
International Journal of Computer Applications (0975 – 8887)

Volume 80 – No 13, October 2013

4

An Insight upon the Effect of Quality Assurance on the

Cost of Software Development

Deepika Manchanda
Graphic Era University

Dehradun

Akashdeep Singh
Graphic Era University

Dehradun

Neha Garg
Graphic Era University

Dehradun

ABSTRACT

The requirement of a software to be free from any kind of

error,defect or fault is still a very big challenge to the IT

industry.Software system’s size, lifetime and complexity is

continuously growing but there is often not much flexibility to

deadlines and budget.Also,cost is the main factor which

should be considered before developing a software project.A

possible software failure may lead to millions of breakdown

costs, loss of reputation, or even injure people.But,when this

is done correctly,it helps in the successful completion of the

project. This paper focusses on providing an insight upon

finding the right balance between quality and quality

assurance costs during different phases of software

development life cycle which in turn would increase

organizational economic status, as well as conceptual and

economic perspective.

General Terms

Quality assurance, phases of software development, cost

estimating models.

Keywords

Cost, Quality , SDLC(Software Development Life Cycle).

1. INTRODUCTION
Software nature is considered to be intangible,and thus to

ensure improved software quality a strong commitment of

time,resources and effort is required by each individual

involved in the software development process.It is highly

important to remain focussed on the user as well as the system

requirements throughout the software development life cycle

for quality assurance within given cost and time constraint. A

lot of attention should be paid to requirements specification to

deliver reliable and quality software.The importance in

developing a high quality software system is in satisfying both

the user requirements and the developer’s budget.Thus a well-

defined set of quality requirements are essential for preventing

software projects failure.

According to a study conducted by the U.S National Institute

Of Standards And Technology, the impact of software failures

and software errors cost the American Economy $59.5 billion

yearly(National Institute Of Standards And Technology ,

2002).

In layman language,Quality in terms of software means

having an essential property or behavior.However,a more

comprehensive definition of quality is given by ISO that

divides quality into six attributes:functionality, reliability,

effeciency, usability, maintainabilty and portability.These are

discussed in detail in the later section of this paper.

Quality assurance(QA) is ensuring that a software meets all its

intended requirements such as functional, time, staff, budget

,etc. However, in order to make this sure various software

validation and verification activities are being carried out.This

in turn would require investment,contributing to the overall

cost of the software.Interchangeably,QA and software testing

is used as this paper explores their inclusion in the system

development life cycle (SDLC).

Developing a software is indeed a lengthy process involving a

software to undergo through various stages of development to

ensure a reliable quality software in the end.For this, periodic

reviews are being carried out in all stages of the development

process for detecting and correcting errors.But in many cases,

defects are not detected immediately after when they occur,

rather they are noticed much later in the life cycle. So, once a

defect is detected one has to go back to the phase where it was

introduced and rework those phases-possibly change the

design or change the code and so on.

Schenk, Vitalari and Davis et al.[20] indicated that discovery

of errors early in the design process could have rippling

effects as these errors were expensive and time consuming to

correct after software project completion.Ewusi-mensah et

al.[6] stated 52.7% of IT projects completed are 189% over

budget with an additional cost of $59 billion. Hardgrave et

al.[10] emphasized the need to integrate people’s effort in the

developing software by referring to Pfleeger’s comments et

al.[19], to understand the role of people in the adoption

process, and how it related to drawing upon social science

models.

2. PROBLEM AND PURPOSE OF

STUDY

Software systems are expensive products because their

construction involves a lot of skilled people. Companies

which develop software are bound to invest excessive

amounts of money to get a high quality software, which

overcomes the firms actual quality needs. On the other hand

some companies do not take quality assurance seriously

enough or do not spent enough money, or do not use the right

techniques for the quality assurance of their software

production.

Charette et al.[2] reported that organizations and governments

spent an estimated $1 trillion on IT hardware, software, and

services worldwide. According to the Standish Group study

conducted in 1995 [as cited in 11] the U.S. government and

businesses spent approximately $81 billion on canceled

software projects, and another $59 billion for budget overruns.

In another related study, Michaels et al.[18] indicated that it

was hard to determine the real cost of failed software projects;

however, in the United States alone it was estimated to be

upwards of $75 billion a year in rework costs and abandoned

systems. The survey claimed that in the United States, only

about one sixth of all projects were completed on time and

within budget, nearly one third of all projects were canceled

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No 13, October 2013

5

outright, and well over half were considered as a big

challenge. Of these projects, the average project was 189%

over budget, 222% behind schedule, and contained only 61%

of the originally specified features.

