
International Journal of Computer Applications (0975 – 8887)

Volume 79 – No4, October 2013

24

Improved Queuing Mechanism for Hybrid Load

Balancing Scheme in Interactive Application

Sampada S. Kalmankar

Pune University
Pimpri Chinchwad College Of

Engineering, Pune, India

 Sudarshan S. Deshmukh
Pune University

Pimpri Chinchwad College Of
engineering, Pune, India

ABSTRACT

Distributed interactive applications (DIA) are becoming

popular in the recent years. Examples of DIAs include shared

workspaces, networked games, distributed whiteboards,

distributed architectural design, virtual classrooms,

telemedicine and simulation. The essential aspect of DIAs is

that sufficient information is communicated between

participants so that the state of the application remains

consistent for all participants at all times. Consistent refers to

the state of all the systems. If nodes have inaccurate

information about the state of other nodes, due to

communication delays between nodes, this could result in

unnecessary periodic exchange of loads among them, due to

which, certain nodes may become idle while loads are in

transit, this would result in the prolonged total completion

time of a load.

Hence load balancing becomes more challenging in

interactive applications as load variation is very large and the

load on each server may change continuously over time, when

the server takes the load migration decision, the load status

collected from other servers may not be valid. This will affect

the performance, of the load balancing algorithms. All the

existing methods neglect the effect of network delay among

the servers on the load balancing solutions. In this paper, due

to the change in the load of the server, network delay would

affect the performance of the load balancing algorithm. A new

priority packet scheduling scheme is proposed in which load

requesting Interactive application packets are placed in the

highest priority queue and the processing of packets at other

queue. Simulation results show that the proposed buffered

priority packet scheduling scheme outperforms AODV with

single queue for the load requesting messages of Interactive

application in term of end-to-end data transmission delay.

General Terms

Load balance, efficient wireless protocol AODV.

Keywords

Buffer, Delay, Distributed system, Load balancing, Multilevel

Queue, Packet scheduling, Priority Scheduling.

1. INTRODUCTION
A distributed system is a system where the information

processing is distributed over several computers rather than

confined to a single machine. This allows users to interact

among themselves through networks. Applications of DIAs

include shared workspaces, Automated Banking Systems,

networked games, distributed whiteboards, distributed

architectural design, Global Positioning Systems, virtual

classrooms, telemedicine and simulation, Tracking Roaming

Cellular Telephones, Research and development project.

Distributed Interactive Application or DIA is a group of users

connected via a network to interact synchronously with a

shared application state. An environment that hosts an

application involving cooperation and communication

between remote users over a communications network will be

called a Distributed Interactive Application or DIA. In these

Distributed System Applications load dynamics is much

higher than the other applications. These are the class of

computer programs that involve multiple simultaneous users

located at geographically diverse locations. As a result,

performance of Load balancing in delay filled environments

depends upon the selection of nodes and the amount of the

load that are allowed between nodes to exchange. In the other

case where network delays are very large, it would be easier

to reduce the amount of load exchange so that the time is not

wasted while loads are in transit. As the load dynamics is high

for the DIA, the essential aspect of DIAs is that sufficient

information is communicated between participants so that the

state of the application remains consistent for all participants

at all times. Networks have the limitations in terms of

bandwidth and latency. Latency is nothing but lag

experienced, due to which the real-time interactive experience

of users within DIAs is destroyed. One of the experienced

limitations is, if nodes have inaccurate information about the

state of other nodes, due to communication delays between

nodes, this could result in unnecessary periodic exchange of

loads among them, due to which, certain nodes may become

idle while loads are in transit, this would result in the

prolonged total completion time of a load.

Several approaches and techniques have been studied and

developed to overcome the effects of latency. Most of the

techniques focus on reducing the quantity of data that must be

transmitted to maintain consistency between users of the DIA

else they focus on the increasing the processing power of the

participating nodes and the divulgence of higher network

bandwidth.

