
International Journal of Computer Applications (0975 – 8887)

Volume 79 – No4, October 2013

19

Bandwidth Requirements of Large Scale Computing

Systems – A Case Study

A M Khan

Department of Electronics Mangalore University
Mangalagangotri. 574 199

Mohammed Mahfooz Sheikh
Department of Electronics Mangalore University

Mangalagangotri. 574 199

ABSTRACT

Complex scientific problems like weather forecasting,

computational fluid and combustion dynamics, computational

drug design etc. essentially require large scale computational

resources in order to obtain solution to the equations

governing them. These solutions can be obtained by

developing large legacy codes and then executing them using

parallel processing. The parallel processing computers

generally demand huge bandwidth as they consist of large

number of networked processing elements. One such legacy

code VARSHA is a meteorological code used for weather

forecasting developed at Flosolver, CSIR-NAL under the joint

project from NMITLI (New Millennium Indian Technological

Leadership Initiative) and MoES (Ministry of Earth Science).

The parallel efficiency of VARSHA code using ethernet

connectivity has been anything but satisfactory. This paper

discusses the bandwidth utilisation of VARSHA code in its

existing and modified forms in order to draw some important

conclusions on the bandwidth requirements of the future state-

of-art parallel computers used to execute such legacy codes.

General Terms

Bandwidth Scaling, Timing Analysis, VARSHA Code.

Keywords

Bandwidth, computation, communication, speed up.

1. INTRODUCTION
Parallel Processing has become an inevitable tool for solving

complex scientific problems that involve large scale

computations. Without large scale computational resources

genome sequencing could not have been possible [1]. Without

the help from primitive computer, design of atom bomb would

not have been feasible [2]. New drug development routinely

uses large scale computing [3]. Many new discoveries have

been result of large scale computations. For example, solitary

waves were found by Ulam and his colleagues using large

scale computing [4]; space missions demand massive

computing for re-entry trajectories of space vehicles and

numerical precision exceeding 20 digits are quite common. It

is, therefore, not surprising that requirement of large scale

computations has led to development of parallel machines

with history dating back to 1960’s [5,6]. The story of

developments of the computers in use till early 70’s is well

documented and vividly presented in the references

[7,8,9,10,11,12].

Parallel machines are generally built by the interconnection of

more number of processors and their architectures purely

depend upon the complexity of the tasks which demands the

type of coupling required. The parallel processing tasks are

divided among various Processing Elements (PEs) that

execute the jobs in parallel. It is implicitly assumed here that

the task is agreeable with parallel processing architecture and

the communication mechanism is in place so that PEs may

work on the subtasks of the main task. Yet they would

complete the main task as if the process is carried out on a

single virtual sequential computing machine. Communication

paradigm appears at a cross road at this point. It is a fact, that

the field equations occurring in science when appropriately

formulated very well requires distributed parallel processing.

A simple example will illustrate the view point. The solution

of the potential equation which is formulated through Green’s

function is not naturally amenable to parallel processing

whereas when formulated by finite difference discretisation

leads naturally to domain decomposition technique which is

highly amenable to parallel processing [13]. The PEs in the

parallel machines are thus required to cooperate to solve a

particular task needing interconnection scheme for

communicating with each other. Such environment offers

faster solution to complex problems than feasible using

sequential machines. Moreover sequential machines may not

be able to solve the problem in reasonable amount of time.

The interconnection network required for the PEs to

communicate forms the most important part of a parallel

computer next to Central Processing Units (CPUs).

2. ESSENCE OF COMMUNICATION

TECHNOLOGY IN PARALLEL

PROCESSING
Communication component being a critical part in building a

parallel computer, the bandwidth estimation of a parallel

processing system [14] is always a prerequisite and essentially

the bandwidth requirement of the application is required to be

well within the system bandwidth specifications [15]. Many

real time applications like meteorological computing, DNS

computing, panel techniques for aircraft wing load calculation

and many other problems of this class essentially require

parallel architectures for their solutions. The demonstration of

super linear speed up of Navier Stokes calculation [16] which

is something like a milestone in judging effectiveness of

parallel computing is indeed an important initiative .

