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ABSTRACT 

Risk assessment is an important and popular aid in the 

decision making process. The aim of risk assessment is to 

estimate the severity and likelihood of harm to human health 

from exposure to a substance or activity that under plausible 

circumstances can cause to human health. In risk assessment, 

it is most important to know the nature of all available 

information, data or model parameters. More often, it is seen 

that available information model parameters, data are usually 

tainted with aleatory and epistemic uncertainty or both type of 

uncertainty. When some model parameters are affected by 

aleatory uncertainty and other some parameters are affected 

by epistemic uncertainty, how far computation of the risk is 

concern, one can either transform all the uncertainties to one 

type of format or need for joint propagation of uncertainties.  

In this paper, an effort has been made to combine probability 

distributions, normal fuzzy numbers and generalized interval 

valued fuzzy numbers (IVFNs) within the same framework.  
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1. INTRODUCTION 
The aspect of uncertainty is an important and integral to any 

risk assessment process. For any decision making process 

involving risk the modeling and quantification of the 

uncertainties is required. The uncertainties are basically two 

types viz., aleatory and epistemic uncertainty.  Aleatory 

uncertainty arises due to inherent variability, natural 

stochasticity, environmental or structural variation across 

space or through time, manufacturing or genetic heterogeneity 

among components or individuals, and varity of others 

sources of randomness. On the other hand epistemic 

uncertainty arises due to the insufficient knowledge about the 

world, which includes small sample sizes, detection limits, 

imperfections in scientific understanding etc. The age old 

classical probability theory is enough to handle aleatory type 

uncertainty. On the other hand Fuzzy set theory can be used to 

handle epistemic uncertainty. However, in some situation it is 

not always possible for a membership function of the type 

: [0,1]X   to precisely assign one point from [0,1] so it 

is more realistic to assign interval value. According to Gehrke 

at al. (1996) many people believe that assigning an exact 

number to expert’s opinion is too restrictive and the 

assignment of an interval valued is more realistic. In such 

situations interval valued fuzzy set (IVFS) comes into picture. 

IVFS was developed in the 1970’s. In May, 1975 Sambuc 

presented in his doctoral research (thesis) the concept of IVFS 

named as   fuzzy set. After development of IVFVs, 

different researchers have been studied this issue and applied 

in different areas. An IVFS is a set in which every element 

has degree of membership in the form of an interval. One can 

say, IVFS consist of two membership function, one is upper 

membership function (UMF) and other is lower membership 

function (LMF). 

Different effort have been made by different researchers for 

joint propagation of aleatory and epistemic uncertainty in the 

same computation of risk viz., Guyonnet et al. (1999, 2003), 

Baudrit et al. (2003, 2005, 2006, 2008), kentel et al. (2004), 

Anoop et al. (2006, 2008), Li et al. (2007), Rao et al. (2008), 

Baraldi et al. (2008), Helton et al. (2008), Limbourg et al. 

(2010), Flage et al. (2010, 2011),   Dutta et al. (2012), Pedroni 

et al. (2012, 2013). In all their effort it is seen that proposed 

approaches work when representation of some input 

parameters are probabilistic while some are normal fuzzy 

numbers. 

In this paper, an effort has been made to combine probability 

distributions, normal fuzzy numbers and generalized interval 

valued fuzzy numbers (IVFNs) within the same framework.  

2. UNCERTAINTY MODELING    

TECHNIQUES: 

2.1 Probability Theory: 
Probability theory frequently used in uncertainty analysis. If 

parameters used in prescribed models are random in nature 

and followed well define distribution, then probabilistic 

methods are most suitable and well accepted approach for risk 

assessment. 

A random variable is a variable in a study in which subjects 

are randomly selected. Let X be a discrete random variable.  

A probability mass function is a function such that 

(i) f(xi)  0,    (ii)

1

( ) 1
n

i

i

f x


  (iii) f(xi) = p(x = xi) 

The cumulative distribution function of a discrete random 

variable X, denoted as F(x) is  

( ) ( ) )(
i

i
F x P X x f

x x

x


   
 

Let X be a continuous random variable. A probability density 

function of X is a non-negative function f, which satisfies 

( ) ( )
B

P X B f x dx  
 

for every subset B of the real line. 

