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ABSTRACT 
The numerical algorithms employed in the solution of 

Parabolic Partial Differential Equations are the subject of this 

paper. In particular, the Crank-Nicolson scheme, which is 

generally accepted as an improvement of the Schmidt scheme, 

is subjected not only to stability analysis, but also absolute 

relative error analysis to guide Mathematicians and Engineers 

alike to know the true performance of these numerical 

solution methods. The Heat Equation         with Dirichlet 

conditions conducting heat is analysed by employing the 

analytical method of solution where the method of Separation 

of Variables is used. The same equation is then solved with 

the Schmidt scheme as well as the Crank-Nicolson scheme 

and the results compared to the analytical solution. 

It is shown that provided stability conditions for both 

numerical schemes are not compromised, the Schmidt scheme 

is better than the Crank-Nicolson scheme at the particular 

point 80% from the conducting end of the rod. With the rod 

discretized into six points, both ends of the rod produce the 

same results for both numerical schemes. With the remaining 

four points, it is shown that three points produced values 

which showed that the Crank-Nicolson scheme is better than 

the Schmidt scheme at those three points, but not the fourth. 
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1. INTRODUCTION 
Numerical mathematics has come to the aid of 

mathematicians for centuries and has made the solution of 

otherwise unsolvable mathematical problems quite easy. This 

has been felt in almost all branches of Science especially, 

mathematics, engineering and medicine. 

When numerical mathematics reached its peak in the mid 20th 

century, among those who made their names were the German 

scholar Erhard Schmidt (forming the Schmidt method), 

English Mathematical mathematicians John Crank and Phyllis 

Nicolson (together forming the Crank-Nicolson method). 

These outstanding mathematicians of old proposed algorithms 

for solving partial differential equations numerically. 

Even though these algorithms are used widely today in almost 

all fields of Science, time has come to put these algorithms 

under the lens for informed decision to be made on them. 

Although quite some steps have been taken by various 

mathematicians to analyse these algorithms, all effort 

unfortunately focus only on their stability analysis.  

2. OBJECTIVES 
This paper among other things seeks to: 

 Apply analytical and numerical methods to solve a parabolic 

partial differential equation. 

 Compare the numerical solutions to the analytical solution 

and draw informed conclusions about the numerical 

algorithms. 

 Compare and contrast error analysis and stability analysis. 

3. METHODOLOGY 
A model problem for an aluminium rod of length L, initially 

at room temperature with one end immersed in boiling water 

and the other insulated is considered. The subsequent 

temperature distribution across the rod is computed 

analytically as well as numerically. Numerically, two 

algorithms are employed to compare and contrast their 

performance in terms of efficiency and accuracy: 

 Schmidt Scheme  

 Crank-Nicolson Scheme 

The solutions will be limited by the following conditions so as 

to achieve uniformity in solution.  

                     

Computer algebra systems will be employed to minimize 

errors if not eradicate it completely. 
 

4. JUSTIFICATION 
Heat equation has many applications in engines and structural 

mechanics. It is also used extensively in Biology where it is 

known as diffusion equation and models the diffusion of 

substances such as drugs, bacterial, or viral spread in the 

human system. This research paper will put to rest the over-

reliance on stability concepts alone in selecting appropriate 

numerical algorithms for predicting the behaviour of heat 

transfer by the heat equation. This will also help pharmacists 

in predicting the behaviour of certain drugs in the human 

body. It will also put in retrospect which numerical scheme is 

best for solving parabolic PDEs in general. 

5. ANALYTI CAL SOLUTION 
Let        be the temperature in degrees Celsius at a distance 

     from the hot end,
 
  minutes after the end at     is 

immersed. Let c be the thermal diffusivity of the rod. The 

temperature is governed by the problem 

                        
                                       

              

This problem is not correctly formulated for the separation of 

variables technique because the boundary condition at     
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is non-homogenous. Observe that the temperature profile as 

    is easily determined by setting    equal to 0 and 

ignoring the initial condition. The result is the steady-state 

temperature problem 

  
                                      

        
where       is the steady-state temperature. The solution of 

this simple problem is the constant       . Suppose we 

subtract    from   to obtain a new temperature variable, say 

             

with   in place of  , the problem becomes 

                              
                     

           

The new problem has homogenous boundary conditions. 