Large legacy codes that demand global coupling essentially

require high speed communications. However it is possible to

increase the speed of computations by using more number of

PEs where more jobs can be executed in parallel but

appropriate communication mechanisms are to be used

depending on the intensity of communication demanded by

the application. One such parallelised version of legacy code,

VARSHA [17] operational at Flosolver lab in NAL is

presented in this paper along with the analysis techniques for

its bandwidth requirements. Although VARSHA requires

large communication bandwidth, initially here cluster based

architecture is used for its analysis due to ease of its

availability. As the case study is based on VARSHA model, it

is briefly described in section 3.

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No4, October 2013

20

3. VARSHA MODEL
This VARSHA model is a global/general circulation model of

atmosphere that solves a set of nonlinear partial differential

equations to predict the future state of the atmosphere from a

given initial state. Since the domain of atmospheric flow is

bounded at the bottom by the surface of the earth, exchange of

properties take place at this surface and it is necessary to

prescribe appropriate boundary conditions or values for

various quantities. The bottom topography plays an important

plays an important role in controlling the airflow not only

close to the ground but also at upper levels through induced

vertical motion and momentum transfer by gravity waves.

Present day atmospheric models have moisture as one of the

variables and take into account diabatic processes like

evaporation and condensation. All physical processes

involving moisture and others like radiation, turbulence,

gravity wave drag, land surface processes etc. are

parameterized in terms of variables in the VARSHA model.

Detailed discussion can be found in [18,19] and the details of

parallelisation are available in [17].

4. BANDWIDTH UTILISATION OF

VARSHA MODEL
Large application codes developed till late 70's or early 80's

abound; these codes are developed around sequential

computer having von Neumann's architecture. Extension of

these codes both in terms of scope and efficiency is a natural

requirement which can only occur through the only possible

route i.e. parallel routes. Such codes are commonly called as

legacy code. Code VARSHA used for weather predictions,

mainly consists of numerical computation of equations in the

spectral domain and communication of data at each time step

of forecast that demands higher bandwidth. The parallel

simulation was done in Flosolver MK3 parallel computer at

NAL and [15] contains the data on its performance. The key

point in this simulation was that a GCM model could be run

on 4 processor Flosolver MK3 which was a remarkable feet

and the efficiency issues were related to a second place as

platforms having large number of processors were not

available at that time. In 2010, the pictures have changed, the

numbers of processors available are large and the issue is now

that of parallel efficiency. Practically, the same VARSHA

code running on Flosolver MK8 (1024 Xeon processors @

2GHz and 4TB RAM) gives the efficiency shown in the

Figure 1 which is dismally poor.

Figure 1. Efficiency of VARSHA code for different no. of

processors. (using MPI communication protocol, Ethernet

1GB rating)

These computations in the fourth time steps and their

communication to other boards depending on the number of

boards are profiled and presented in Table 1. The speedup

trend is as shown in the previous graph in Figure 1. Rewriting

of this code in order to utilise the time utilisation of compute

intensive part for communication of already computed data

values through an external port shall reduce the effective

execution time of the code which is explained in the following

section.

Table 1. Speedup obtained for original application code

Boards

CPU

Processing

Time

(msec)

Communication

Time

(msec)

Actual

Processing

Time

(msec)

Speed

up

1 3077 2 3079 1

2 1541 181 1722 1.8

4 774 352 1126 2.7

8 392 528 920 3.3

16 201 700 901 3.4

5. BANDWIDTH REQUIREMENTS OF

MODIFIED VARSHA CODE
The profiled timings for computation and communication for

different number of processors is as shown in Table 1. It is

evident from Table 1 that the speedup is not appreciable

beyond 8 processors. But if the bandwidth can be improved,

the communication time will be reduced and there will be

increase in speedup for more number of processors. In other

words, if t is the actual processing time then

commcpu t+t=t
 ………….(1)

where tcomp is the computation time and tcomm is the

communication time. The bandwidth being increased by a

factor of k, the effective processing time then computed

would be

k

t
+t=t comm

cpu ; where k is a positive integer. ……….(2)

The scaling of bandwidth is utmost vital in deciding the

computational efficiency of the legacy code. The effect of

bandwidth scaling and the overlapping techniques were

carried out using profiling tools built in house. However, as

the emphasis is on bandwidth scaling and overlapping

techniques for the legacy code, the profiling techniques shall

be discussed elsewhere.