The motivation the study is to minimize the delay of networks

for DIA where there is a high demand for the quicker

communication. The attempt to improve the utilization of

networks can be hardware and software approaches. In this

paper, an approach at the software level is discussed and the

delay of the load requesting messages of DIA is minimized.

This algorithm is based on the decentralized approach; it can

also be applied to the centralized approach. The experimental

results of proposed algorithm shows that the proposed

schemes can significantly improve the performance by

minimizing the delay and also any of the efficient load

balancing algorithms implemented on it.

2. RELATED WORK
A number of load-balancing schemes have been developed,

considering a variety of resources, including the CPU,

memory, disk I/O, or a combination of CPU and memory

resources. These approaches have proven effective in

increasing the utilization of resources, assuming that network

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No4, October 2013

25

interconnects is not potential bottlenecks [1].There are many

researches focusing on the issue of distributed load balancing

for CPU and memory resources. Harchol-Balter and Downey

[2] developed a CPU-based pre-emptive migration policy that

was shown to be more efficient than non pre-emptive

migration policies. Zhang et al. [3] studied load-sharing

policies that consider both CPU and memory services among

the nodes. Even though these schemes can effectively utilize

memory and/or CPU resources at each node in the system,

nobody have considered the effective usage of I/O or network

resources. I/O-aware load balancing scheme is proposed by

Xiao Qin to meet the needs of a cluster system with a variety

of workload conditions [4]. This approach is able to balance

implicit disk I/O load as well as that of explicit disk I/O.

All the above approaches are effective under workloads

without high communication intensity and balancing the

communication load is not considered. A communication-

sensitive load balancer has been proposed by Cruz and Park

[5]. In Communication aware load balancing scheme which is

different from their work in this scheme attempts to

simultaneously balance two different kinds of I/O load,

namely, communication and disk I/O [1]. Penmatsa and

Chronopoulos [6] took into account communication delay and

considered dynamic load balancing with the assumption that

all jobs have the same execution time.

Since the repartitioning from scratch using traditional graph

partitioning methods is an overhead, methods based on

refining existing partitions and migrating extra loads among

the processors have been proposed for finite element analysis

[7]. These methods minimize the overall overheads. The load

migration problem can be represent as an optimization

problem with an intention to minimize both the load

difference among servers and the amount of load needed to be

migrated. The idea that models the incremental graph

partitioning problem as a linear programming problem, and

optimization-based load balancing method for multi-server

DIA is proposed in [8]. In this method the loads of a DVE are

represented using a connected graph, where nodes

representing a user and edge representing the communication

cost between the corresponding two nodes the load migrations

are performed among adjacent partitions so as to minimize the

imbalance of load among the partitions and the inter-partition

communication costs of the reassigned nodes. As it has a very

high computational cost.

In decentralized approach is that there are the local servers

which are assigned to manage the partitions, these perform the

load balancing process. Each server will determine the

amount of load to be transferred its neighbour servers. In [9],

a method is proposed where when a server is overloaded, it

uses the load information of its neighbouring servers to

determine the amount of load to transfer to each of the

neighbour servers. Hence the load balancing solutions are

only be considered as temporary and the overloaded server

may quickly become overloaded again. In [10], a method is

proposed to address the limitation of [9] by considering more

servers for load transfer. If the neighbouring servers are

overloaded then cannot transfer its entire extra load hence it

will consider the neighbour servers of its available neighbour

servers and so on. Although this method may produce better

load balancing solutions, it is slower due to the extra

communication and computation overheads.

In queuing analysis, there have been some works that consider

delays in the design of the load balancing algorithms. In

queuing analysis, [11] conduct extensive analysis and reveal

that computational delays and load-transfer delays can

significantly degrade the performance of load balancing

algorithms that do not account for any delays. Further

extension of this work is proposed to consider the random

arrivals of the external tasks. Both of them try to minimize the

task completion time due to network and/or computational

delays. On the contrary, [12] they have shown that when the

local servers have received the load status from the central

server after some network delay, the loads of the local servers

may have a different one and the load balancing solutions may

no longer be accurate as load dynamics is much higher. The

effect of delay in the queue is shown in [13]. A deterministic

dynamic nonlinear time-delay system is developed to model

load balancing in a cluster of computer nodes used for parallel

computations.