3. QUALITY
ISO 8402 provides the following definition cited in the ISO

quality related documents:“The totality of features and

characteristics of a product or service that bear on its ability to

satisfy specified or implied needs.”

ISO-9126 (ISO, 2001)[12] provides a hierarchical framework

for quality definition, being organized into quality

characteristics and sub-characteristics.There are six quality

characteristics,each associated with its exclusive (non-

overlapping) sucharacteristics,as summarized in figure 1[12].

However,only considering a certain metric of a quality

characteristic is not enough,we have to see the application

environment of the software too. For instance 99.9%

availability of an office application, thus corresponding to an

average downtime of 8,76 hours/year, is fairly appropriate.In

respect to availability this office application is of high quality.

On the other hand, a power plant control software, having the

same availability of 99.9% which stands for an average

downtime of 8,76 hours/year too, is definately not acceptable.

An unsafe failure might result in a disaster, polluting the

environment and possibly injuring people.Additionally it is

important to look at financial issues related with achieving

desired quality of a software. Quality assurance is costly and

the expenses to be made to achieve the right quality are of

interest to the project management and the customer. Thus it

becomes necessary to estimate and measure software quality

costs.

Major Influencing Factors:

The major factors that affect the overall cost of software

product are as follows:

1. The costs to set up the application of a specific technique.

2. The variable execution costs. These are mainly the

personnel costs and hence dependent on the labour costs.

3. Cost for removing the defect after it’s detection. Many

factors have an effect on this such as labour costs, code

inspection cost etc . Furthermore , it is dependent on the type

of document and software development phase in which the

defect is detected. A defect which is detected during

requirements analysis phase involves only to change the

requirements document. However, detecting the same defect

during testing phase might require to change several

documents, including the code and the design, and to re-

inspect and re-test the software, thus adding up to the cost of

the software.

4. The labour costs that have an indirect influence on several

of the other quality cost factors.

5. Also it is not only important to detect defects but to detect

the ones that would be most likely to cause a failure in the

field.Measuring the probability of occurrence of failure also

affects the cost of the software product.

6. Marketing Factors:Finally, there are also two important

factors that are not directly related to the software

development process.These are:

a)Time to deliver the product in the market :For some

products an early market introduction with mo-re residual

defects can be beneficial as the customers might prefer the

first product on the market al-though the quality is not

optimal.

b) Quality Requirements based on market demand:It might be

beneficial to have differing (higher or lower) requirements on

specific quality attributes such as some domains consider

standards or even legal regulations that require specific safety

or availability levels. Even so an economic analysis might

suggest that testing is enough, those standards might introduce

additional constraints. However, these the above two

marketing factors are not taken much into consideration.

Figure 1[12]: ISO/IEC 9126:2001 quality model [ISO9126]

External and internal
quality

'functionality

suitability accuracy
interoperability

security
functionality
compliance

Reliability

maturity fault
tolerance

recoverability
reliability

compliance

usability

understandability
learnability
operability

attractiveness
usability compliance

maintainability

analysability
changability

stability testability
maintainability

compliance

portability

adaptability
installability co-

existence
replacability
portability
compliance

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No 13, October 2013

6

3.1 Quality and Cost Estimation
Quality estimation is a bit more complex and requires more

advanced models.Whereas costs can be measured, it is more

difficult to measure quality.

Convinced with this measure of quality,now the task for

software QA and quality engineering are to ensure software

quality through the related validation and verification

activities. These activities are carried out by the people and

organizations responsible for developing and supporting these

software systems in an overall quality engineering process

that includes :

 quality planning;

 execution of selected QA or software validation and

verification activities;

 measurement and analysis to provide convincing

evidence to demonstrate software quality to all

parties involved.

Figure 2:The change in the cost of quality assurance

during various phases of software development over time.