5.1 Effect of Bandwidth scaling
Let us consider an example from Table 1, for an 8 processor

system, if the bandwidth is increased by a factor of 8 (i.e. k =

8); CPU processing time will remain the same, i.e. 392msec

but communication time will be 66
8

528
= msec, and the

speedup will become 6.7. In fact, the Table 1 will be modified

for k = 8 in equation (2) as shown in Table 2.

Similarly, for a 16 processor system; CPU processing time is

201msec and communication time will be 87.5
8

700
= msec,

then the speedup will become 10.7. Therefore, in an 8

processor system, the efficiency is increased from 3.3 to 6.7

and in a 16 processor system the efficiency is increased from

3.4 to 10.7. The Table 3 gives the speedup values for

different bandwidth of the order k = 2m where 0 ≤ m ≤ 4.

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No4, October 2013

21

Table 2: Speedup obtained for original application code

Boards

CPU

Processing

Time

(msec)

Communication

Time

(msec)

Actual

Processing

Time

(msec)

Speed up

1 3077 0.3 3077.3 1

2 1541 22.6 1563.6 2

4 774 44.0 818.0 3.8

8 392 66.0 458.0 6.7

16 201 87.5 288.5 10.7

Table 3. Bandwidthwise Speedup of original test code

Scaling of

Bandwidth

(k)

No. of Boards

1 2 4 8 16

1 1.0 1.8 2.7 3.3 3.4

2 1.0 1.9 3.2 4.7 5.6

4 1.0 1.9 3.6 5.9 8.2

8 1.0 2.0 3.8 6.7 10.7

16 1.0 2.0 3.9 7.2 12.6

Figure 2. Effect of Bandwidth scaling on speedup.

The graph in Figure 2 shows the change in speedup for

various bandwidths. It is observed that as the bandwidth

scaling increases i.e. the communication time reduces, the

speedup of the application code increases when more no. of

processors are used.

5.2 Effect of Bandwidth Scaling on

Modified Code
For better parallelisation efficiency, the option of code

rearrangement plays a vital role-very often not considered

seriously while handling legacy codes. For example, in the

present code for which data is presented in Table 1, the

operations of computation and communication are disjoint;

but in the case if the code is rewritten the computation and

communication may be made to overlap, one will have the

following table of efficiency as shown in Table 5.

Then effective processing time in equation (1) would be

t = tcpu + tcomm - tov ……….(3)

where tcpu is the CPU processing time, tcomm is the

communication time and tov is the overlapped communication

time. Then again in Table 1, considering the case of 8 boards,

the CPU processing time is 392 msec and communication

time is 528msec, the overlapped communication time is 392

msec, then the effective processing time will be 392+528-

392=528 msec and the efficiency is 5.8
528

3077
= as shown in

Table 4.

Table 4. Speed up obtained for modified code with

different number of boards

Boards

CPU

Processi

ng Time

(msec

)

Communicati

on Time

(msec)

Overlapped

communicati

on time

(msec)

Effective

processi

ng time

(msec)

Spee

d up

1 3077 2 2 3077 1

2 1541 181 181 1541 2.0

4 774 352 352 774 4.0

8 392 528 392 528 5.8

16 201 700 201 700 4.4

The graph in Figure 3 shows the trend in the speedup for

different number of processors. If the bandwidth scaling is

observed in the case of modified code, the bandwidth being

increased by a factor of k, the calculation of effective

processing time in equation (2) becomes,

t = tcpu +
k

tcomm
 - tov ………(4)

The comparative figures for the different bandwidth scaling of

application code and modified application codes are given in

Table 5. Figure 4 shows the comparison graph for various

bandwidths scaling for original and modified codes. It is

observed that the performance speedup in the case of

modified code is dramatic for sizeable scaling of bandwidth.

