key

management domain.

5. EXISTING WORK
Privacy-Preserving Public Auditing for Secure Cloud Storage:

It motivates the correctness of the cloud data can be verified

by the TPA without retrieving the copy of the data. To achieve

this, homomorphic linear authenticator with random masking

technique is used. This technique, does not allow the TPA to

have all the necessary information to build upon correct group

of linear equation and therefore TPA cannot derive the user’s

data[1]

The linear combination of sampled blocks in the server’s

response is masked with randomness generated by server

known as challenges. The user can ask the server to compute

challenge for various inputs, and the server uses secret key to

derive a short and efficiently verifiable proof that certifies

correctness of the computation [9].

 In this model, the client first needs to send some challenges

c=chall(x) to the server and proof ᴪ is computed in response

to c.

Consider outsourcing t CD(.) that has the data D, gets input a

program P, and outputs CD(P) = P(D). Then, we can think of

the pre-processing of CD as creating an authentication tag σ

for the data D.

Later, the user can take a program P, create a challenge c =

chall (P), and get back a short tag ᴪ that authenticates y =

CD(P) = P(D)[6].

6. THE PROBLEM STATEMENT
Some identified problems in existing auditing systems are

discussed below.

Existing systems require round of interaction; User first has to

create challenge and only then server can authenticate output

with respect to challenge [6].

The above delegation allow anyone to evaluate chosen

encrypted data and non-interactively authenticate the output

user needs to outsource all of data in one shot and stores some

small secret state associated with the data to verify

computation. Thus data can be easily predicted if decrypted by

other than TPA

The schemes require a prior bounded computation by some

fixed polynomial chosen during authentication. Furthermore,

the complexity of authentication is proportional to the

polynomial used. Thus, it increases complexity of algorithm.

Here we propose new concept of integration of fully

homomorphic encryption [10] with TPA, which resolves the

above mentioned problem.

7. DEFINITIONS AND PRELIMINARY

BACKGROUND
In this section, we propose highly privacy-preserving public

auditing it uses concept of fully homomorphic encryption.

This scheme, not only check the data integrity but also keep

the data secure even from the third auditor [6]. Following are

some important terminology used in the scheme:

Homomorphic Authenticator: It consists of probabilistic-

polynomial time algorithms given by Gentry Cargis in his

paper[10]. Following functions are integral part of

Homomorphic authenticator.

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No 14, October 2013

20

KeyGen(1n) →(evk,sk) : Takes input string and initializing

secret key “sk” for it and an evaluation key “evk”.

Authsk(b, τ) →σ: It creates a tag σ that authenticates the bit b

 {0, 1} of sk under the label τ {0,1}*.

Evalevk(f, σ) → ᴪ: The deterministic evaluation procedure

takes a vector of tags σ = (σ1,….., σk) and a circuit f: {0,1}k

→{0, 1}. It outputs a tag ᴪ. If each σi authenticates a bit bi as

the output of some labelled-program Pi (possibly the identity

program), then should authenticate b* = f(b,….., bk) as the

output of the composed program P* = f(P1,….,Pk).

Versk(e,P,ᴪ)→ {accept; reject}: The deterministic

verification procedure uses the tag to check that e {0, 1} is

the output of the program P on previously authenticated

labeled data.

Fully homomorphic Encryption: A Fully Homomorphic

(public-key) Encryption (FHE) scheme is also consist of

probabilistic-polynomial time algorithms given by Gentry

[9].HE = (HE.KeyGen; HE.Enc; HE.Dec; HE.Eval) defined as

follows

.

HE.KeyGen (1n) → (pk, evk, sk): Outputs a public

encryption key pk, a public evaluation key evk and a secret

decryption key sk.

HE.Encpk (b) → c: Encrypts a bit b {0,

1} under public key pk. Outputs cipher text c.

HE.Decsk(c) → b: Decrypts ciphertext c using sk to a

plaintext bit b {0, 1}.

HE.Evalevk (g;c1,….,ct) → c*: The deterministic evaluation

algorithm takes the evaluation key evk, a boolean circuit g :

{0; 1}t → {0; 1}, and a set of t ciphertexts c1,….,ct. It outputs

the result cipher text c*.

8. SCHEME DETAILS
Let HE = (HE.KeyGen, HE.Enc, HE.Dec,HE.Eval) be fully

homomorphic encryption scheme. Let {fK:{0, 1}*→ {0;

1}r(n)}K {0;1}n be a pseudo-random function PRF family.

Let H be a family of collision-resistant hash functions (CRHF)

H :{0; 1}*→{0, 1}m(n).

User first chooses a public/secret key for an FHE and a

pseudo-random function. To authenticate a bit ‘b’ under a

Labelled Program τ creates ciphertexts. User chooses

ciphertexts and encrypt as random encryptions of bit b being

authenticated. Given some program P with t inputs and

authentication tags, we can homomorphically derive an

authentication tag for output.

We derive each cipher text by homomorphically evaluating

the program P over t cipher texts that lie in position within the

tags. In particular, we set Eval. We assume that evaluation

procedure for the FHE scheme is deterministic so that results

are reproducible.

User can verify to certify, that y is the output of the labelled

program P. For indices, user can re-compute the pseudo-

random input cipher texts using the PRF, without knowing

actual input bits. User then computes Eval and checks that the

ciphertexts in tag were computed correctly. If this is the case,

and all of other ciphertexts decrypt to claimed bit y, then user

accepts.

We define the authenticator scheme = (KeyGen, Auth, Eval,

Ver) as follows:

KeyGen(1n): Choose a PRF key K {0; 1}n and a CRHF H

← H. Choose an encryption key (pk, evk’, sk’)

HE.KeyGen(1n). Select a subset S [n] by choosing whether

to add each index i [n] to the set S independently with

probability ½.Output evk = (evk’,H),sk =(pk,evk’,H,sk’,K, S).