Also there are several metrics used to help in qulity assurance

of software.One of the first software cost estimation models

has been developed by Barry Boehm in 1981.In his book

Software Engineering Economics Boehm presents the

COnstructive COst Model(COCOMO).According to Boehm,

software cost estimation should be done through three basic

stages:Basic COCOMO, Intermediate COCOMO, and

Complete COCOMO.The second version of COCOMO was

developed in the 1990s.COCOMO II model make use of

empirically collected data and has a new set of cost drivers.It

focusses on process-driven quality estimation.The

COnstructive QUALity MOdel COQUALMO is an extension

to COCOMO II model.This model clearly relates cost,

schedule and quality of software.

One of the estimating methods used to develop budget type

estimates is known as parametric estimating.Parametric

estimating can be defined as identifying the major task cost

drivers,applying the relationships associated or factors to

develop project costs.It’s Primary Purpose is to provide a

defensible budget estimate at early stages with little known

design criteria.Another method is detailed estimating made

from very defined engineering data.It is done to estimate

labour, material and equipment prices. These are often

referred to when dealing with cost estimates at certain stages

of the project development.The Rough Order of Magnitude

(ROM) Estimates and Factoring or Benchmark estimating are

used at the very beginning of the project where there is little

or no design.The Budget planning estimate is based on some

of conceptual design and preliminary engineering data so they

are a little more project specific and tighter than the other two

types.All three of these types use parametric methods and

tools to develop the cost estimatesAgain, Detailed or

Definitive estimates are exactly what the name implies. It can

usually be developed at about 60% to 70% design, however

the more design,the better the accuracy of the estimate and

less assumptions have to be made.

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No 13, October 2013

7

Table 1: Various cost estimating methods.

3.2 Planning
Prior planning for any risk involved in quality assurance using

the process approach will help in identifying opportunities

throughout the system.

To plan for risk Konieczny (2012) et al.[15] and Ben-Jacob

(2011) et al.[1] agreed that a method or process should be

established.Also “80% of the product quality is determined in

the early stage of product development” Kwai-Sang, Lian-Yu,

& Li, 2003, p. 733 et al.[16] ,the focus of the planning should

be at the early stage of development. The extent of the

planning process should primarily be based on the extent of

risk the organization is willing to assume or has the financial

means to absorb.Contrary to this,poor planning can have a

significant financial impact on the profitability of the

organization and according to Lopez (1996)[17] it can be

difficult to identify not only the severity of the loss but also

the source of loss.

3.3 SOFTWARE PROCESS

IMPROVEMENT
Indeed,the investment in the software process improvement is

one strategy that any organisation might adopt to improve

business performance. There have been significant gains in

quality as a result of the SPI program. According to a study

,there has been about a 7-10% reduction per year in defects

reported by customers .Thus a wide range of software process

improvement activites are undertaken

nowadays.Organisations often use these strategies to collect

data economically.These include:

 forming process groups,

 training,

 performing peer reviews,

 devising forums for exchange of ideas ,and

 inserting new technology.

Eventually many of the organizations had formed a software

engineering process group (SEPG) as the organizational focus

of the process improvement efforts.Also, training is an

important element of the improvement activities in many

organizations,the most frequently offered courses being the

project management, peer reviews, and instruction in the local

development process and methods.Most of these

organizations also conducted regular code and design

inspections,requirements inspections.A few organizations had

established forums for the exchange of ideas and for

coordinating efforts among groups.Leadership support is

required to establish an effective a quality policy, to set goals,

objectives, and metrics. Regular management reviews by the

leadership team are required to ensure the policy, goals,

objectives, and metrics continue to remain relevant and

effective to support customer requirements and the

organizational strategy.Also, Several organizations had

changed their processes not only for process improvement

purpose but also to enable the insertion of new technology

such as reuse of software.In order to get a more meaningful

view of the costs, the following reports showed figures for

some organizations in a more normalised way.Figure 4[14]

shows the yearly reduction in the number of post release

defect reports.The very large differences are because the

organizations are very different in size, from division and

sector level to small organizations.Two organizations,Q and

R, had astonishing results within a very short time frame.The

rates for P represent successive releases,with substantial

amounts of new and modified code, all of which have gone

through their entire life cycle. The last release had no defects

reported in the new and modified code.The other two

organizations, S and T, also had substantial reductions over a

significant period.

METHO

DOLOG

Y

DESCR

IPTIO

N

TOOLS

USED

END

USAGE(Ty

pical

purpose of

estimate)

EXPE

CTED

ACCU

RACY

RAN

GE

1.Rough

Order Of

Magnitude

(ROM

)Estimates

It is a

top

down

estimati

on

approac

h,made

without

detailed

engineer

ing.

