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ABSTRACT 

Complex scientific problems like weather forecasting, 

computational fluid and combustion dynamics, computational 

drug design etc. essentially require large scale computational 

resources in order to obtain solution to the equations 

governing them. These solutions can be obtained by 

developing large legacy codes and then executing them using 

parallel processing. The parallel processing computers 

generally demand huge bandwidth as they consist of large 

number of networked processing elements. One such legacy 

code VARSHA is a meteorological code used for weather 

forecasting developed at Flosolver, CSIR-NAL under the joint 

project from NMITLI (New Millennium Indian Technological 

Leadership Initiative) and MoES (Ministry of Earth Science). 

The parallel efficiency of VARSHA code using ethernet 

connectivity has been anything but satisfactory. This paper 

discusses the bandwidth utilisation of VARSHA code in its 

existing and modified forms in order to draw some important 

conclusions on the bandwidth requirements of the future state-

of-art parallel computers used to execute such legacy codes.   
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1. INTRODUCTION 
Parallel Processing has become an inevitable tool for solving 

complex scientific problems that involve large scale 

computations. Without large scale computational resources 

genome sequencing could not have been possible [1]. Without 

the help from primitive computer, design of atom bomb would 

not have been feasible [2]. New drug development routinely 

uses large scale computing [3]. Many new discoveries have 

been result of large scale computations. For example, solitary 

waves were found by Ulam and his colleagues using large 

scale computing [4]; space missions demand massive 

computing for re-entry trajectories of space vehicles and 

numerical precision exceeding 20 digits are quite common. It 

is, therefore, not surprising that requirement of large scale 

computations has led to development of parallel machines 

with history dating back to 1960’s [5,6]. The story of 

developments of the computers in use till early 70’s is well 

documented and vividly presented in the references 

[7,8,9,10,11,12]. 

Parallel machines are generally built by the interconnection of 

more number of processors and their architectures purely 

depend upon the complexity of the tasks which demands the 

type of coupling required. The parallel processing tasks are 

divided among various Processing Elements (PEs) that 

execute the jobs in parallel. It is implicitly assumed here that 

the task is agreeable with parallel processing architecture and 

the communication mechanism is in place so that PEs may 

work on the subtasks of the main task. Yet they would 

complete the main task as if the process is carried out on a 

single virtual sequential computing machine. Communication 

paradigm appears at a cross road at this point. It is a fact, that 

the field equations occurring in science when appropriately 

formulated very well requires distributed parallel processing. 

A simple example will illustrate the view point. The solution 

of the potential equation which is formulated through Green’s 

function is not naturally amenable to parallel processing 

whereas when formulated by finite difference discretisation 

leads naturally to domain decomposition technique which is 

highly amenable to parallel processing [13]. The PEs in the 

parallel machines are thus required to cooperate to solve a 

particular task needing interconnection scheme for 

communicating with each other. Such environment offers 

faster solution to complex problems than feasible using 

sequential machines. Moreover sequential machines may not 

be able to solve the problem in reasonable amount of time. 

The interconnection network required for the PEs to 

communicate forms the most important part of a parallel 

computer next to Central Processing Units (CPUs).   

2. ESSENCE OF COMMUNICATION 

TECHNOLOGY IN PARALLEL 

PROCESSING 
Communication component being a critical part in building a 

parallel computer, the bandwidth estimation of a parallel 

processing system [14] is always a prerequisite and essentially 

the bandwidth requirement of the application is required to be 

well within the system bandwidth specifications [15]. Many 

real time applications like meteorological computing, DNS 

computing, panel techniques for aircraft wing load calculation 

and many other problems of this class essentially require 

parallel architectures for their solutions. The demonstration of 

super linear speed up of Navier Stokes calculation [16] which 

is something like a milestone in judging effectiveness of 

parallel computing is indeed an important initiative .  