As X must assume some value, f must satisfy  

( ( , ) ( ) 1P X f x dx



      
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This means the entire area under the graph of the PDF must be 

equal to unit. 

In particular, the probability that the value of X falls within an 

interval [a, b] is 

( ) ( )
b

a
p a X b f x dx     

The CDF of a continuous random variable X is 

( ) ( ) ( )
x

F x P X x f x dx


     

 

2.2 Fuzzy Set Theory: 

Environmental/human health risk assessment is an important 

aid in any decision-making process in order to minimize the 

effects of human activities on the environment. Unfortunately, 

usually environmental data tends to be vague and imprecise, 

so uncertainty is associated with any study related with these 

kinds of data. Fuzzy set theory provides a way to characterize 

the imprecisely defined variables, define relationships 

between variables based on expert human knowledge and use 

them to compute results. In this section, some necessary 

backgrounds and notions (Dutta et al., 2011a) of fuzzy set 

theory that will be required in the sequel are reviewed. 

2.2.1:  Let X be a universal set. Then the fuzzy subset A of X 

is defined by its membership function 

: [0,1]A X 
 

Which assign a real number ( )A x in the interval [0, 1], to 

each element x A , where the value of ( )A x  at x shows 

the grade of membership of x in A. 

2.2.2: Given a fuzzy set A in X and any real number α   [0, 

1]. Then the α -cut or α -level or cut worthy set of A, denoted 

by α A is the crisp set 

 : ( )AA x X x      

The strong a cut, denoted by α +A is the crisp set 

 : ( )AA x X x      

2.2.3: The support of a fuzzy set A defined on X is a crisp set 

defined as  

Supp (A) =  : ( ) 0Ax X x   

2.2.4: The height of a fuzzy set A, denoted by h(A) is the 

largest membership grade obtain by any element in the set and 

it is denoted as  

( ) sup ( )A
x X

h A x


  

2.2.5 An interval valued fuzzy set A defined in the universe of 

discourse X is represented by 

 ( ,[ ( ), ( )]: )
L U

A x x x x XA A    

Where 0 ( ) ( ) 1
L U

x xA A     and the membership grade 

( )A x of elements of x to the interval valued fuzzy set A is 

represented by an interval [ ( ), ( )]L U

A Ax x 

 . ., ( ) [ ( ), ( )] .L U

A A Ai e x x x    

2.2.6 If an interval valued fuzzy set A satisfies the following 

properties 

 A is normal 

 A is defined in a closed bounded interval 

 A is convex set 

Then A is called an interval valued fuzzy number. 

2.2.7   cut of IVFN: 

Zeng & Shi (2005), Zeng & Li (2006) and Zeng et al. (2007) 

introduced and investigated the use of   cut of IVFNs and 

how to extend arbitrary operations to such sets using interval 

  cut rather than a single number. A generalization of 

  cut of fuzzy set is  

 | ( ) , ( )L U

A AA x x x        

3. PROPOSED HYBRID APPROACH 
Consider a model 

M = g (P1, P2,..,Pm, Q1, Q2,...,Qr, F1, F2 ,...,Fn) 

which is a function of parameters. Suppose P1, P2 . . . Pm are 

m parameters presented by probabilistic distributions while 

Q1, Q2,...,Qr are r parameters presented by normal fuzzy 

numbers and F1, F2 . . ., Fn are n parameters presented by 

generalized interval valued fuzzy numbers (IVFNs). 

The approach is explained below: 

Step1: Consider all normal fuzzy numbers Q1,Q2,...,Qr as well 

as upper membership functions (upper fuzzy numbers) Fu
1, 

Fu
2,..,F

u
n of generalized interval valued fuzzy numbers. 

Step2: Then calculate  -cut for each fuzzy number. (First 

calculate ( 0)  -cut for each fuzzy number (where

]1,0[ )). Then r+n numbers of closed intervals (as  -

cut gives closed intervals) i.e., 2(r+n) numbers of values will 

be obtained. 

Step3: Generate m number of uniformly distributed random 

numbers from [0, 1] and perform Monte Carlo simulation to 

obtain m numbers of random numbers by sampling probability 

distribution. 