Authsk(b,τ): Given b {0; 1} and τ {0; 1}* do the

following:

1. Choose random coins rand1,...,randn by setting randi =

fk((τ; i)). Set υ :=fK(τ).

2. Create n ciphertexts c1, . ..,cn as follows. For i [n] n S,

choose ci = HE.Encpk(b; randi) asencryptions of the bit b. For

i S, choose ci = HE.Encpk(0,randi) as encryption of 0.

3. Output _ = (c1,.. .,cn; υ).

Evalevk(g,σ): Given σ = (σ1,…..,σt), parse each σj = (c1;j

,…..,cn;j; υj).

For each i [n], compute c*i = HE:Evalevk0(g; ci;1 ,…..,

ci;t).

Compute υ* = gH(υ1,…,υt) to be the output of the hash-tree

of g evaluated at υ1,….,υt.

Output ᴪ = (c*1,….., c* n; υ*).

Versk(e;P;ᴪ): Parse P = (g; τ1,….,τt) and ᴪ =

(c*1,…..,c*n,υ*).

1. Compute υ1 := fK(τ1),…..,υt = fK(τt). If υ gH (υ1,…..,υt)

then output reject.

2. For i [n], j [t], compute randi;j := fK((τj,i)) and, for i

S, set ci;j := HE.Encpk(0,randi;j). For each i S, evaluate c’i

:= HE.Evalevk’(g; ci;1; : : : ; ci;t) and if c’i c*i, output

reject.

3. For each i [n] \ S, evaluate c’I = HE. Encpk

(e;REvalevk’(g,randi,1,…., randi,t)) and if c’i c*i, output

reject.

If the above doesn't reject, output accept. It is also used to

hide difference between data-independent pseudo random

cipher texts which allow user to check upon the computation

and the output is right or not.

Also for any given sk, it shall possible to decrypt the correct

bit b from the tag authenticating it, but given only the

evaluation key evk, the tags will not reveal any information

about the authenticated bits. Thus we can say:

Versk(P;ᴪ) →{0,1, reject} as follows: run Versk(e;P;ᴪ) for

both choices of e {0; 1} and, if exactly one of the runs is

accepting, return the corresponding e, else return reject.

Even if the attacker gets evk and access to the authentication

oracle Authsk(b, τ) , if he later sees a tag σ ←Authsk(b, τ) for

a fresh label τ , he cannot distinguish between the cases b = 0

and b = 1.

9. FUTURE SCOPE
In proposed scheme fully homomorphic authenticator is being

included in TPA. This scheme is being theoretically

approached. Thus in future we intended to add experimental

analysis and some derive some more experimental validation

and conclusion.

10. CONCLUSION
In this paper we propose fully homomorphic encryption

auditing system for the data storage security in the cloud

computing. We have integrated the fully homomorphic

encryption in TPA auditing system. Proposed scheme of fully

homomorphic provides auditing technique which not only

preserves privacy but also provide authenticator that allow an

unbounded number of verification. In future we intend to

verify its approach practically and to add experimental

analysis to derive some conclusion from it.

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No 14, October 2013

21

11. REFRENCES
[1] Wang, Cong, et al. "Privacy-preserving public auditing for

secure cloud storage." (2013): 1-1.

[2] Xu, Jia. Auditing the auditor: secure delegation of auditing

operation over cloud storage.IACR Cryptology ePrint

Archive 2011, 2011.

[3] Chuang, I-Hsun, et al. "An effective privacy protection

scheme for cloud computing." Advanced Communication

Technology (ICACT), 2011 13th International

Conference on.IEEE, 2011.

[4] TEBAA, Maha, Saïd EL HAJJI, and Abdellatif EL

GHAZI. "Homomorphic Encryption Applied to the

Cloud Computing Security." Proceedings of the World

Congress on Engineering.Vol. 1. 2012.

[5] Sowparnika, Miss M., and R. Dheenadayalu. "Improving

data integrity on cloud storage services."

[6] Gennaro, Rosario, and Daniel Wichs. Fully homomorphic

message authenticators. May 2012. Cryptology eprint

290, 2012.

[7] Wang, Qian, et al. "Enabling public auditability and data

dynamics for storage security in cloud

computing." Parallel and Distributed Systems, IEEE

Transactions on 22.5 (2011): 847-859.

[8] Hamlen, Kevin, et al. "Security issues for cloud

computing." International Journal of Information

Security and Privacy (IJISP) 4.2 (2010): 36-48.

[9] Mell, Peter, and Timothy Grance. "The NIST definition of

cloud computing (draft)." NIST special publication 800

(2011): 145.

[10] Gentry, Craig. A fully homomorphic encryption

scheme.Diss. Stanford University, 2009.

[11] AS, ANUPRIYA, S. Ananthi, and S. Karthik. "TPA

BASED CLOUD STORAGE SECURITY

TECHNIQUES." International Journal of Advanced

Research in Computer Engineering & Technology

(IJARCET) 1.8 (2012): pp-194.

[12] Rivest, R.; A. Shamir; L. Adleman (1978). "A Method

for Obtaining Digital Signatures and Public-Key

Cryptosystems". Communications of the ACM 21 (2):

120126.doi:10.1145/359340.359342

[13] Kaliski, Burt, and Matt Robshaw. "Message

authentication with MD5."CryptoBytes (RSA Labs

Technical Newsletter) 1.1 (1995).

IJCATM : www.ijcaonline.org

http://people.csail.mit.edu/rivest/Rsapaper.pdf
http://people.csail.mit.edu/rivest/Rsapaper.pdf
http://people.csail.mit.edu/rivest/Rsapaper.pdf
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1145%2F359340.359342