Simplifying the problem by scaling, a new temperature and 

time is defined by 
 

  
 

  
 

     

  
      

With these changes, the problem becomes 

                                  
                             

           

To solve the above problem, the first thing to do is to apply 

separation of variables. First, assume that the solution takes 

the form 

                
Substituting 

 
 

  
           

  

              

    
  

  
     

   

   
 

Separating the variables gives 

 

 

  

  
 

 

 

   

    

The only condition that will make the above equation 

meaningful is when both sides evaluate to a constant. 

ie   

 

 

  

  
 

 

 

   

       

where     is called the separation constant and is arbitrary.  

The equation above can be split it into the following two 

ordinary differential equations 

  

  
               

   

        

The next step is to make sure that the product solution,  

               , satisfies the boundary conditions so it is 

plugged into both expressions 

                                           

 

If the first equation is considered, it is either        or  
      . However        for every   

 

and         , ie 

the trivial solution, and a solution to any linear homogeneous 

equation, a non-trivial solution is more desirable. Therefore it 

is assumed that infact       .  

 

Likewise from the second,         to avoid the trivial 

solution. In summary  

  

  
            

   

          

                      

and note that there is not a condition for the time differential 

equation and that is not a problem. 

 
The time dependent equation can really be solved at any time, 

but since   is yet unknown, let’s hold on. Now the spatial 

problem solution is 

   

           

                          

There are three possible scenarios to deal with here. 

 

CASE 1:    

 In this case the solution to the differential equation is 

                           

Applying the first boundary condition gives 

          

Applying the second boundary condition and using the 

immediate result yields  

                   

Going after non-trivial solutions means  

                
       

 
            

Note that 2c is not needed in the eigenfunction as it will get 

absorbed into another constant that will be picked up later on. 

 

CASE 2:     

 The solution to the differential equation is 

            

Applying the boundary condition gives 

                               

So in this case the only solution is the trivial solution and so 

    is not an eigenvalue for this boundary value problem. 

CASE 3:    

 Here the solution to the differential equation is 

                             

Applying the first homogenous condition gives 

          

and applying the second gives 

                     

Assuming     and so        and this 

means            . Thus,      is the only trivial 

solution in this case. Therefore there will be no negative 

eigenvalues for this boundary value problem. 

The complete list of eigenvalues and eigenfunctions for this 

problem are then 

    
       

  
 

 

            
        

  
           

Now solving the time differential equation 
  

  
     

and note that because of simplicity,   is not substituted. 

This is a simple linear (and separable for that matter) 1st order 

differential equation and the solution is 

              
  

       
  

 
 

                  

Now that both the ordinary and partial differential equations 

are solved a final solution can be written. Note however the 
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infinitely many solutions found since there are infinitely many 

solutions (ie eigenfunctions) to the spatial problem. The 

product solutions are then 

             
        

  
  

  
       

  
 
 

 
            

The product solution is denoted    to acknowledge that each 

value of n will yield a different solution. Also note that the h 

in the solution to the time problem is changed to     to denote 

the fact that it will probably be different for each value of n as 

well and because had the    been kept with the specific 

eigenfunction it would have absorbed the c to get a single 

constant in the solution. 

The principle of Superposition is not restricted to only two 

solutions and so the following is also a solution to the partial 

differential equation 

              
        

  
  

  
       

  
 
 

 
 

   

 

Extending the solution further by taking     yields 

              
        

  
  

  
       

  
 
 

 
 

   

 

The solution for the coefficient     is given by 

   
 

 
         

        

  
   

 

 

              

 where            . By setting     and evaluating     

yields 

    
 

       
 

Hence 

         
 

       
    

        

  
  

  
       

  
 
 

 
 

   

 

Recovering the original solution and completely eliminating L 

by substitution, 

                     

 

         
 

       
    

        

  
  

  
       

  
 
 

  
 

   

 

     
   

 
  

 

      
    

        

  
  

  
       

  
 
 

  
 

   

 

 

Table 1. Solution of the Heat Equation Using the Analytical method 

                                                       