Several approaches and techniques are proposed and

developed to overcome the effects of latency. Most of these

focus on reducing the amount of data that must be transmitted

to maintain consistency between users of the DIA. The most

widely used algorithm for achieving this is dead reckoning,

which predicts the future positions of users over a short term

interval [14]. Dead reckoning reduces the number of packets

that must be transmitted to maintain state consistency in the

following way. Each node uses dead reckoning to determine

an entity’s position. At the entity’s home node, a comparison

is performed between the actual entity’s position and the

position provided by the dead reckoning algorithm. When the

difference between these positions exceeds the threshold

value an update packet with the correct entity position is

generated and transmitted to all other nodes.

In this paper the concept of multi level queuing is used. In

[15] it is found that if queue priorities are added in the

scheduling intelligently then performance is improved. Data

model helps choosing appropriate preferences. In [16], they

have proposed a three class priority packet scheduling

scheme. Real-time packets are placed into the highest priority

queue and can pre-empt the processing of packets at other

queues. Other packets placed based on the location into two

other queues. Simulation results show that the proposed three-

class priority packet scheduling scheme outperforms FCFS

and multi-level queue schedulers in terms of end-to-end data

transmission delay.

3. PROPOSED WORK
 In the First Paper, [1] a behavioral model for parallel

applications is introduced with large requirements of network,

CPU, and disk I/O resources. Furthermore, they have

addressed the issue of improving the effective bandwidth of

networks on clusters at the software level without requiring

any additional hardware. Specifically, a dynamic

communication-aware load balancing scheme, referred to as

COM-aware, for non dedicated clusters where the resources

of the cluster are shared among multiple parallel applications

being executed concurrently. A simple and efficient means to

measure communication load imposed by processes has been

presented.

From this paper it is concluded that the focus is on the

improvement of the network resources as most of the

researches focus on the memory, I/O or CPU resources. Most

of the researches focus on the usage of bandwidth else the

reduction of the data transfer else increased processor speed

leaving opportunity to improve the effective bandwidth of

networks on clusters running parallel applications.

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No4, October 2013

26

In the second paper [12], A distributed virtual environment

(DVE) allows users to interact with virtual objects or among

themselves through networks. As the number of concurrent

user’s increases, these systems may reach their performance

bottleneck and no longer provide the quality of service

required, typically in terms of response time. From this paper,

the difficulty that due to communication delays among servers

is discussed, the load balancing process may be using

outdated load information from local servers to compute the

load migration data flows, while the local servers may be

using outdated balancing flows to conduct load migration, this

would significantly affect the performance of the load

balancing algorithm. To address this problem, two methods

are proposed: uniform adjustment scheme and adaptive

adjustment scheme.

In the third paper [13], the main objective of this paper is to

analyze the effects of delays in the exchange of information

among computational Element’s, and the constraints these

effects impose on the design of a load balancing strategy. A

deterministic dynamic nonlinear time-delay system is

developed to model load balancing. The model is shown to be

self consistent in that the queue lengths cannot go negative

and that the total number of tasks in all the queues and the

network is conserved. From this paper it is concluded that

there is a need to minimize the queuing delay. Comparison of

the above studied papers is as shown below [17].

By studying the above papers the problem statement is that

there is a scope to improve the performance of network

resource for the Distributed Interactive Applications where

the load dynamics is much higher. If the load dynamics on

one particular node is more than the load migration time then

there is a need to reduce the load dynamics which is due to the

property of the interactive application, which may not be

possible as this property is inherent property of the interactive

application. To know that most of the researchers have done

their work on communication load balancing mechanisms but

that was implemented for common applications only.

Further for Interactive applications latency should be in lined

with the degree of load change, from literature survey study it

is found that latency for a network has high impact of

software overhead then delay of a network.