Scaling,fa

ctoring,or

parametri

c tools.

Preliminary

design-phase

budget, costs

for program

level

budget,Gene

ral economic

feasibility,Pr

eliminary

economic

screening of

alternatives.

Acccur

ate

within

+50%

or -

30% of

actual

costs.

2.Budget(

planning)

Estimates

It is a

top

down

estimati

on

approac

h based

on

prelimin

ary or

partial

engineer

ing data

Use the

same

technique

s as

ROM(ho

wever,the

use of

more

detailed

data

increases

the

accuracy

of the

estimate)

Accurate

design-phase

budgets,Prog

ram-level

budgets,Deta

il economic

screening of

alternatives,

Updating

existing

ROM or

Budget

estimates

with more

detailed data

Accura

te to

within

+30%o

r -15%

of

actual

costs.

3.Detailed

(definitive

)

estimating

.

It is a

bottom

up

approac

h ,based

on high

level of

design.

There are

many

tools

available

in the

market

for

detailed

estimatio

n,such as

MCACE

S used by

CORPES.

Independent

Government

Estimates

(IGEs),Cost

validation,

negotiations

– ensuring

that project

costs are in

line with

what should

have been

charged.

Accura

te

within

+20%

or -

10% of

actual

costs.

4.Factor(B

enchmark)

estimating

.

It

utilizes

costs

from

similar

historica

l

projects.

Cost

curves,

and

factoring

historical

data.

It is used for

the

comparision

of cost for

similar

projects.

It

includ

e cost

curves,

ratios

and

factori

ng the

histori

cal

data.

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No 13, October 2013

8

Figure 4[14]: Reduction per year in post release defect

reports.

Figure 5[14] is of most interest to many practitioners and

managers is the value returned on each dollar invested.This is

often referred as the "return on investment" (ROI).The figures

that are reported is the ratio of measured benefits to measured

costs. In general the savings in business were calculated as

follows. Benefits such as savings from productivity gains and

savings from fewer defects,savings from earlier detection

etc.The costs of SPI generally included the cost of the SEPG,

assessments, and training, but did not included the indirect

costs such as incidental staff time to put new procedures into

place.There are very few investments one can make that

returns a business value five or six times of their cost.

Figure 5[14]: Business Value Ratio Of SPI Efforts.

For the organizations that considered SPI efforts collecting

and analyzing data is also important , in addition of making

the business case for management for guiding the process

improvement effort.

Code inspection:Inspections by themselves are not a silver

bullet. They do not by themselves overcome serious flaws in

the software engineering process. However it is important to

inspect requirements as well as code and design

documents.Otherwise, design defects will often not be

discovered until system integration test.Most often

organisations follow the strategy of "Inspect before unit test”

since they expect to find defects,and smaller code segments

can be inspected.In addition,it is also possible to skip unit test

altogether, and inspections may uncover design defects that

could slip through unit testing and therefore be much more

expensive to detect and fix.Another example of basing an

important management decision on an analysis of data from

the current project was a case where unit test was skipped, at a

savings of 1.5 person years.In this case, an inspection revealed

a defect rate which was about half of what had been

experienced in similar projects in the past.According to a

recent study a high-level design defect costs twice as much to

remove if it is not discovered until coding as it would have

cost to remove had it been discovered in low-level design. If it

is not discovered until unit test, the cost doubles again. The

estimation procedure also makes the reasonable assumption

that 50% of all defects that existed when a stage was entered

are removed by inspections during that stage.This estimation

procedure indicates that at least 1.2 million dollars are saved

annually by inspections of requirements and design

documents.Savings resulting from code inspections are much

easier to quantify, and are estimated at 2.3 million dollars.

3.4 TESTING
Formal verification and validation of the quality requirements

introduces both the added costs and potential benefits. During

this phase, each module is unit tested to determine the correct

working of all the individual modules. It involves testing each

module in isolation as this is the most efficient way to debug

the errors identified at this stage. when all the modules have

been successfully integrated and tested, system testing is

carried out. The goal of system testing is to ensure that the

developed system conforms to its requirements laid out in the

SRS document.

