
International Journal of Computer Applications (0975 – 8887)

Volume 79 – No7, October 2013

7

Data Warehouse Tuning: The Supremacy of Bitmap

Index

EL AMIN AOULAD

ABDELOUARIT
Laboratory modeling and

information theory
Abdelmalek Essaadi University,

Tétouan, Morocco

Mohamed El Merouani
Laboratory modeling and

information theory
Abdelmalek Essaadi University,

Tétouan, Morocco

Abdellatif Medouri
Laboratory modeling and

information theory
Abdelmalek Essaadi University,

Tétouan, Morocco

ABSTRACT
The data query is the only way to get information from a data

warehouse, for that, the designer should consider it

effectiveness while the selection of relevant indexes and their

combination with materialized views, also the index selection

is known as a NP-complete problem, as per the number of

indexes is exponential in the total attributes in the database,

This makes the choose of the suitable index type is a

necessary step while the data warehouse design.

In this paper we show that Bitmap index is more

advantageous than the B-tree index, based on three factors,

size of index, clustering factor and compression, with a real

experiment.

General Terms

Business Intelligence, Data warehouse.

Keywords

Data Warehouse DBMS, indexes, business intelligence.

1. INTRODUCTION
Some administration tasks that are taken by a data warehouse

administrator needs to be decided before the data warehouse

implementation, like logical and physical database design,

management of storage space and performance tuning.

Physical design are considered as the most important task,

including data organization and improving access to these

data, the fast access to this data requires to use general index

to find the information wanted without reviewing all data [1],

[3], [5], [7].

Index selection is difficult because their number is

exponential in the total number of attributes in the database.

So the index plays an important role in the performance of

databases, for that we focus on this aspect of the data

warehouse, which it considers the focus of the designer when

editing and query optimization selection.

The objective is to minimize the query execution time. And as

queries in a data warehouse are based on the index, we will

work on the problem of choosing the type of index when

designing our warehouse data.

Also to optimize storage usage, the index compression

problem is an important point that need to be checked

There are several types of indexes supported by databases

such as Bitmap [4] B-tree [3], [6], [7], [8], Bitmap join [9],

range-based bitmap index [10] etc.. In this sense we have

chosen two types of index relevant to this study, the index

type: B-tree index and type Bitmap.

2. BITMAP INDEX

2.1 Definition
A bitmap index is a data structure defined in a DBMS used to

optimize access to data in databases. It is a type of indexing is

particularly interesting and effective in the context of

selection queries. The index bitmap attribute is encoded in

bits, where its low cost in terms of space occupied. [7] All

possible attribute values are considered, the value is present or

not in the table. Each of these values is an array of bits, called

bitmap, which contains as many bits as n-tuples present in the

table. Thus, this type of index is very effective when the

attributes have a low number of distinct values. Each bit

represents the value of an attribute for a given tuple. For each

bit, there is an encoding presence / absence (1/0), which

indicates that a tuple or not the present value characterized in

bitmap.

Table 1: Basic Bitmap adopted by [9]

ROWID C B0 B1 B2 B3

0 2 0 0 1 0
1 1 0 1 0 0
2 3 0 0 0 1
3 0 1 0 0 0
4 3 0 0 0 1
5 1 0 1 0 0
6 0 1 0 0 0
7 0 1 0 0 0
8 2 0 0 1 0

To illustrate how a bitmap index works, we take an example

EE-PP-O'Neil and O'Neil [2]. Table 1 illustrates a basic

bitmap index into a table containing 9 records, where the

index is created in the C column with integers ranging from 0

to 3, we say that the cardinality of the column C is 4, by what

there are 4 distinct values [0, 1, 2, 3], where the index bitmap

C Contains 4 bitmaps shown as B0, B1, B2 and B3

corresponding value represents. In this example, the first line

where RowID = 0, column C is worth 2, consequently, B2

column bit value "1", while the other bitmaps are set to "0".

Same for the next line, where C = 1 corresponds to the bitmap

B1 is set to 1 and the rest to "0". This process is repeated for

the remaining lines. [12]

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No7, October 2013

8

2.2 Properties
Bitmap indexes have a very interesting property of responding

to certain types of requests without returning the data

themselves, thus optimizing the response time, disk storage.

This is possible by counting operations (COUNT) and logical

operators (AND, OR, etc.) that act "bit by bit" on bitmaps.

3. B-TREE INDEX

3.1 Definition
The index B-tree stores the index values and pointers to other

index nodes using a recursive tree structure. [3], [6], [7], [8]

The data are easily identified by traces pointers. The highest

level of the index is called the root while the lowest level is

called the leaf node or "leaf node". [7] All other levels

between them are called branches or internal nodes. All roots

and branches contain entries that point to the next level of the

index. Leaf nodes consist of the index key and pointers

pointing to the physical location of records. We present details

of the index B-tree structure [7].