Some researches consider the load balancing approaches for

interactive applications but none have considered load index

as a parameter for load. As per my knowledge, there is no

work done on communication aware load balancing for

interactive applications. All existing mechanism addresses

reduction network delay as a parameter of study but here it is

considered that software overhead for reducing it.

3.1 Features
 Load Balancing

The computing power of any distributed system can be

realized by allowing its constituent computational elements

(CEs), or nodes, to work cooperatively so that large loads are

allocated among them in a fair manner. Load distribution

among CEs is called load balancing (LB). An effective LB

policy ensures optimal use of the distributed resource hereby

no CE remains in an idle state while any their CE is being

utilized.

 Interactive Application

Distributed Interactive Applications or DIAs are essentially a

class of computer programs that involve multiple

simultaneous users located at geographically diverse locations

who are all connected by a communications network and who

cooperate with each other in a shared virtual environment to

accomplish a task or set of tasks. The essential aspect of DIAs

is that sufficient information is communicated between

participants so that the state of the application remains

consistent for all participants at all times. The single biggest

obstacle to achieving consistency is the very technology that

facilitates the DIAs the network itself.

 Latency

Network latency is simply defined as the time delay observed

as data transmits from one point to another. Latency is a

measure of time delay experienced in a system, and also

depends on the system and the time being measured. Latency

is measured from the start of exchange of a data unit at the

application layer of one participating node to the end of

exchange of the same data unit at the application layer of

another node.

The total latency can be calculated as below.

1

1 1 1 1

n n n n
i i i i

total process propogation queue network

i i i i

(1)

Where total
 refers to Total latency.

 N is the number of nodes, including source and destination

nodes;

i

process
 is the processing delay

1i

propogation
 is the propagation delay

i

queue
 is the queuing delay.

i

network
 is the network delay.

3.2 Constraints & Assumptions
 The load generated is communication specific.

 Network delays for load migration are not considered.

 Latency cannot be reduced beyond certain value.

 Distance between the nodes parameter is not considered.

 Load dynamics cannot be reduced for interactive

applications beyond certain level.

 The entire client and the server are considered to be

synchronized.

4. PROGRAMMER’S DESIGN

4.1 Key problems in communication
 The communication hardware includes node memory and

I/O architecture, network interface and the network.

 The communication software, includes protocol structure

and the algorithms

The main focus is on the software overhead. Software

overhead dominates communication time. It follows that

communication time cannot be significantly reduced, even

with very efficient network and NIC, if there is no efficient

communication software. The three sources of software

overhead are:

 The software needs to traverse several protocol layers. A

common technique to reduce this type of overhead is to

simplify the protocol structure.

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No4, October 2013

27

 Message communication may involve a number of

memory copying instances, which call for a zero-copy

protocol.

 Communication software may cross protection boundaries

several times in transmitting a message.

4.2 Latency Reduction Methods
 The packet processing delay can be minimized educed in

a number of ways: by reducing the quantity of data on the

network, by increasing the processing power at routers and

source/destination nodes and by using more efficient

processing algorithms.

There is the need to reduce the queuing delay by giving the

highest priority to the DI Applications, which will reduce the

delay in the queues.

5. PROPOSED ALGORITHM
In the proposed scheme, the idea is that the highest priority IA

requests are processed with a minimum possible delay. They

are placed in non-pre-emptive priority1 tasks queue and can

pre-empt the currently running data. Thus, they are expected

not to reserve a queue location for a longer period of time.

Moreover, the number of pre-emption’s will be low since IA

requests are generally small in number. On the other hand,

non-real-time packets that arrive from the sensor nodes at

lower level are placed in the pre-emptive queue.

IA request Packets are usually processed in FCFS fashion.

Each packet has flag as a REQ packet which indicates that it

is a request packet and also the node number which indicates

the node whose current load is requested. There is a load

table maintained at the gateway which consists of the node

number and the current load of that particular load. By

checking the node number and the current load the gateway

will reply with the load on the particular requested node.