Figure 3. Speedup in case of modified code

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No4, October 2013

22

Table 5. Effect of Bandwidth on original and modified

code (small parallel processing)

Scaling of

Bandwidth

(k)

No. of boards Remarks

1 2 4 8 16

1
1.0 1.8 2.7 2.7 3.4 Old

1.0 2.0 4.0 5.8 4.4 Modified

2
1.0 1.9 3.2 3.2 5.6 Old

1.0 2.0 4.0 7.8 8.8 Modified

4
1.0 1.9 3.6 3.6 8.2 Old

1.0 2.0 4.0 7.8 15.3 Modified

8
1.0 2.0 3.8 3.8 10.7 Old

1.0 2.0 4.0 7.8 15.3 Modified

16
1.0 2.0 3.9 3.9 12.6 Old

1.0 2.0 4.0 7.8 15.3 Modified

(a)

(b)

Figure 4. Comparison of Speedup between original and

modified code for varying Bandwidth

It will be interesting to have a comparison table for large

number of processors and scaling of bandwidth as shown in

Table 6, so that performance issues may be put into

perspective. Figure 5 shows the comparison graph point for

various higher bandwidths scaling of the order up to 512, for

original and modified codes. It shows that as the no. of

processors increases, for the bandwidth scaling by a

considerable scale (say half the no. of processors), the

performance speedup in the case of modified code is almost

double.

Table 6. Effect of Bandwidth on original and modified

code (moderate parallel processing)

Scaling of

Bandwidth

(k)

No. of boards Remarks

32 64 128 256 512

1
3.1 2.7 2.4 2.1 1.9 Old

3.4 2.8 2.4 2.1 1.9 Modified

16
20.2 26.6 29.9 30.0 28.5 Old

32.1 45.6 39.1 34.0 30.2 Modified

32
24.8 37.6 48.6 53.7 54.1 Old

32.1 64.1 78.1 68.0 60.5 Modified

64
28 47.4 70.4 89.0 97.8 Old

32.1 64.1 128.2 136.0 120.9 Modified

128
29.9 54.5 90.9 132.0 164.3 Old

32.1 64.1 128.2 256.4 241.7 Modified

256
30.9 58.9 106.4 174.3 248.9 Old

32.1 64.1 128.2 256.4 483.8 Modified

(a)

(b)

Figure 5. Comparison of Speedup between original test

code and modified test code for higher Bandwidth

6. CONCLUSION
The VARSHA code has been analysed for its bandwidth

requirements for both its existing and modified forms. It is

noted that, if the overall processing time (Table 1) has to be

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No4, October 2013

23

decreased from 3079 msec to around 800 msec i.e. processing

time be reduced roughly by a factor of 4, it is not enough to

increase the number of boards from 1 to 16 which is far more

than 4 needed for expected reduction; instead if the number of

boards are only increased from 1 to 4 and the bandwidth

increased from 1 to 8 (Table 2), the timing requirements will

be met. This clearly brings out the fact that by increasing

number of boards or CPUs or cores is insufficient for reducing

processing time, it needs to be backed up by the increase in

communication bandwidth.

The analysis suggests that a present day parallel processing

centre needs to have network hardware which supports

bandwidth on demand keeping overall resources intact. It is

understandable that at a given point of time all the tasks will

not require peak bandwidth; hence it is meaningful to consider

that the resources can be combined. Currently such hardware

do not exist, suggesting that there is a need to develop such

class of hardware if these centres are not identified with

specific application programmes. This idea shall give rise to a

completely new paradigm of bandwidth on demand in parallel

computing.

7. ACKNOWLEDGMENTS
Author is extremely thankful to the Director, NAL & Dr. U N

Sinha, Distinguished Scientist, NAL/4PI, Bangalore for their

unwavering support.

8. REFERENCES
[1] Mark Delderfield, Lee Kitching, Gareth Smith, David

Hoyle & Iain Buchan. 2008. Shared Genomics:

Accessible High Performance Computing for Genomic

Medical Research. Proceedings of the 2008 Fourth IEEE

International Conference on eScience (IEEE Computer

Society, Washington DC, USA) 404-405.