The price of defects : Proper handling of defects is an

important part of QA that requires involvement of many

people altogether ie.the developers who fix discovered defects

are typically not the same as the testers who observed and

reported the problems in the first place.Also the effect of

every defect is not the same.West et al.[21] classifies defects

into levels based on the number of independent factors that

are jointly required to cause their occurrence. In this

classification, a defect due to a single cause is called a defect

of level one. A defect of level two has two independent causes

that must occur in a particular combination. For example,the

first cause could be the failure of a standard routine , and the

second cause could be the failure of the exception handling

routine that is invoked to recover from the first

failure.Similarly,a defect of level five would require five

independent failures to occur.More precisely, the higher the

level of a defect, the less likely its occurrence will be

[4,7,9,21].Considering this one can assume that the defect

level of potentially catastrophic failures is relatively high,

requiring multiple things to fail in combination. As a result

they tend to have a lower than average probability of

occurrence.

Figure 6[5].Risk and damage: low-impact defects tend to

occur more frequently than high-impact defects.

The report also suggested that there is a relation between

perceived defect density and the average number of users of a

product. Since estimates of residual defect density are

typically based on the number of customer complaints post-

release, successful products would appear to have a higher

residual defect density than unsuccessful products.On the

other hand,intoduction of a new functionality might have a

negative impact on

residual defect density.

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No 13, October 2013

9

Figure 7[5]. Changes in customer satisfaction as a function

of changes in residual defect density.

From the above figure 7 it is clear that starting from a point

labeled ‘1’ and moving towards point ‘2’ in the curve, small

changes in the residual defect density do not seem to affect

customer satisfaction all that much. However ,after passing

the point ‘2’, the effect will become very

noticeable.Similarly,on starting from point ‘3’ on the lower

curve and moving towards point ‘5’,small changes in residual

defect density do not cause easily observable effects, not even

if we pass 4,restoring the same residual defect density we had

before we started losing users at point 2. Any improvement in

defect density will now have to be considerably greater,

before it can restore customer confidence that the software

product is worth using.

The price of failure : Failure costs can be categorized as

prevention, appraisal, internal, and external failure costs

(Feigenbaum, 2008)et al.[8] The purpose of dividing failure

costs was to understand where the majority of the costs are

generated and how to apply systems and resources to reduce

costs.For instance, prevention costs can be determined by

applying a cost to the initial product planning process. Internal

failure costs include reworking product failures identified

during appraisal.External failure costs are typically identified

after the customer has the product or the service has been

rendered.Appraisal costs include the cost of resources such as

inspection involved with identifying failures to meeting

customer product or service expectations.Developing metrics

to monitor these costs will provide data for management to

understand and allocate resources to reduce costs.The most

effective resources applied to reducing internal failures are

prevention costs.These costs can include the time and

resources dedicated to development of the quality planning

process for products. Activities such as developing customer

profiles to identify customer contacts for clarification of

product expectation and problem resolution, the contract

review process, etc. can be undertaken under this.The benefit

of prevention costs can be difficult to justify because it can be

challenging to put a dollar value on a failure that didn’t

happen.It has been identified that “95% of quality cost is

usually expended on the appraisal and failure” (Jaju & Lakhe,

2009b, p. 546) et al.[13] and only a small percent of failure

costs are actually identified (Feigenbaum, 2008).

However,even now it is difficult to actually and precisely

determine the cost of quality because of the hidden costs

associated with appraisal and failures,such as,decreased team

member moral, loss of potential sales, wasted talent(Crandall

& Julien, 2010)et al.[3]. Thus what is required is proper

identification and correction of all possible problems that can

occur and allocating resources in order to reduce the costs

associated with appraisal and failures

3.5 MAINTENANCE
Maintenance of a typical software product requires much

more than the effort necessary to develop the product itself.

Many studies carried out in the past clearly indicate that the

relative effort of development of a typical software product to

its maintenance effort is roughly as 40:60 ratio. Maintenance

involves performing any one or more of the following three

kinds of activities:

a. Correcting errors that were not discovered during the

product development phase. This is called corrective

maintenance.

b. Improving the implementation of the system, and

enhancing the functionalities of the system according to the

customer’s requirements. This is called perfective

maintenance.

c. Porting the software to work in a new environment. This is

called adaptive maintenance. Software maintenance work

typically is much more expensive than what it should be and

takes more time than required. It has a very poor image in

industry since it is a very challenging task to understand

someone else’s work and then carry out the required

modifications and extensions.