5.1 Pseudocode
Algorithm: Two queue priority data scheduling scheme

while packetk,i received by gatewayscheduleri at level k i.e.,

at l(k) do

if packetk, i, type = 0 (i.e lbal type) then

 Buffering i.e two buffers are created one for IA

request packet and other for the normal requests.

 if flag=IAR && nodei // nodei indicates the load of i

 is requested

 put packetk, in bp1 queue/buffer // IA request

task

 Packets in this buffer1 are considered for

 processing

 Table of loads is accessed nodei load is replied

 back to the requested node.

 else

 put taskk, i, in bp2 queue // non IA request task

or data packets

 end if

 Assume, the duration of a timeslot at l(k)← t(k)

 Load requesting time of nodei at l(k) ←

 loadReqTimek(t)

 LoadReplyTime after Requesting,

 t1(k) ← t(k) + Delayk(t)

 Let, total load request packets for nodei at time k l(k)

← nk(bp1)

 All these requests are processed at the gateway.

 Simultaneous routing of data packets is done by the

 gateway.

end if

end while

5.2 Proposed Architecture
 In the proposed architecture will be consisting of the

central server and the number of local servers and the number

of clients served by the local servers. These clients will be

running with the interactive applications whose load will be

continuously varying. In between the central server and the

local server there will be a gateway in which the proposed

scheduling algorithm is implemented. Following are the

functions of the scheduler algorithm

 Scheduler needs to decide whether the incoming task is an

interactive or a common application.

 Scheduler will maintain two buffers one with the highest

priority for the request packets and another for the data

packets.

 Scheduler processes the request packet and the data

packets are routed further.

Following figure 1 shows the architecture of the proposed

system.

6. EXPERIMENTAL RESULTS
AODV uses routing tables, one route per destination, and

destination sequence numbers, a method to avoid loops and to

determine freshness of routes. By studying the different

papers it is seen that AODV is better than the DSR, DSDV, I-

DSDV, DYMO, OLSR, ZRP. The average end-to-end delay

of a data packet is the time interval when a data packet

generated from Constant Bit Rate source completely received

to the application layer of the destination.

Fig 1: Architecture of the Proposed System

AODV outperforms when compared with the DSDV and I-

DSDV as shown in the above graph Fig 7. When the AODV

is compared with the other routing protocols i.e ZRP,OLSR,

DSR and DYMO even then the AODV outperforms in terms

of End-to-End Delay. This means that there is a minimum

delay when AODV protocol is used. This is shown in the

below fig 2.

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No4, October 2013

28

Fig 2: End to End Delay

In [18] it is shown that AODV didn’t produce so much delay

even the number of nodes increased and also if there is

varying speed, AODV produces less End to End Delay. As

seen in the above results the delay is end to end minimum for

AODV, the performance of AODV protocol is improved by

inserting a new queue. In this work It is considered that

initially 20 clients and the gateway of the server and one

server.

Fig 3: End to End Delay

The gateway have got 2 buffers one will be dedicated to the

interactive application load requests and the other one will be

for the rest of the requests coming in which are to be routed to

the server. The IA requests coming in are processed by the

gateway itself by accessing a table stored on it which consists

of the load status.

Simulations on Network simulator is carried out and have

defined the parameters for the performance evaluation of

AODV and LBAL routing protocols under different pause

time while the number of nodes is fixed. The simulation

parameters are summarized in table I. The pause time are set

to 0, 30, 60, 90, 120, 150, 180,210,240 and 270 second.

6.1 Performance Matrix:
In actual real time there are only 20% of the tasks are of load

requesting. Hence only 20% of the load requesting tasks are

generated. These requests consists of the node number of

which the load is requested, the type of the message whether it

is a requesting or the data transfer.

Here a new protocol named as “LBAL” is implemented,

which actually is a improved AODV for DIA. Here the

performance is measured by executing the simulation for 25

times. Whenever a node requests for the load of the other

node at t then the time spent for the reaching the requested

load may be t+d where d is the delay. During this time if the

load is changed then the information got by the node will be

incorrect so the DIA system may be inconsistent.

