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ABSTRACT 
 Cloud computing is the future of the next generation 

architecture of IT solutions. Cloud provides computing 

resources on subscription basis over the internet. The Cloud 

data storage network includes a Third Party Auditor which has 

the power and capabilities that a client does not have. It is a 

trusted entity that has the access to, other than cloud and 

check on the exposed risk involved in cloud storage data on 

behalf of the client. In this paper, the problem of data security 

and integrity has been presented. Also, a scheme to provide 

maximum data integrity. In proposed scheme, existing fully 

homomorphic encryption is integrated with TPA auditing 

system is proposed.  This scheme can audit data integrity 

without decrypting it.  
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1. INTRODUCTION 
Cloud is an emerging trend and envisioned as a next 

generation of IT. It defines a framework to deliver IT as a 

service in most efficient and the fastest way possible, without 

a need to actually own the resource. It provides level of 

transparency and monitoring which was not possible in earlier 

computing paradigms. According to the definition provided 

by the NIST, “Cloud computing is a model for enabling 

ubiquitous, convenient, on-demand network access to a shared 

pool of configurable computing resources (e.g., networks, 

servers, storage, applications, and services) that can be rapidly 

provisioned and released with minimal management effort and 

service provider interaction”[9]. The services of Cloud 

Computing are broadly divided into three categories: 

Infrastructure-as-a-Service (IaaS) provides infrastructure 

services to the end user on a subscription basis), Platform-as-

a-Service (PaaS) provides platform services to the end user on 

a subscription basis and Software-as-a-Service (SaaS) 

provides services to the end user on a subscription basis). 

Cloud computing is thus being used significantly in IT 

industry [11].  However, data security is a major concern in 

adaption of cloud. Client customer does not have full access to 

outsourced data; it have major concern of ensuring that 

provider has taken security measures to protect and store data 

safely.  Auditing is thus, employed as a verification tool. It is 

a process where tracing and logging of data is significant and 

is used for analyzing and validating security measures to 

achieve security in all area. Even after applying auditing 

process there are some loopholes like, data can still be 

revealed to outsider via auditor for their own benefits [8]. 

User does not want to add more vulnerability to data leakage 

and stored data by giving authority to auditor. Many schemes 

have been introduced to address this problem. We are 

providing a scheme which could audit data integrity without 

decrypting it.  

 

 

 

The rest of the paper is organized as follows: In section 2 

Cloud system model is described. Section 3 gives an overview 

of TPA role with some basic definition and background. 

Section 4 presents the basic scheme in use. In section 5 and 6 

we described existing work and its problem statement 

respectively. Then there is preliminaries for the proposed 

scheme in section 7 and in section 8 our proposed scheme. 

Finally the future scope and conclusion of the paper is given 

in section 9 and 10 respectively.  

2. CLOUD SYSTEM MODEL 
Whole system of cloud architecture can be divided into three 

significant components:      

1) Client: An entity, which contains large data and data files 

that are to be stored in the cloud for the computation and 

monitoring purpose. Client totally relies on the cloud provider 

for security of their data and they can be either individual 

consumers or organization. 

2) Cloud Services Provider (CSP): It is an entity, which stores 

and manages all the data stored by the client. The Cloud 

storage service provider makes all the computation resources 

available to manage the data files. 

3) Third Party Auditor (TPA): It is an entity, which has power 

and capabilities that a client does not have and a trusted entity 

that has the access to other than  cloud to check on the 

exposed risk of cloud storage data on behalf of the client [7,3]. 

In the following section we present the details of TPA and 

other related preliminaries and background. 

3. THIRD PARTY AUDITOR 
As Cloud Service Provider belongs to separate entity, the 

stored data are at stake. The data outsourcing takes away 

client’s full control over data. As a result the data integrity is 

hard to check. First, the correctness of the data is being put at 

a risk since cloud has internal and external threats. Second, 

there may be some motivations or personal benefits which can 

make CSP to behave unfaithful e.g. Byzantine failure where 

CSP can hide errors from the client for own benefits [5]. 

Another and more serious issues can be deliberately deleting 

or neglecting data which are rarely accessed by clients, just to 

save money and storage. Thus, TPA was introduced to cloud 

system architecture. TPA reduces the burden of Client for 

managing their data and ensures that the data in cloud is intact 

and data integrity is maintained. TPA not only helps clients 

for securing their data, but is also beneficial for the cloud 

service provider to maintain and increase standards of their 

platforms and to gain trust over the cloud by consumers [2]. 