Step4: Assign all 2(r+n) values and m random numbers in the 

model M and calculate  

M1
inf

 = Inf (M) and M1
sup= Sup (M). 

Step5: Repeat step1 to step4 for 5000 times 

Step6: Plot cumulative distribution function (cdf) of  

(M1
inf, M2

inf,… , M5000
inf) and (M1

sup, M2
sup,…, M5000

sup). 

Step7: Consider other  levels to calculate  -cut of each 

fuzzy numbers. 

Step8: Repeat step 2 to step 6.  

If proceed in this way a family of cdfs will be obtained. 

Step9: Next, consider all normal fuzzy numbers Q1,Q2,...,Qr 

as well as lower membership functions Fl
1, Fl

2,..,F
l
n of 

generalized interval valued fuzzy numbers with heights w1, 

w2,…,wn respectively. 

Step10: Repeat step2 to step8. In step7 it should be noted that

[0, ]w  , where min( , ,..., ,1)1 2w w w wn . Then we shall 

have another family of cdfs. 
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From theses family of cdfs, membership functions 

(generalized interval valued fuzzy numbers) at different 

fractiles can be generated. First family of cdfs will produce 

UMF and later family of cdfs will give LMF with height w of 

the resulting generalized interval valued fuzzy number 

generated at different fractiles. 

4. CASE STUDY 
To demonstrate and make use of the proposed approach a 

hypothetical case study for non-cancer risk assessment is 

presented here. As due to the discharge of produce water into 

the sea a lot of organic and inorganic pollutants (however, in 

this example we consider only the heavy metal arsenic (As) 

because of its toxicity and high concentration in produced 

water.) release into the water and which are harmful to the 

aquatic organism. Therefore human being may be affected by 

ingestion of such contaminated aquatic organism. An 

evaluation is necessary to determine the possible impact such 

substances may have on human health and ecology. For this 

purpose, risk assessment is performed to quantify the potential 

detriment to human and evaluate the effectiveness of proposed 

remediation measures. 

The general form of a comprehensive food chain risk 

assessment model as provided by EPA, 2001 is follows 

..........(1)

C FIR FR EF ED CF
f

CDI
BW AT

    




 

Where CID = Chronic daily intake (mg/kg-day), FIR = fish 

ingestion rate (g/day), FR = fraction of fish from 

contaminated source, EF = exposure frequency (day/year), ED 

= exposure duration (years), CF = conversion factor (= 10-9), 

BW = body weight (kg), AT = averaging time (days) and Cf = 

chemical concentration of fish tissue (mg/kg). The chemical 

concentration in fish tissue (Cf) can be computed as 

..........(2)C PEC BCF
f
 

 
Where PEC = predicted environmental concentration (mg/l) 

and BCF is the chemical bioaccumulation factor in fish (l/kg). 

The non-cancer risk model for fish ingestion is expressed as:
 

............(3)
CDI

Risknon cancer
Rfd

  

Where, Rfd is the reference dose.  

In this case study, representation of the parameters predicted 

environmental concentration (PEC) is considered as normal 

fuzzy number while chemical bioaccumulation factors (BCF) 

is considered to be generalized interval valued fuzzy number 

(IVFN), body weight (BW) is taken as normal probability 

distribution and other parameters are taken to be constant. 

Values of the parameters for the calculation of non-cancer risk 

are given in the table 1. 

 

 

 

 

 

 

 

 

Table 1: Parameter values used in the risk assessment 

Parameter Units 
Type of 

Variable 

Value/distributi

on 

Average 

Time (AT) 
Days Constant 25550 

Body 

Weight 

(BW) 

Kg 
Probabilist

ic 
Normal(70,5) 

Exposure 

Duration 

(ED) 

Years Constant 30 

Exposure 

frequency 

(EF) 

Days/year Constant 350 

Fraction of 

contaminat

ed 

Fish (FR) 

- Constant 0.5 

Fish 

Ingestion 

Rate (FIR) 

g/day Constant  170 

Conversion 

Factor (CF) 
- Constant 1E-09 

PEC for As /g L  Fuzzy  [4 ,5 ,6] 

BCF for As L/kg IFVN 

[35, 45, 55] 

UMF 

[40, 45, 50;0.8] 

LMF 

Oral Rfd for 

As 

mg/(kg.da

y) 
Constant 3.0E-04 

In this case study, representation of the parameters predicted 

environmental concentration (PEC) is considered as normal 

fuzzy number while chemical bioaccumulation factors (BCF) 

is considered to be generalized interval valued fuzzy number 

(IVFN), body weight (BW) is taken as normal probability 

distribution and other parameters are taken to be constant. 