Hence there is a need to reduce the delay such that the load

status received by the requester and actual load is same.

Firstly AODV is considered as a routing protocol and then the

LBAL as a routing protocol. The results which are got showed

83% improvement then AODV with the consideration of the

load requested and the actual load. Following Table III shows

the results. Here when request1 is arrived for requesting the

load of some other node the load that particular instance was

1, using LBAL the load responded was also 1, whereas using

AODV the load responded was 2. Hence there might be a

inconsistent state as the load migrations takes place using

these load status. This goes on till number of requests here

only few requests are tabulated.

This improvement is because there is no queuing delay as it is

minimized almost to 0.

Requests

LBAL AODV

Load

requested

Actual

load

Load

requested

Actual

load

1 1 1 1 2

2 46 46 48 63

3 47 47 1 64

4 47 47 64 127

5 47 47 47 64

6 14 14 128 127

7 128 128 63 158

8 146 146 379 422

9 144 144 231 294

10 245 245 400 463

Following Fig 4 and 5 show the graphs of the load status for

AODV and LBAL.

The average end-to-end delay of a data packet is the time

interval when a data packet generated and the request is

received. It is seen that the end to end delay is zero then delay

increases as the traffic increases. A table is maintained at the

gateway which is updated at regular intervals. Here updation

is done at every 0.6sec for AODV. For LBAL It is set to 0.6

then it was too slow hence it is reduced to 0.3 by which results

are better.

Fig 4: AODV Load Status

0

200

400

600

1 3 5 7 9 11 13 15 17 19 21 23

A
ct

u
al

 L
o

ad

Load Requested

AODV Load Request

Load
requetsed

Actual load

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No4, October 2013

29

Fig 5: LBAL Load Status

Since the delay is minimized, It is seen that throughput is also

increased by 83%. This can be seen in below fig 6.

Fig 6: End to End Delay

As the end to end delay is minimized the turnaround time is

also minimized. It is seen that when compared to AODV

turnaround is minimized and then there is more than 100%

improvement. By this It is concluded that whenever the load

request is sent and response received is same using LBAL

protocol. Due to which the load balancing algorithm ensured

that the load is migrated to the under loaded node only, hence

it consistency is maintained.

Fig 7: Throughput

7. CONCLUSION
Due to communication delays among servers, the load

balancing process may be using outdated load information to

conduct load migration. This would significantly affect the

performance of the load balancing algorithm and also create

inconsistency in the system as the load balancing decisions

are taken based on these updates.

For the interactive applications latency should be in lined with

the degree of load change, from literature survey study it is

seen that latency for a network has high impact of software

overhead then delay of a network. Hence in proposed

algorithm the queuing delay is minimized by giving the

highest priority to the load requesting Interactive applications.

The proposed algorithm improves the performance by 83%

that is delay is minimized.

8. REFERENCES
[1] Xiao Qin, Hong Jiang, Adam Manzanares, Xiaojun Ruan

and Shu Yin, IEEE “Communication-Aware Load

Balancing for Parallel Applications on Clusters” IEEE

TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 1,

JANUARY 2010.

[2] M. Harchol-Balter and A.B. Downey, “Exploiting

Process Lifetime Distributions for Dynamic Load

Balancing,” ACM Trans. Computer Systems, vol. 15, no.

3, pp. 253-285, 1997.

[3] I. S. X.-D. Zhang, L. Xiao and Y.-X. Qu, “Improving

Distributed Workload Performance by Sharing Both

CPU and Memory -Resources,” Proc. 20th Int’l Conf.

Distributed Computing Systems (ICDCS ’00), pp. 233-

241, 2000.

[4] Xiao Qin, Hong Jiang Improving Effective Bandwidth of

Networks on Clusters using Load Balancing for

Communication-Intensive Applications, Proceedings of

the 24th IEEE International Performance, Computing,

and Communications Conference (IPCCC 2005).

[5] J. Cruz and K. Park, “Towards Communication-Sensitive

Load Balancing,” Proc. 21st Int’l Conf. Distributed

Computing Systems, pp. 731-734, Apr. 2001.