        100.0000 41.0591 7.8616 7.1536 23.1400 32.1212 

        100.0000 47.3001 15.7528 11.2460 21.5185 27.8412 

        100.0000 52.4317 22.3267 14.8744 20.6334 24.8485 

        100.0000 56.6716 27.8398 18.1226 20.3277 22.8759 

        100.0000 60.1944 32.4973 21.0581 20.4761 21.7098 

        100.0000 63.1399 36.4637 23.7349 20.9787 21.1795 

        100.0000 65.6200 39.8711 26.1968 21.7553 21.1483 

        100.0000 67.7245 42.8253 28.4787 22.7424 21.5072 

        100.0000 69.5255 45.4109 30.6089 23.8890 22.1691 

         100.0000 71.0805 47.6961 32.6104 25.1546 23.0645 

         100.0000 72.4358 49.7355 34.5014 26.5072 24.1379 
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Figure 1: A 3D-Plot of the data produced in the Analytical solution 

6. NUMERICAL SOLUTION OF THE 

HEAT EQUATION 
To solve the heat equation numerically, both the x and t 

variables need to be discretized and proceed to deal with the 

x-variable employing finite difference approximation. This 

concept according to these great schools of thought Schmidt 

and Crank-Nicolson is presented in this paper. 

6.1 Schmidt Scheme  
When Dirichlet boundary conditions are imposed, those 

values must be specified at the boundary points. The first-

order forward-time second-order centred-space (FTSC) 

approximation of the heat equation is given by 

  
   

      
 

         
 
      

 
 

 

6.1.1 Stability of Schmidt Scheme Using Von 

Neumann/Fourier Method 

 
 

  
   

      
 

         
 
      

 
                           

   
   

       
 

          
 
       

 
                           

Let   
    

 
    

 
  

(1)-(2)    
         

          
       

  
                  

Von Neumann considers the homogenous part of the 

difference equation 

    
         

          
       

                          

Using Fourier series, the n-component solution of the 

difference scheme is 

  
                                                                  

Substituting (4) in (3) and simplifying yields 

                                                                     

With the following trigonometric identities 

     
 

 
                  

 

 
 

Equation (5) then becomes 

            
  

 
 

For the original error not to grow, the amplification factor is 

restricted as   
        

 

          
  

 
    

As sine function has the range            

             
  

 
     

            
  

 
    

But            

 
     

                           
 

 
   

This confirms that provided  
    

 

 
 
then the Schmidt 

scheme will be stable, otherwise it will be unstable. In other 

words, the Schmidt scheme is conditionally stable.  

For the purpose of this paper, r is set to 0.5 to achieve 

stability. The table below shows the resulting computations 

using the Schmidt scheme. 
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Table 2. Solution of the Heat Equation using the Schmidt Scheme 

                                                       

        100.0000 20.0000 20.0000 20.0000 20.0000 20.0000 

        100.0000 40.0000 20.0000 20.0000 20.0000 20.0000 

        100.0000 50.0000 25.0000 20.0000 20.0000 20.0000 

        100.0000 56.2500 30.0000 21.2500 20.0000 20.0000 

        100.0000 60.6250 34.3750 23.1250 20.3125 20.0000 

        100.0000 63.9063 38.1250 25.2344 20.9375 20.0000 

        100.0000 66.4844 41.3477 27.3828 21.7773 20.0000 

        100.0000 68.5791 44.1406 29.4727 22.7344 20.0000 

        100.0000 70.3247 46.5833 31.4551 23.7354 20.0000 

         100.0000 71.8082 48.7366 33.3072 24.7314 20.0000 

         100.0000 73.0882 50.6471 35.0206 25.6925 20.0000 
 

 

 
 

 

Figure 2: A 3D-Plot of the data produced by the Schmidt scheme with r=0.5 

 

 

 

6.2 Cranch Nicolson Scheme 
      

   
         

   
      

   

      
 

         
 
      

 
 

 

6.2.1 Stability Analysis of the Crank-Nicolson 

Scheme Using Von Neumann/Fourier Method 

      
   

         
   

      
   

      
 

         
 
      

 
            

       
   

          
   

       
   

       
 

          
 
       

 
            

 

Let   
    

 
    

 
 

              
            

         
 

      
          

        
              

 

Using Fourier series, the n-component solution of the 

difference scheme is 

  
                                                                   

Substituting (d) in (c) and simplifying yields 

                         

                                

With the following trigonometric identities 

     
 

 
                  

 

 
 

Equation (f) then becomes 

    
          

 

          
 

 

Guided by the fact that         and           
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This shows that the Crank-Nicolson scheme is 

unconditionally stable but for the sake of uniformity and 

comparison,       is chosen. The result of the Crank-

Nicolson scheme computation is shown in the table below: 

 

 

