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ABSTRACT 

This paper discusses the process of behavioral conversion of 

digital circuits used for signal processing applications into its 

neural network counterpart[1][2]. The neural network so 

devised represents simulated digital circuits without any 

deviation in its input–output characteristics. However, the 

design of such networks depends entirely on different 

parameters and thus the design process too. It is believed that, 

if designed properly, the software format of neural network 

will be helpful in replacing various important hardware 

circuits in the digital systems calls for precision[4][5]. 

General Terms 
Neural Networks representation of digital circuits, Digital 

Circuit Simulation. 

Keywords 
Digital Circuits, Neural Networks, Discrete Circuit 

conversion. 

1. INTRODUCTION 
Neural Networks are quiet effective in simulating the digital 

circuits. The Neural Network representation can be used in 

multiple applications where the digital circuit behaviors are 

required to be presented in computer software form as 

solution to certain specific problem[2][4]. 

2. DIGITAL CIRCUIT CONSIDERATION 
Half Adder 

There are several integrated circuits that perform arithmetic 

functions, e.g., addition, subtraction, multiplication, and 

division. Here we will examine the digital circuit of Half 

Adder and its Neural Network counterpart[5][6][7]. 

The Half Adder circuit is a basic arithmetic circuit. To 

understand its operation, let us first examine addition of two 

one bit words that results in two bits of data, that is, the sum 

bit and a carry bit. We are considering the generalized case 

where addition of two bits of information always results in a 

sum and a carry. For instance, 0 plus 0 results in a sum of 0 

and a carry of 0. 

Considering the block diagram of Half Adder, we find it more 

straight and clear that the inputs A and B yields two outputs, 

that is, the Sum and Carry. The sum and carry are conditional 

which is reflected in the truth table, see figure 3. 

 

 

Fig 1: Block Diagram 

Further this block diagram can be converted to the circuit 

diagram to understand it vividly and more technically. We use 

here the XOR gate for “Sum” output whereas we use a simple 

AND gate for “Carry” output. The arrangement of the digital 

circuit is as shown in the figure 2 below. 

 

 

 

 

 

 

 

Fig 2: Logic Diagram of Half Adder 

 

The truth table can be constructed to show each row as one 

condition of A and B resulting in sum and carry. The sum is 

exclusive OR of A and B. Thus, to add is to XOR. 

The Sum is represented in Boolean logic as                    

 The carry is represented as: A.B Thus, the truth table 

reflecting both sum and carry is given below: 

 

A B Sum Carry 

0 0 0 0 

0 1 1 0 

1 0 1 0 

1 1 0 1 

Fig 3: Truth Table of Half Adder 

The Neural Network counterpart of the above digital circuit 

can be given as: 

 

 

 

 

 

 

 

Fig 4: Neural Network counterpart of Half Adder 
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The Neural Network used is Feed Forward Neural Network 

(FFNN) for easy and straight representation of the digital 

circuits. 

Now, let us design the activation function of the proposed 

Neural Network bearing in mind the following input equations 

for each node. For instance, at neuron Zi the input is defined 

as: 

b.wi - a.wi  =  yin(Zi)  

or, 

               

and the node output is given by the activation function: 

                 

There is a self imposed restriction in the network that the 

output, that is, f(Z3) will not go beyond 1. But for neuron Z2 

the activation function will have to be assigned the following 

terms: 

                

Evaluating yin for Z0, Z1, Z2, and Z3, we get the following 

truth table for the network giving values for yout. For each 

input pair a and b: 
 

a b Z0 Z1 Z2 Z3 

0 0 0 0 0 0 

0 1 – 1   1 0 1 

1 0 1 – 1   0 1 

1 1 0 0 2 0 

 

Fig 5: Truth Table for the network shown in Figure 4. 
 

This table can be revised according to the definition of 

activation function (yout) given above.   
 

a b Z0 Z1 
Z2                                                            

[Carry] 

Z3                                                                 

[Sum] 

0 0 0 0 0 0 

0 1 0   1 0 1 

1 0 1 0   0 1 

1 1 0 0 1 0 

 

Fig 6: Revised Truth Table given in Figure 5. 
 