[6] Satish Penmatsa and Anthony T.

Chronopoulos,”Dynamic Multi-User Load Balancing in

Distributed Systems”, 1-4244-0910-1/07/$20.00 c 2007

IEEE.

[7] Y. Hu, R. Blake, and D. Emerson. An optimal migration

algorithm for dynamic load balancing. Concurrency:

Practice and Experience, 10(6):467–483, 1998.

[8] J. Lui and M. Chan. An efficient partitioning algorithm

for distributed virtual environment systems. IEEE Trans.

on Parallel and Distributed Systems, 13(3):193–211,

2002.

[9] B. Ng, A. Si, R. Lau, and F. Li. A multi-server

architecture for distributed virtual walkthrough. In Proc.

ACM VRST, pages 163–170, 2002

[10] K. Lee and D. Lee. A scalable dynamic load distribution

scheme for multi-server distributed virtual environment

systems with highly-skewed user distribution. In Proc.

ACM VRST, pages 160–168, 2003.

[11] J. Douglas Birdwell, J. Chiasson, Z. Tang, C. Abdallah,

M. Hayat, and T. Wang. Dynamic time delay models for

load balancing. Part I: Deterministic models. In Proc.

CNRS-NSF Workshop: Advances in Control of Time-

Delay System, 2003.

[12] Yunhua Deng and Rynson W.H. Lau. On Delay

Adjustment for Dynamic Load Balancing in Distributed

Virtual Environments, IEEE TRANSACTIONS ON

0

100

200

300

400

20 80 140 200 260 320 380 440

A
ct

u
al

 L
o

ad

Load Requested

LBAL Load Request

Load
requetsed
Actual load

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15

En
d

 t
o

 e
n

d
 d

e
la

y

Requests

End to End Delay

LBAL

AODV

0

100

200

300

1 3 5 7 9 11 13 15

d
e

la
y

Requests

Throughput

LBAL

AODV

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No4, October 2013

30

VISUALIZATION AND COMPUTER GRAPHICS,

VOL. 18, NO. 4, APRIL 2012.

[13] John Chiasson, Zhong Tang, Jean Ghanem, Chaouki T.

Abdallah, J. Douglas Birdwell, Majeed M. Hayat, and

Henry Jérez, “The Effect of Time Delays on the Stability

of Load Balancing Algorithms for Parallel

Computations”, IEEE TRANSACTIONS ON

CONTROL SYSTEMS TECHNOLOGY, VOL. 13, NO.

6, NOVEMBER 2005

[14] Aaron McCoy, Tomás Ward, Seámus McLoone and

Declan Delaney, “Formalizing a Framework for

Dynamic Hybrid Strategy Models in Distributed

Interactive Applications” IEE Irish Signals and Systems

Conference, Dublin, June 28-30, 2006.

[15] Diwakar SHUKLA, Shweta OJHA, Saurabh JAIN “Data

Model Approach And Markov Chain Based Analysis Of

Multi-Level Queue Scheduling”, Journal of Applied

Computer Science & Mathematics, no. 8 (4) /2010,

Suceava

[16] Lutful Karim, Nidal Nasser, Tarik Taleb, and Abdullah

Alqallaf, “An Efficient Priority Packet Scheduling

Algorithm for Wireless Sensor Network”

[17] Sudarshan Deshmukh and Sampada S Kalmankar

“Comparative Study of Effects of Delay in Load

Balancing Scheme for Highly Load Variant Interactive

Applications”, Proc. of Int. Conf. on Advances in

Communication, Network, and Computing 2013

[18] Abdul Hadi Abd Rahman, Zuriati Ahmad Zukarnain

“Performance Comparison of AODV, DSDV and I-DSDV

Routing Protocols in Mobile Ad Hoc Networks”,

European Journal of Scientific Research ISSN 1450-

216X Vol.31 No.4 (2009), pp.566-576

IJCATM : www.ijcaonline.org