Table 3. Solution of the Heat Equation Using the Crank-Nicolson Scheme 

                                                 

        100.0000 20.0000 20.0000 20.0000 20.0000 0.0000 

        100.0000 36.1612 21.6122 19.9608 17.9961 20.0000 

        100.0000 46.3832 25.2524 20.3454 18.8283 20.0000 

        100.0000 53.2854 29.3022 21.4936 19.4809 20.0000 

        100.0000 58.2207 33.1921 23.1086 20.1487 20.0000 

        100.0000 61.9253 36.737 24.9626 20.8964 20.0000 

        100.0000 64.8192 39.9033 26.9036 21.7244 20.0000 

        100.0000 67.1532 42.7133 28.8372 22.6087 20.0000 

        100.0000 69.0838 45.2061 30.7071 23.5197 20.0000 

         100.0000 70.7131 47.4223 32.4821 24.4307 20.0000 

         100.0000 72.1100 49.3985 34.1466 25.3213 20.0000 
 

Figure 3: A 3D-Plot of the data produced in the Crank-Nicolson scheme with r = 0.5. 
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7. DATA ANALYSIS  

Table 4. Relative Errors in Numerical Approximations Using the Schmidt Scheme 

          

     
 

         

     
 

         

     
 

         

     
 

         

     
 

         

     
 

        0.0000 0.5129 1.5440 1.7958 0.1357 0.3774 

        0.0000 0.1543 0.2696 0.7784 0.0706 0.2816 

        0.0000 0.0464 0.1197 0.3446 0.0307 0.1951 

        0.0000 0.0074 0.0776 0.1726 0.0161 0.1257 

        0.0000 0.0072 0.0578 0.0982 0.0080 0.0788 

        0.0000 0.0121 0.0456 0.0632 0.0020 0.0557 

        0.0000 0.0132 0.0370 0.0453 0.0010 0.0543 

        0.0000 0.0126 0.0307 0.0349 0.0004 0.0701 

        0.0000 0.0115 0.0258 0.0276 0.0064 0.0978 

         0.0000 0.0102 0.0218 0.0214 0.0168 0.1329 

         0.0000 0.0090 0.0183 0.0150 0.0307 0.1714 

Figure 4: A 3D-Plot of the absolute relative error with the Schmidt scheme 

 

 

Table 5. Relative Errors in Numerical Approximations Using the Crank-Nicolson Scheme

           

     
 

          

     
 

          

     
 

          

     
 

          

     
 

          

     
 

        0.0000 0.5129 1.5440 1.7958 0.1357 1.0000 

        0.0000 0.2355 0.3720 0.7749 0.1637 0.2816 

        0.0000 0.1154 0.1310 0.3678 0.0875 0.1951 

        0.0000 0.0598 0.0525 0.1860 0.0417 0.1257 

        0.0000 0.0328 0.0214 0.0974 0.0160 0.0788 

        0.0000 0.0192 0.0075 0.0517 0.0039 0.0557 

        0.0000 0.0122 0.0008 0.0270 0.0014 0.0543 

        0.0000 0.0084 0.0026 0.0126 0.0059 0.0701 

        0.0000 0.0064 0.0045 0.0032 0.0155 0.0978 

         0.0000 0.0052 0.0057 0.0039 0.0288 0.1329 

         0.0000 0.0045 0.0068 0.0103 0.0447 0.1714 
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Figure 5: A 3D Plot of the Absolute Relative Error with the Crank-Nicolson scheme. 
 

 

8. DISCUSSION OF RESULTS 
For an aluminium rod at room temperature whose one end is 

insulated and the other immersed in boiling water, one would 

expect that with time the temperature will grow uniformly 

through the rod until such a time that the temperature 

distribution is the same across the whole rod. Even though, 

the rod was not given enough time to undergo such a 

transformation, that is, with in a time span of        ,
 
it 

was still evidently clear that the temperature distribution was 

actually growing across the rod. 

For the analytical solution, the temperature distribution at 

         , for         , fell below the room 

temperature of the rod, which was quite unusual. It begun to 

improve when            , and only at       when 

temperature actually fell below room temperature. For 

         and       something unusual was happening. 

All the temperature at that point was actually less than the 

insulated end of the rod. 

The aluminium rod begun to exhibit its true conductivity 

characteristics from       , when there was truly 

uniformity in heat transfer. 