Please note that, in the last row of the table, the threshold is 

defined as ≥ 2. Thus, neuron at Z0 node will fire up.   

We, therefore, find the proposed neural network is completely 

equivalent to the Half Adder circuit comparing the outputs of 

both the concepts. 

2.1 Formulating Node Responses 

First Order Predicate Logic (FOPL) is found to be adequate 

enough to formulate the nodes’ responses since it considers 

the premise of a given argument and its outcome directly as 

cause and effect relation. This makes it easy to represent 

“excitation” and “inhibition” of neurons in a neural network 

under various conditions of inputs. Thus, formulating 

responses of the neuron nodes Z0, Z1, Z2, and Z3, in relation to 

“sum” and “carry” as in case of half adder, we get –  

Sum f(Z3) for input vectors α and β respectively (0,0), (0,1), 

(1,0) and (1,1) respectively:  

For vectors )))3(())()(((:,)0(),0( Zfbaba    

For vectors )))3(())()(((:,)1(),0( Zfbaba    

For vectors )))3(())()(((:,)0(),1( Zfbaba    

For vectors )))3(())()(((:,)1(),1( Zfbaba    

Carry f(Z2) for input vectors α and β respectively (0,0), (0,1), 

(1,0) and (1,1) respectively: 

For vectors )))2(())()(((:,)0(),0( Zfbaba    

For vectors )))2(())()(((:,)1(),0( Zfbaba    

For vectors )))2(())()(((:,)0(),1( Zfbaba    

For vectors )))2(())()(((:,)1(),1( Zfbaba    

The above relations are in compliance with the truth table 

shown in figure – 5. Here φ denotes fallacy and   stands for 

tautology. Thus, the premise of given arguments shows φ for 

inhibition and   for excitation of neurons. 

We next consider another example of interest, that is, the 

circuit design of Convolution Encoder using Reverse Viterbi 

(RV) algorithm[3].  

Figure 7 shows the logic circuit design of an iterative network 

to compare two 3–digit binary numbers: X = x1x2x3 and Y = 

y1y2y3, and figure 8 presents the detailed synthesis of a 

comparator circuit (fig. 8.a) which is made of a comparator 

cell and a comparator output circuit (fig. 8.b). The extension 

of the circuit in figure 7 to compare two n-digits binary 

numbers is quiet clear by utilizing n-cells and the same output 

circuit. 

Logic circuit output of the cells in figure 7 yields three 

consecutive relational outputs, namely, in terms of “less 

than”, “equal to”, and “greater than”.  
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Figure 7 Iterative network to compare 3-digit binary 

numbers 

Figure 8(a) and 8(b) are discrete circuit representations that 

carry the comparisons as given in the figure 7. It shows the 

arrangements of digital components in the circuit that perform 

the task of comparisons. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8(a):  Comparator Cell 

 

 

 

 

 

 

Fig 8(b):  Comparator Output Circuit 

The Neural Network can be presented using the concept we 

have utilized in our previous discussion. Thus, the proposed 

Neural Network can be given as: 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig 9:  Neural Network representation of iterative network 

comparator 

Each neuron must be taken into consideration to be a perfect 

representative of specific section of the digital counterpart. 

Let us consider a case for digital circuit conversion to BPN. In 

my opinion, it will provide more insight to the design 

methodologies. 

Case – 1: Detection and Correction of forward errors in 

digital transmissions: Block Parity. 

In this method the data block is arranged in a rectangular 

matrix and two sets of parity bits are generated, i.e., 

Longitudinal Redundancy Check (LRC) and Vertical 

Redundancy Check (VRC). VRC is the parity bit associated 

with the character code and LRC is generated over the rows of 

bits, LRC is appended at the end of the data block. Here we 

will use even parity for both LRC and VRC. 