4. RESULT AND FUTURE SCOPE
Improving the software quality simultaneously leads to

improvement in the productivity.Throughout the paper we

have seen that SPI efforts helps in boosting quality as well as

productivity taking into consideration developer’s

indispensible time, efforts and cost.This paper focussed on an

oppurtunity to decrease the financial losses by surveying and

evaluating the effectiveness of the quality planning process.

5. ACKNOWLEDGMENTS
This study was supported by the Department of computer

science of Graphic Era University , Dehradun -

248001,Uttarakhand,India.

6. REFERENCES
[1] Ben-Jacob, R., Kenett, R.S., Lum, S., Urkin, E., & Yu,

L.W. (2011) Site seeing. Quality

[2] Charette, R. N. (2005). Why software fails. IEEE

Spectrum, 42(9), 42–49.

[3] Crandall, R. E., & Julien, O. (2010). Measuring the cost

of quality. Industrial Management,52(4), 14-18.

[4] Eckhardt, D.E., Caglayan, A.K., Kelly, J.P.J., Knight,

J.C.,Lee, L.D., McAllister, D.F., and Vouk, M.A. An

experimental evaluation of software redundancy as a

strategy for improving reliability, IEEE Transactions on

Software Engineering, Vol. 17, No. 7, 1991, pp. 692-702.

[5] Economics of Software Verification,Gerard J.

Holzmann,Bell Laboratories MH 2C-521,600,Mountain

Avenue Murray Hill, NJ 07974.

[6] Ewusi-mensah, K. (1997). Critical issues in abandoned

information systems development projects.

Communications of the ACM, 40(9), 74–80.

[7] Fenton, N., and Neil, M., A critique of software

prediction models. IEEE Trans. On Software

Engineering, Vol., 25.

[8] Feigenbaum, A. V. (2008). Raising the bar. Quality

Progress, 41(7), 22-27.

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No 13, October 2013

10

[9] Hecht, H., and Wallace, D., Towards more effective

testing for high assurance systems. Proc. High Assurance

Systems Engineering Conf., Washington, DC, August

1997.

[10] Hardgrave, B. C., Davis, F. D., & Riemenschneider, C.

K. (2003). Investigating determinants of software

developers’ intentions to follow methodologies. Journal

of Management Information Systems, 20(1), 123.

[11] Hutcheson, M. L. (2003). Software testing fundamentals:

Methods and metrics. New York: Wiley.

[12] West, C.H., Protocol validation in complex systems.

Proc. 8th ACM Symposium on Principles of Distributed

Computing,1989, pp. 303-312.

[13] .ISO/IEC: ISO/IEC 9126-1:2001 Software engineering -

Product quality - Part 1:Quality model. International

Standards Organization,Geneva, Switzerland (2001).

[14] Jaju, S. B., & Lakhe, R. R. (2009b). Tracing quality cost

in a luggage manufacturing industry.Proceedings of

World Academy of Science: Engineering & Technology,

4(9), 546-549.

[15] James Herbaleb,Anita Carleton, James Rozum, Jane

Siegel ,David Zubrow“Benefits of CMM-Based Software

Process Improvement:Initial Results”, Software

Engineering Institute,Technical Report,CMU/SEI-94-

TR-13ESC-TR-94-013,(1994)August,pp.25-26..

[16] Konieczny,T.(2012).A closer look:Understanding risk

management for medical device manufacturers.

QualityMagazine,51(1),48-51.Progress,44(9),17-25.

[17] Kwai-Sang,C.,Lian-Yu, Z.,& Li,W.(2003).A hybrid

rough-cut process planning for quality.International

Journal of Advanced Manufactoring

Technology,22(9/10),733-743. doi:10.1007/s00170-003-

1618-x.

[18] Lopez, D.A. (1996). Quality planning in aerospace

manufacturing. Total Quality Management,7(3), 249-

256.ftwarsoft

[19] Michaels, P. (2007). Calculating the cost of failed

software projects.

[20] Pfleeger, S .L. (1999).Understanding and improving

technology transfer in software engineering.Journal of

Systems and Software, 47(2–3), 111–124.

[21] Schenk, K. D., Vitalari, N. P., & Davis, K. S. (1998).

Differences between novice and expert systems analysts:

What do we know and what do we do? Journal of

Management Information Systems, 15(1), 9–50.

IJCATM : www.ijcaonline.org