The B-tree structure is used by the database server to

configure the index (Figure 1)

Fig 1: B-tree structure

Root or root is the highest level of the index points to the

following levels of nodes branches.

Intermediate nodes or branches contain pointers to the

following branches or to the leaf nodes level.

Node leaves or leaf nodes: the lowest level of the index points

to other node leaves.

4. HYPOTHESIS
The conventional wisdom is that bitmap indexes are most

appropriate for columns having low distinct values - such as

gender, marital status, and relationship. This assumption is not

entirely accurate, however. In reality, a bitmap index is

always advisable for systems in which the data is not updated

frequently by many competing systems. In fact, as I will

demonstrate here, a bitmap index on a column with unique

values to 100% (candidate of the primary key column) is as

effective as a B-tree index.

In other side the compression is also an important point to

check, I will try to compare

5. ANALYSIS AND RESULTS
As known, the bitmap index is more efficient than the b-tree

index by its low cardinality columns, we present in this

experimentation the performance given by Bitmap index

comparing with the B-tree.

The factors that are used to make this comparison are:

 The index size

 Clustering factor

 Compression

5.1 Index size comparison
Step 1:

In our Data warehouse schema, we created a table named

“Employees” with 100000 records and with a column named

employee_id with 100000 distinct values and we added a

GRADE column with 4 distinct values only.

Step 2:

We create now a standard B-Tree index on the GRADE

column using this SQL :

SQL> create index employees_grade_i on employees(grade);

Then we check the index size using this query :

SQL> select index_name, index_type, distinct_keys, blevel,

leaf_blocks from dba_indexes where

index_name=’EMPLOYEES_GRADE_I’;

And we got this result:

Table 2: B-tree index size checking result in GRADE

column

INDEX_

NAME

INDEX

_TYPE

DISTINCT

_KEYS
BLEVEL

LEAF_

BLOCKS

employee

s_grade_i
Norma

l
4 1 176

Step 3: Creating a bitmap index on the same column to

compare the size (dropping the b-tree index created in first

step)

SQL> create bitmap index employees_grade_bitmap_ii on

employees(grade);

Step 4: In the bitmap index size checking, we use the same

query:

SQL> select index_name, index_type, distinct_keys, blevel,

leaf_blocks from dba_indexes where

index_name=’EMPLOYEES_GRADE_II’;

Table 3: Bitmap index size checking result in GRADE

column

INDEX_

NAME

INDEX

_TYPE

DISTINCT

_KEYS
BLEVEL

LEAF_

BLOCKS

employee

s_grade_i

i
Bitma

p
4 1 10

Note that the index size is reduced from 176 to 10 (while

going from B-tree to bitmap index)

Step 5: the bitmap index creation on employee_id column that

contains 100000 distinct values:

SQL> create bitmap index employees_empid_bitmap_i on

employees(employee_id).

By checking the index size using the same query, we have this

table as result:

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No7, October 2013

9

Table 4: Bitmap index size checking result in

EMPLOYEE_ID column

INDEX_

NAME

INDEX

_TYPE

DISTINCT

_KEYS
BLEVEL

LEAF_

BLOCKS

employee

s_empid_

bitmap_i
Bitma

p
100000 1 348

And when trying with B-tree index we have this result:

Table 5: B-Tree index size checking result in

EMPLOYEE_ID column

INDEX_

NAME

INDEX

_TYPE

DISTINCT

_KEYS
BLEVEL

LEAF_

BLOCKS

employee

s_empid_

btree_i
B-tree 100000 1 222

5.2 Clustering factor checking
For large distinct values B-tree index occupies less size, and

for minimal distinct values, the bitmap index occupies less

size.

Clustering factor: considered as the sum of rows orders in a

table based on the index values.

 If this amount is near the number of blocks, then the

table order is well done, and the index entries in a single

leaf block are pointing to rows stored in the same data

blocks.

 If the value is near the number of rows, then the table is

randomly ordered, so is improbable that the index entries

in a single leaf block are pointing to rows stored in the

same data blocks.

Table 6: Clustering factor and blocks used for B-Tree

index on GRADE column

INDEX_NAME
CLUSTERING

_FACTOR
BLOCKS

employees_grade_i 1148 256

Table 7: Clustering factor and blocks used for Bitmap

index on GRADE column

INDEX_NAME
CLUSTERING

_FACTOR
BLOCKS

employees_grade_ii 20 16
5.3 Compression advantage:
Is known that bitmap Indexes store a separate bitmap for

every distinct value of a column, so it’s like the storage space

would become prohibitive for large tables with a lot of distinct

values. As example, if a table contains 1 million rows with

10,000 distinct values, won’t the Bitmap Index contain

1,000,000 x 10,000 = 10,000,000,000 bits near 1.2GB. A

million-row table is considered small for a data warehouse,

but 1.2GB is very big.