In other words, providing public auditing services plays a 

substantial role for this aborning cloud economy to become 

fully established; users will be needing ways to assess risk and 

gain trust in the cloud [1]. 

Public auditability allows TPA to check on correctness of the 

data stored in cloud on client’s behalf. But this scheme does 
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not provide privacy and protection to data. TPA has potential 

to reveal client’s vital data to outsider. Thus, the clients don’t 

want to give authority to TPA for creating new issues of 

vulnerability, related to data leakage and data storage security 

[7,8,1]. Some important programs used in TPA are discussed 

below [10, 6]. 

4. THE BASIC SCHEME 
Before going to proposed schemes we study two classes of 

algorithm that is being used in Third Party Auditing. The first 

one is a MAC-based solution which goes through undesirable 

systematic demerits– bounded usage and state full 

verification, which poses additional online burden to client, in 

a public auditing setting. It shows that the auditing problem is 

not easy to solve even with TPA. The second system based on 

RSA algorithm, which covers many recent proofs of storage 

systems [1]   

4.1 MAC Algorithm 
There are many possible ways to use Message Authentication 

Code [13].One of them have been discussed here in this 

section. Data blocks mi (i € 1…n) are being uploaded with 

their specific per-computed (MACs) i= MACsk (i||mi) to the 

server and thus, correspondingly generate secret key sk, that 

are send to TPA. Later, TPA can check correctness via 

retrieving random blocks and verifying it by sk. There are 

certain drawbacks to this system. The TPA has to maintain 

knowledge about MACs key generated by every data block. 

The computation complexity and high communication makes 

it difficult to execute. It is difficult for cloud server to reveal a 

fresh MAC key for every comparison when TPA reveals its 

secret key. Once all possible secret key are exhausted, cloud 

server need to retrieve data from server to re- compute and re-

publish mac keys again. 

4.2 RSA Algorithm 
RSA is a Partial homomorphic encryption, with multiplicative 

encryption technique. 

In this algorithm, TPA selects two prime no’s p1 and q1 thus 

values are computed [12] 

n1 = p1 * q1  

fn1 = (p1-1) * (q1-1) 

Then, the public key α1 is selected. So, the Private Key of the 

TPA is: 

β1 = (1/α1) % fn1  

Similarly, the client selects prime numbers p2 and q2 with 

these the private key and the public key of the client is 

calculated as:  

n2 = p2 * q2  

fn2 = (p2-1) * (q2-1) 

The public key of the client is declared as α2. So, the Private 

Key of the client: β2 = (1/α2) % fn2 

Now,  Key set of TPA is: {α1, n1}, {β1, n1} 

Key set of client is: {α2, n2}, {β2, n2} 

Thus, with the help of keys, data is being encrypted. But this 

algorithm still has some security problems; if attackers could 

interrupt two ciphers which are encrypted by same private 

key, it is then become easy for hacker to decrypt all messages 

exchanged between the server and it’s client and it is only 

because the fully homomorphic encryption is multiplicative, 

i.e. the product of the ciphers equal the ciphers of the product 

[4].This scheme could not solve all the problems related to the 

unauthorised data leakage. It just reduces complex key 

management domain.  

5. EXISTING WORK 
Privacy-Preserving Public Auditing for Secure Cloud Storage: 

It motivates the correctness of the cloud data can be verified 

by the TPA without retrieving the copy of the data. To achieve 

this, homomorphic linear authenticator with random masking 

technique is used. This technique, does not allow the TPA to 

have all the necessary information to build upon correct group 

of linear equation and therefore  TPA cannot derive the user’s 

data[1] 

The linear combination of sampled blocks in the server’s 

response is masked with randomness generated by server 

known as challenges. The user can ask the server to compute 

challenge for various inputs, and the server uses secret key to 

derive a short and efficiently verifiable proof that certifies 

correctness of the computation [9]. 

 In this model, the client first needs to send some challenges 

c=chall(x) to the server and proof ᴪ is computed in response 

to c. 