Let us take example of a data block, to be transmitted, for the 

purpose of analyzing it and designing an appropriate neural 

network for the same. 

 

 

 

 

Figure 10 Data Block 

On receiving the data block at the transmitting end, the LRC 

and VRC bits will be added to it before transmitting it. 

 
 

 

 

Figure 11 Schematic diagram for Parity Bit Insertion 
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Figure 12 Insertion of Vertical and Longitudinal Parity 

Check Bits 

Bits transmission sequence: 11101  00101  01111  10111 

2.2 Block Check and Correction of 

Redundancy  
On receiving data block through transmission the VRC and 

carried to see if it is erroneous. If it is erroneous then the 

signal is reconstructed to extract the data originally 

transmitted.  

 

 

 

 

 

 

 

 

Block check and data reconstruction schema can be presented 

in the schematic diagram given in figure 13. 

However, the above discussed concepts can be translated into 

design of an efficient BPN to be used for both the parity bits 

insertion before data transmission and to carry the parity 

checks and data reconstruction on receiving the transmitted 

signals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 BPN Network for insertion of Parity Bits, Block 

Check and Data Reconstruction 

It is to be noted that there is a little change in the application 

of the algorithm produced here under, for the purpose of 

insertion of parity bits (LRC and VRC) and while carrying 

check and correcting erroneous data bit on interception of 

signals after its transmission. Thus, it must be dealt with 

carefully. 

The algorithm for the proposed network can be presented as: 

LRC segment algorithm –  

1. Initialize all biases to zero. 

 

2. Check the output of each neuron using: 

yi = 



n

j

Liij bx
0

    n= no. of cols. (j), i= row 

3. Insert the LRC bits as per the condition given: 

              1, if yi mod 2 = 1     

bL0 =     0, if yi mod 2 = 0    

             1, if yi mod 2 < 0      

 

VRC segment algorithm –  

1. Initialize all biases to zero. 

2. Check the output of each neuron using:  

Even Parity 

Bits (VRC) 

Even Parity 

Bits (LRC) 

1 0 0 1 

1 0 1 0 

1 1 1 1 

0 0 1 1 

1 1 1 1      

Figure 13 Schematic diagram for Block Check 

and Data Reconstruction 
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zj = 



n

i

Vjij bx
0

     n= no. of rows. (i), j= cols. 

3. Insert the VRC bits as per the condition given: 

             1, if zj mod 2 = 1          

bV0 =    0, if zj mod 2 = 0     

             1, if zj mod 2 < 0         

 

On interception of signals the data check and correction is 

carried as: 

Assuming the data at xij is erroneous (say, instead of zero it 

has become 1), then carry LRC check taking mod of the 

individual row to see whether it is even or odd. Mark the row 

data (xij) if its sum: ((



n

j

Liij bx
0

) mod 2 ≠ 0).  

Similarly, carry VRC check taking mod of the individual row 

to see whether it is even or odd. Mark the row data (xij) if its 

sum: 

 ((



n

i

Viij bx
0

) mod 2 ≠ 0). 

The data at intersection of the marked row and column is The 

time response of the circuit is 0.0000541 seconds on 2.90 

GHz Intel processor (3.41 GB RAM).  

erroneous and has to be corrected using following algorithm: 

               0, if xij = 1 

                1, if xij = 0  

 Important: 
1.  Synaptic weight is kept “1” as identity element for the 

input signal. 

2. Bias updating is carried through error back-propagation 

checking whether the even parity is maintained or not.  

3. Target value of the individual neuron is ascertained through 

bias updating keeping in view the even parity requirement. 

3. EXPERIMENTAL ANALYSIS  
Experimental detail of simulation of Half Adder hardware and 

neural network circuits given in figure 2 and 4: 
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Figure 15 Experimental observation sheet 
 

Thus, the input-output characteristic of the given neural 

network circuit for Half Adder exhibit the adaptation of 

behavior of its hardware gate circuit counterpart. The hidden 

layers: Z1, Z2, and Z3 of the neural network indicate the 

actual processing of the inputs given to it, which can be had 

by calculating (inserting print line in program code) the signal 

at specific hidden node using mathematical relations shown 

for the respective node. 