The Schmidt scheme conforms to initial conditions of the rod 

perfectly. Heat only begins to flow at        when the 

temperature doubled at the point       while other parts of 

the rod remained at room temperature. The temperature 

gradually increases through the rod until        when all 

parts of the rod had experience temperature rise. This time 

conforms to the time the rod exhibits its conductivity 

properties. 

The initial conditions of the rod is perfectly obeyed by the 

Crank-Nicolson method with the exception that        . 

This defeats the fact that          . This initial condition 

is however satisfied from        whiles           

experiences a decrease in temperature. This negative 

phenomenon decreases in the range            . The 

conductivity property of the rod then starts from       . 

Generally, the values obtained with the Schmidt and the 

Crank-Nicolson schemes compare favourably with values 

obtained with the analytical method of solution 

           
   

 
 

 

      
    

        

 
  

  
       

 
 
 
   

     

. The true value for the final solution for the Analytical, 

Schmidt, and Crank-Nicolson schemes is shown in Table 6; 
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Table 6. True Values of the Various Methods to the Heat Equatio

 

The above table clearly shows how close the numerical 

solutions with both the Schmidt scheme and the Crank-

Nicolson scheme are to the Analytical solution. Shear  

 

 

 

observation of the above table shows which numerical scheme 

is closer to the analytical scheme. But the best guide is the 

result from the absolute relative errors of the two numerical 

schemes, which is shown in table 7. 

 

Table 7. Absolute Relative Error for the Final Solution of the Heat Equation. 

                                                  

Schmidt Scheme     0.0000 0.0090 0.0183 0.0150 0.0307 0.1714 

Crank-Nicolson Scheme     0.0000 0.0045 0.0068 0.0103 0.0447 0.1714 

 

Both schemes’ absolute relative error at the boundary points, 

that is,     and     are the same. In the range       
   , the Crank-Nicolson scheme is the best representation of 

the Analytical solution. However for      , the Schmidt 

scheme seems to perform better than the Crank-Nicolson 

scheme. 

However on a scale of 100, the Crank-Nicolson scheme will 

occupy 75 while the Schmidt scheme will occupy 25. This 

alone cannot however inform the choice of one over the other 

because if one considers a particular point alone on the rod, 

the Schmidt may be better than the Crank-Nicolson scheme. 

9. CONCLUSIONS 
 At all discrete  points of the rod       at the given 

time frame        , the analytical solution fails to 

conform to the initial conditions of the problem. This is so 

because the temperature of the rod at the insulated end at time 

    is supposed to be     whiles the remaining points 

were supposed to be very close to the initial temperature with 

the exception of the end immersed in boiling water. 

 Ironically, the temperature at point        was 

somehow closer to the room temperature than at the point 

      . This is surprising since heat transferred from the 

immersed end of the rod actually reduces as it gets to the 

insulated end. The analytical method however suggests that 

within the range             temperature was rising 

instead of falling. There was however exception for the time 

frame             at points             on the rod 

where the behaviour conducting property of the rod was 

obeyed. 

 The Schmidt scheme obeys and conforms perfectly with 

the initial conditions of the rod, maintaining the initial 

temperature of     at all points of the rod with the exception 

of the immersed end which assumes the temperature of the 

boiling water. This presents the Schmidt scheme as a huge 

improvement of the analytical method. 

 

 

 

 The Crank-Nicolson scheme complies well with the initial 

conditions except at the boundary when it is supposed to be 

          but the numerical solution actually gives   . 

 Per the Analytical method, the rod’s conductivity drops in 

the range             for the time             

before it rises again. For the Crank-Nicolson scheme, the 

anomaly in heat conduction is seen at        in the time 

interval             where as  the Schmidt scheme had 

no anomaly. 

 With r specially chosen such that the stability of both the 

Schmidt and Crank-Nicolson schemes is not compromised, 

the claim of superiority of one scheme over the other is far 

fetched. Infact superiority can only be claimed with respect to 

a particular discrete point in question.  

 The Schmidt scheme has shown to be more reliable than 

the Crank-Nicolson scheme which is strangely seen as an 

improvement of the Schmidt scheme. 
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Analytical Scheme     100.0000 72.4358 49.7355 34.5014 26.5072 24.1379 

Schmidt Scheme     100.0000 73.0882 50.6471 35.0206 25.6925 20.0000 

Crank-Nicolson Scheme     100.0000 72.1100 49.3985 34.1466 25.3213 20.0000 
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