Values of the parameters for the calculation of non-cancer risk 

are given in the table 1. The uncertain variables BW, PEC and 

BCF are plotted in figures1, 2 and 3 respectively. 
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Figure1: Uncertain variable Bw (Kg)

 

Figure 2: Uncertain variable PEC ( /g L ) 

 

Figure 3: Uncertain variable BCF (L/Kg) 

The result of the non-cancer human health risk assessment is 

performed using our proposed hybrid approach and which is 

depicted in figure (4). 

 

Figure 4: Cumulative distribution functions of non cancer 

risk for different  values 

The result of the risk assessment is obtained in the form of 

family of Cdfs (basically two family of cdfs, one in red 

coloured and another in blue coloured) at different  -values. 

Red coloured Cdfs are obtained for UMF and blue coloured 

Cdfs are obtained for LMF of the uncertain input parameter 

BCF. From these cdfs, risk at different fractiles (Maxwell et 

al, 1998, Kentel et al, 2004 & Dutta et al, 2011b) can be 

calculated and which are obtained in the form of generalized 

interval valued fuzzy number. It is because any arithmetic 

operations between generalized fuzzy numbers and normal 

fuzzy numbers produces generalized fuzzy number. 

For instance, at 95th fractile, non-cancer risk value lies in the 

interval valued fuzzy number {[2.63e-07, 42.24e-07, 6.214e-

07] (UMF); [3.016e-07, 4.071e-07, 4.411e-07,5.655e-07] 

(LMF)}. Similarly, at 85th fractile, risk values lie in the 

generalized fuzzy number {[2.515e-07, 4.03e-07, 5.929e-07] 

(UMF); [2.875e-07, 3.924e-07, 4.148e-07, 5.39e-07] (LMF)}.  

Their graphical representations of the resulting non cancer 

risk value at 95th and 85th fractiles are depicted below. 

 

 
Figure 5: Membership function of risk at 95th fractile

 

Figure 6: Membership function of risk at 85th fractile 

5. CONCLUSION 
In risk assessment, it is most important to know the nature of 

all available information, data or model parameters. More 

often, it is seen that available information is interpreted in 

probabilistic sense because probability theory is a very strong 

and well established mathematical tool to deal with aleatory 

uncertainty. However, not all available information, data or 

model parameters are affected by aleatory uncertainty (i.e., 

nature of the data, information or parameters are random) and 

can be handled by traditional probability theory. Imprecision 

may occur due to scarce or incomplete information or data, 

measurement error or data obtain from expert judgment or 

subjective interpretation of available data or information. 
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Thus, model parameters, data may be affected by epistemic 

uncertainty. Fuzzy set theory or possibility theory can be 

explored to handle this type of uncertainty (Dutta et al. 2012). 

Sometimes, it is also seen that some model parameters are 

affected by aleatory uncertainty and some parameters are 

affected by epistemic uncertainty, how far computation of the 

risk is concern, one can either transform all the uncertainties 

to one type of format or need for joint propagation of 

uncertainties.  In this paper we have proposed a method to 

deal with such situation where some possibilistic distributions 

are considered as interval valued fuzzy numbers together with 

normal fuzzy numbers. To demonstrate and make use of the 

proposed hybrid method a hypothetical case study for non-

cancer risk assessment is presented here. After performing 

risk assessment using our approach risk is obtained in the 

form of Cdfs and from which, membership functions of the 

risk are generated at different fractiles. The membership 

functions of risk at different fractiles are generalized interval 

valued fuzzy number since representation of at least one 

parameter is taken as generalized interval valued fuzzy 

number (IVFN). The lower membership function (LMF) of 

the generalized interval valued fuzzy number is trapezoidal 

type generalized fuzzy number, because any arithmetic 

operation of generalized fuzzy numbers (also generalized 

fuzzy number and normal fuzzy number) produces trapezoidal 

type generalized fuzzy number.  
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