Time Response of NN versus Discrete Circuit 
The time response of corresponding hardware circuit as given 

in figure 2 is 0.0000551 seconds, thus providing a lag of 

0.0000010 seconds.  

Here, we have taken n number of pairs of discrete circuit and 

neural network to evaluate the time lag between them. In each 

case the time lag obtained is: TNN < Tdiscrete, and TNN -Tdiscrete = 

δx, where x ≥ 0. 

 

 

 

 

 

 

Figure 16 Time Response Gantt Chart 

Since δa ≈ δb ≈ δn, thus it can be generalized that the discrete 

circuits are not as fast as its neural counterparts since certain 

time lag (δx) is significant. 

4. DESIGN CONSIDERATIONS 
The designing of Neural Network as simulator of digital 

circuits require certain important considerations. In this paper 

only forward pass of FFNN is considered to meet the 

requirements of the digital circuits under consideration. 

However, the designer may choose from among various 

architectures of the network as per suitability of the 

requirement, such as – BPN[8], ART NN, etc[9][10]. More 

importantly, the selection of specific network also depends on 

Xij =  
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nature and complexity level of specific circuit. Further 

consideration must be given to the suitability margin of a 

digital circuit for its neural network implementation.  

The parameters that need special emphasis while considering 

designs of such systems are: 

i. Threshold: it determines the firing limit of neuron which is 

important in achieving the output characteristics required in 

the network so designed. 

ii. Activation Function: It must properly be designed since the 

behavioral aspects of the network depend completely on this 

function. One may choose out of many standard functions too, 

such as – Step function, Sigmoid / Logistic function, 

Hyperbolic Tangent function, Gaussian Radial Basis function, 

etc. 

iii. Synaptic Weights: It is yet another important consideration 

that determines the type and magnitude of inputs required in a 

specific part of the network. Synaptic weight is a functional 

element of the network that works in conjunction with the 

threshold to make the network adopt the expected behavioral 

outcome. 

Since there is a complete paradigm shift while considering 

design conversion from digital to NN counterpart, thus the 

designer must bear in mind the followings: 

1. Only the functional aspects of a digital circuit are the 

suitable candidate for translation to its neural network 

counterpart. 

2. I/O characteristics of the digital circuit is one of the most 

important factors to be considered for proper designing. 

3. The design conversion may require proper refractor of 

digital circuit under consideration, as it is normally in case of 

larger and complex circuits. 

4. Before finalizing the design, sufficient consideration must 

be given to the relative cost factor to ascertain feasibility of 

such design conversion from digital to neural network. 

5. COST CONSIDERATION 
So far the cost consideration is there, this is supposed to cut 

down cost of hardware it replaces to minimize it down to 

lowest possible estimated level, that is, as per a rough 

estimation it is somewhere around in the ratio of 1:15 to 1: 49, 

depending on the utility of digital components used in the 

actual hardware circuit. 

6. FUTURE SCOPE OF THE WORK 
At the lab scale, it is found to be quiet suggestive as best 

alternative of discrete hardware circuits in a number of cases, 

with significant cut in response time as well as in terms of 

cost. Its design time is much less than the hardware circuits. It 

also has the qualification to stand against ageing, wear and 

tear and maintenance problems. However, it requires more 

study to be carried in specific cases to establish its synergistic 

effect and appropriateness.    

It can primarily be used to replace certain digital hardware 

circuits in an effective way[11][12][13]. Thus, in case of digital 

circuits working on principles of fuzzy system it will be more 

suitable to be used[14]. 

Since it is quiet promising with regard to both the speed and 

effective cost reduction, this conversion technique from 

discrete to neural counterpart can easily be utilized in multiple 

small as well as big circuits such as – modem, time controlled 

circuits, function controlled circuits, real time application 

circuits, etc. 
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