[2] Herman Goldstine H & John Von Nuemann. 1976. Blast

Wave Calculation. John Von Neumann collected works –

Theory of games, Astrophysics, Hydrodynamics and

Meteorology, Article 29, vol VI, edited by A. H. Taub,

(Oxford, Pergamon Press Ltd.), 386 – 412.

[3] Hausheer F. H. 1992. Numerical simulation, parallel

clusters, and the design of novel pharmaceutical agents

for cancer treatment. Proceedings of the 1992

ACM/IEEE conference on Supercomputing, edited by

Robert Werner, (IEEE Computer Society Press, Los

Alamitos, CA, USA), 636-637.

[4] Fermi E, Pasta J R, Tsingou M & Ulam S. 1955. Studies

of non- linear problems I, Technical Report LA-1940

(Los Alamos Scientific Laboratory, Los Alamos, NM,

USA).

[5] Jon Squire S & Sandra Palais M. 1963. Programming

and design considerations of a highly parallel computer.

Proceedings of the spring joint computer conference

(ACM, New York, NY, USA) 395-400.

[6] Koczela L J & Wang G Y. 1969. The Design of a Highly

Parallel Computer Organization, IEEE Trans.

Computers, 18 520-529.

[7] Akira Kasahara. 1970. Computer Simulations of the

Global Circulation of the Earths Atmosphere, in

Computer and their role in the physical sciences,

Chapter 23, edited by S Fernbach & A Taub, (Gordon

and Breach Science Publishers, New York), 571-594

[8] Herman Goldstine H. 1973. The Computer: from Pascal

to Von – Neumann, 2nd edn., (Princeton University Press,

New Jersey).

[9] Charles Eames & Ray Eames. 1973. A Computer

Perspective, edited by Glen Fleck, (Harvard University

Press, Cambridge, Massachusetts).

[10] David J Kuck. 1978. The structure of Computers and

Computation, Vol 1, (John Wiley & Sons Inc., New

York).

[11] Presper Eckart Jr J. 1980. The ENIAC, in A History of

Computing in the Twentieth Century, edited by N

Metropolis, J Howlett & Gian Carlo Rotta, (Academic

Press, New York) 525 – 540.

[12] John Mauchly W. 1980. The ENIAC, in A History of

Computing in the Twentieth Century, edited by N

Metropolis, J Howlett & Gian Carlo Rotta, (Academic

Press, New York) 541 – 550.

[13] Barry Smith F, Petter Bjorstad & William Gropp. 1996.

Domain Decomposition: Parallel Multilevel Methods for

Elliptic Partial Differential Equations, (Cambridge

University Press).

[14] Shioda, S and Mase, K. 2004 . A new approach to

bandwidth requirement estimation and its accuracy

verification, IEEE Intl. Conf. on Communications 2004,

Vol 4, 1953 – 1957.

[15] Yanping Zhao, Eager, D.L. ; Vernon, M.K. 2007.

Network Bandwidth Requirements for Scalable On-

Demand Streaming, IEEE/ACM Transactions on

Networking, Vol 15,No 4, 878 – 891.

[16] Venkatesh T N, Sarasamma V R., Rajalakshmy S, Kirti

Chandra Sahu, Rama Govindarajan. 2005. Super-linear

speed-up of a parallel multigrid Navier – Stokes solver

on Flosolver, Current Science, 88(4), 589 – 593.

[17] U. N. Sinha, V. R. Sarasamma, S. Rajalakshmy, K. R.

Subramanian, P. V. R. Bharadwaj, C. S. Chandrashekar,

T.N.Venkatesh, R.Sunder, B.K.Basu, Sulochana Gadgil

and A. Raju, Monsoon Forecasting on Parallel

Computers, Current Science, Vol 67,No 3,178-184,

August 1994.

[18] Holton, J. R., and Hsiu-Chi Tan. 1980. The influence of

the equatorial quasi-biennial oscillation on the global

circulation at 50 mb. J. Atmos. Sci., Vol 37, 2200-2208.

[19] Holton, J. R. and H.-C. Tan. 1982. The quasi-biennial

oscillation in the Northern Hemisphere lower

stratosphere. J. Meteor. Soc. Japan, Vol 60, 140- 148.

IJCATM : www.ijcaonline.org