As Oracle uses some clever compression where long

sequences of 1s or 0s in the bitmap consume hardly any space,

storage space is not a significant consideration for bitmap

indexes with a large number of distinct values.

With a lot of distinct values, instances of a particular value

will be widely spread. This means long strings of zeros in the

bitmap which become highly compressed.

The effect illustration is better shown with an example. First,

create a table with:

 1 million rows

 2 identical columns with 10,000 distinct values

 A B-Tree index on one column

 A Bitmap Index on the other column

Table 8: Table comp_test creation query

SQL> CREATE TABLE comp_test

 2 AS

 3 SELECT mod(LEVEL, 10000) AS col1

 4 , mod(LEVEL, 10000) AS col2

 5 FROM dual

 6 CONNECT BY LEVEL <= 1000000;

Table created.

SQL> CREATE INDEX COMP_TEST_col1_ix ON

COMP_TEST(col1);

Index created.

SQL> CREATE BITMAP INDEX

COMP_TEST_col2_bx ON COMP_TEST(col2);

Index created.

 Now, compare the size of each index.

Table 9: Index size comparison

SQL> SELECT segment_name,

sum(bytes)/1024/1024 AS mb

 2 FROM user_segments

 3 WHERE segment_name LIKE 'COMP%'

 4 GROUP BY segment_name;

SEGMENT_NAME MB

------------------------------ --------

COMP_TEST 15

COMP_TEST_COL2_BX 4

COMP_TEST_COL1_IX 17

Note that the Bitmap Index has been squished down to just

4MB – one-quarter the size of the B-Tree index! In fact, I ran

this same test with 1 million distinct values (ie. One row per

value) and still the bitmap index was only 50% larger than the

B-Tree index.

5.3.1 Results
The most difficult scenario of bitmaps compression si when it

contains strings of zeros that are interrupted by one or two

“ones” in each byte. It won’t compress at all, but if every 8th

row has the same value then there can only be 8 such

uncompressible bitmaps for the column.

In other words:

There is many distinct values means each bitmap will be very

compressed because they contain a lot of zeros.

The bitmaps are not very well compressed then there will not

be many of them because there are only a few distinct values

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No7, October 2013

10

6. CONCLUSION AND FUTURE WORK
The optimizer did a full scan to a table when using the B-tree

index, this caused a higher clustering factor, whereas in the

case of bitmap indexes the clustering factor is too low

comparing with the first one. Here we deduct the performance

by the sum of input/output required to fetch the result.

The message here is well clear. Both indexes have a similar

goal: to return results as fast as possible. But the choice of

which one to use should depend only on the type of

application, and not on the level of cardinal.

In other side, the compression cannot be a factor that affects

our choice of Bitmap index for data warehouse optimization

strategy.

As future work, another study will be done on data warehouse

schema comparison, specially it impact on data warehouse

performance.

7. REFERENCES
[1] S. Chaudhuri, U. Dayal,An Overview of Data

Warehousing and OLAP Technology., ACM SIGMOD

RECORD. 1997

[2] E. E-O’Neil and P. P-O’Neil, Bitmap index design choices

and their performance impli-cations, Database

Engineering and Applications Symposium. IDEAS 2007.

11th International, pp. 72-84.

[3] R. Kimball, L. Reeves, M. Ross, The Data Warehouse

Toolkit. John Wiley Sons, NEW YORK, 2nd edition,

2002

[4] W. Inmon, Building the Data Warehouse., John Wiley

Sons, fourth edition, 2005

[5] C. DELLAQUILA and E. LEFONS and F. TANGORRA,

Design and Implementation of a National Data

Warehouse. Proceedings of the 5th WSEAS Int. Conf. on

Artificial Intelligence, Knowledge Engineering and Data

Bases, Madrid, Spain, February 15-17, 2006 pp. 342-347

[6] D. Comer,Ubiquitous b-tree, ACM Comput. Surv. 11, 2,

1979, pp. 121-13

[7] R. Strohm, Oracle Database Concepts 1g,Oracle,

Redwood City,CA 94065, 2007

[8] C. Dell aquila and E. Lefons and F. Tangorra, Analytic

Use of Bitmap Indices. Proceedings of the 6th WSEAS

International Conference on Artificial Intelligence,

Knowledge Engineering and Data Bases, CorfIsland,

Greece, February 16-19, 2007 pp. 159

[9] P. O’Neil and G. Graefe, Multi-table joins through

bitmapped join indices, ACM SIGMOD Record 24

number 3, Sep 1995 , pp. 8-11.

[10] K. Wu and P. Yu, Range-based bitmap Indexing for high

cardinality attributes with skew, In COMPSAC 98:

Proceedings of the 22nd International Computer

Software and Applications Conference. IEEE Computer

Society, Washington, DC, USA, 1998, pp. 61-67.

IJCATM : www.ijcaonline.org