Consider outsourcing t CD(.) that has the data D, gets input a 

program P, and outputs CD(P) = P(D). Then, we can think of 

the pre-processing of CD as creating an authentication tag σ 

for the data D. 

Later, the user can take a program P, create a challenge c = 

chall (P), and get back a short tag ᴪ that authenticates y = 

CD(P) = P(D)[6]. 

 

6. THE PROBLEM STATEMENT 
Some identified problems in existing auditing systems are 

discussed below.  

Existing systems require round of interaction; User first has to 

create challenge and only then server can authenticate output 

with respect to challenge [6]. 

The above delegation allow anyone to evaluate chosen 

encrypted data and non-interactively authenticate the output 

user needs to outsource all of data in one shot and stores some 

small secret state associated with the data to verify 

computation. Thus data can be easily predicted if decrypted by 

other than TPA  

The schemes require a prior bounded computation by some 

fixed polynomial chosen during authentication. Furthermore, 

the complexity of authentication is proportional to the 

polynomial used. Thus, it increases complexity of algorithm. 

Here we propose new concept of integration of fully 

homomorphic encryption [10] with TPA, which resolves the 

above mentioned problem. 

7. DEFINITIONS AND PRELIMINARY 

BACKGROUND 
In this section, we propose highly privacy-preserving public 

auditing it uses concept of fully homomorphic encryption. 

This scheme, not only check the data integrity but also keep 

the data secure even from the third auditor [6].  Following are 

some important terminology used in the scheme: 

Homomorphic Authenticator: It consists of probabilistic-

polynomial time algorithms given by Gentry Cargis in his 

paper[10]. Following functions are integral part of 

Homomorphic authenticator. 
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KeyGen(1n) →(evk,sk) : Takes input string and initializing 

secret key “sk” for it and an evaluation key “evk”. 

Authsk(b, τ) →σ: It creates a tag σ that authenticates the bit b 

  {0, 1} of sk under the label τ   {0,1}*. 

Evalevk(f, σ) → ᴪ: The deterministic evaluation procedure 

takes a vector of tags σ = (σ1,….., σk) and a circuit f: {0,1}k 

→{0, 1}. It outputs a tag ᴪ. If each σi authenticates a bit bi as 

the output of some labelled-program Pi (possibly the identity 

program), then should authenticate b* = f(b,….., bk) as the 

output of the composed program P* = f(P1,….,Pk). 

Versk(e,P,ᴪ)→ {accept; reject}: The deterministic 

verification procedure uses the tag to check that e   {0, 1} is 

the output of the program P on previously authenticated 

labeled data. 

Fully homomorphic Encryption: A Fully Homomorphic 

(public-key) Encryption (FHE) scheme is also consist of 

probabilistic-polynomial time algorithms given by Gentry 

[9].HE = (HE.KeyGen; HE.Enc; HE.Dec; HE.Eval) defined as 

follows 

. 

HE.KeyGen (1n) → (pk, evk, sk): Outputs a public 

encryption key pk, a public evaluation key evk and a secret 

decryption key sk. 

HE.Encpk (b) → c: Encrypts a bit b   {0, 

1} under public key pk. Outputs cipher text c. 

HE.Decsk(c) → b: Decrypts ciphertext c using sk to a 

plaintext bit b   {0, 1}. 

HE.Evalevk (g;c1,….,ct) → c*: The deterministic evaluation 

algorithm takes the evaluation key evk, a boolean circuit g : 

{0; 1}t → {0; 1}, and a set of t ciphertexts c1,….,ct. It outputs 

the result cipher text c*. 

8. SCHEME DETAILS 
Let HE = (HE.KeyGen, HE.Enc, HE.Dec,HE.Eval) be fully 

homomorphic encryption scheme. Let {fK:{0, 1}*→ {0; 

1}r(n)}K  {0;1}n be a pseudo-random function PRF family. 

Let H be a family of collision-resistant hash functions (CRHF) 

H :{0; 1}*→{0, 1}m(n). 

User first chooses a public/secret key for an FHE and a 

pseudo-random function. To authenticate a bit ‘b’ under a 

Labelled Program τ creates ciphertexts. User chooses 

ciphertexts and encrypt as random encryptions of bit b being 

authenticated. Given some program P with t inputs and 

authentication tags, we can homomorphically derive an 

authentication tag for output. 

We derive each cipher text by homomorphically evaluating 

the program P over t cipher texts that lie in position within the 

tags. In particular, we set Eval. We assume that evaluation 

procedure for the FHE scheme is deterministic so that results 

are reproducible. 

User can verify to certify, that y is the output of the labelled 

program P. For indices, user can re-compute the pseudo-

random input cipher texts using the PRF, without knowing 

actual input bits. User then computes Eval and checks that the 

ciphertexts in tag were computed correctly. If this is the case, 

and all of other ciphertexts decrypt to claimed bit y, then user 

accepts. 

We define the authenticator scheme = (KeyGen, Auth, Eval, 

Ver) as follows: 

KeyGen(1n): Choose a PRF key K   {0; 1}n and a CRHF H  

← H. Choose an encryption key (pk, evk’, sk’)   

HE.KeyGen(1n). Select a subset S   [n] by choosing whether 

to add each index i   [n] to the set S independently with 

probability ½.Output evk = (evk’,H),sk =(pk,evk’,H,sk’,K, S). 

Authsk(b,τ): Given b  {0; 1} and τ {0; 1}* do the 

following: 

1. Choose random coins rand1,...,randn by setting randi = 

fk((τ; i)). Set υ :=fK(τ ). 

2. Create n ciphertexts c1, . ..,cn as follows. For i   [n] n S, 

choose ci = HE.Encpk(b; randi) asencryptions of the bit b. For 

i   S, choose ci = HE.Encpk(0,randi) as encryption of 0. 

3. Output _ = (c1,.. .,cn; υ). 

 

Evalevk(g,σ): Given σ = (σ1,…..,σt), parse each σj = (c1;j 

,…..,cn;j; υj ). 

For each i   [n], compute c*i = HE:Evalevk0(g; ci;1 ,….., 

ci;t). 

Compute υ* = gH(υ1,…,υt) to be the output of the hash-tree 

of g evaluated at υ1,….,υt. 

Output ᴪ = (c*1,….., c* n; υ*). 

 

Versk(e;P;ᴪ): Parse P = (g; τ1,….,τt) and ᴪ  = 

(c*1,…..,c*n,υ*). 

1. Compute υ1 := fK(τ1),…..,υt = fK(τt). If υ gH (υ1,…..,υt) 

then output reject. 

2. For i   [n], j   [t], compute randi;j := fK((τj,i)) and, for i   

S, set ci;j := HE.Encpk(0,randi;j).  For each i   S, evaluate c’i 

:= HE.Evalevk’(g; ci;1; : : : ; ci;t) and if c’i  c*i, output 

reject. 

3. For each i  [n] \ S, evaluate c’I = HE. Encpk 

(e;REvalevk’(g,randi,1,…., randi,t)) and if c’i c*i, output 

reject. 
 

If the above doesn't reject, output accept. It is also used to 

hide difference between data-independent pseudo random 

cipher texts which allow user to check upon the computation 

and the output is right or not.  

Also for any given sk, it shall possible to decrypt the correct 

bit b from the tag authenticating it, but given only the 

evaluation key evk, the tags will not reveal any information 

about the authenticated bits. Thus we can say:  

Versk(P;ᴪ) →{0,1, reject} as follows: run Versk(e;P;ᴪ)  for 

both choices of e   {0; 1} and, if exactly one of the runs is 

accepting, return the corresponding e, else return reject. 

Even if the attacker gets evk and access to the authentication 

oracle Authsk(b, τ) , if he later sees a tag σ ←Authsk(b, τ) for 

a fresh label τ , he cannot distinguish between the cases b = 0 

and b = 1. 

9. FUTURE SCOPE 
In proposed scheme fully homomorphic authenticator is being 

included in TPA. This scheme is being theoretically 

approached. Thus in future we intended to add experimental 

analysis and some derive some more experimental validation 

and conclusion.  

 

10. CONCLUSION 
In this paper we propose fully homomorphic encryption 

auditing system for the data storage security in the cloud 

computing. We have integrated the fully homomorphic 

encryption in TPA auditing system.  Proposed scheme of fully 

homomorphic provides auditing technique which not only 

preserves privacy but also provide authenticator that allow an 

unbounded number of verification. In future we intend to 

verify its approach practically and to add experimental 

analysis to derive some conclusion from it.  
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