Large legacy codes that demand global coupling essentially 

require high speed communications. However it is possible to 

increase the speed of computations by using more number of 

PEs where more jobs can be executed in parallel but 

appropriate communication mechanisms are to be used 

depending on the intensity of communication demanded by 

the application. One such parallelised version of legacy code, 

VARSHA [17] operational at Flosolver lab in NAL is 

presented in this paper along with the analysis techniques for 

its bandwidth requirements. Although VARSHA requires 

large communication bandwidth, initially here cluster based 

architecture is used for its analysis due to ease of its 

availability. As the case study is based on VARSHA model, it 

is briefly described in section 3. 
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3. VARSHA MODEL 
This VARSHA model is a global/general circulation model of 

atmosphere that solves a set of nonlinear partial differential 

equations to predict the future state of the atmosphere from a 

given initial state. Since the domain of atmospheric flow is 

bounded at the bottom by the surface of the earth, exchange of 

properties take place at this surface and it is necessary to 

prescribe appropriate boundary conditions or values for 

various quantities.  The bottom topography plays an important 

plays an important role in controlling the airflow not only 

close to the ground but also at upper levels through induced 

vertical motion and momentum transfer by gravity waves. 

Present day atmospheric models have moisture as one of the 

variables and take into account diabatic processes like 

evaporation and condensation.  All physical processes 

involving moisture and others like radiation, turbulence, 

gravity wave drag, land surface processes etc. are 

parameterized in terms of variables in the VARSHA model. 

Detailed discussion can be found in [18,19] and the details of 

parallelisation are available in [17].  

4. BANDWIDTH UTILISATION OF 

VARSHA MODEL 
Large application codes developed till late 70's or early 80's 

abound; these codes are developed around sequential 

computer having von Neumann's architecture. Extension of 

these codes both in terms of scope and efficiency is a natural 

requirement which can only occur through the only possible 

route i.e. parallel routes. Such codes are commonly called as 

legacy code. Code VARSHA used for weather predictions, 

mainly consists of numerical computation of equations in the 

spectral domain and communication of data at each time step 

of forecast that demands higher bandwidth.  The parallel 

simulation was done in Flosolver MK3 parallel computer at 

NAL and [15] contains the data on its performance. The key 

point in this simulation was that a GCM model could be run 

on 4 processor Flosolver MK3 which was a remarkable feet 

and the efficiency issues were related to a second place as 

platforms having large number of processors were not 

available at that time.  In 2010, the pictures have changed, the 

numbers of processors available are large and the issue is now 

that of parallel efficiency. Practically, the same VARSHA 

code running on Flosolver MK8 (1024 Xeon processors @ 

2GHz and 4TB RAM) gives the efficiency shown in the 

Figure 1 which is dismally poor. 

 

Figure 1. Efficiency of VARSHA code for different no. of 

processors. (using MPI communication protocol, Ethernet 

1GB rating) 

These computations in the fourth time steps and their 

communication to other boards depending on the number of 

boards are profiled and presented in Table 1. The speedup 

trend is as shown in the previous graph in Figure 1.  Rewriting 

of this code in order to utilise the time utilisation of compute 

intensive part for communication of already computed data 

values through an external port shall reduce the effective 

execution time of the code which is explained in the following 

section. 

Table 1. Speedup obtained for original application code 

Boards 

CPU 

Processing 

Time 

(msec) 

Communication 

Time 

(msec) 

Actual 

Processing 

Time 

(msec) 

Speed 

up 

1 3077 2 3079 1 

2 1541 181 1722 1.8 

4 774 352 1126 2.7 

8 392 528 920 3.3 

16 201 700 901 3.4 

 

5. BANDWIDTH REQUIREMENTS OF 

MODIFIED VARSHA CODE 
The profiled timings for computation and communication for 

different number of processors is as shown in Table 1. It is 

evident from Table 1 that the speedup is not appreciable 

beyond 8 processors. But if the bandwidth can be improved, 

the communication time will be reduced and there will be 

increase in speedup for more number of processors. In other 

words, if t is the actual processing time then 

commcpu t+t=t
  ………….(1)

 

where tcomp is the computation time and tcomm is the 

communication time. The bandwidth being increased by a 

factor of k, the effective processing time then computed 

would be 

k

t
+t=t comm

cpu ; where k is a positive integer. ……….(2) 

The scaling of bandwidth is utmost vital in deciding the 

computational efficiency of the legacy code. The effect of 

bandwidth scaling and the overlapping techniques were 

carried out using profiling tools built in house.  However, as 

the emphasis is on bandwidth scaling and overlapping 

techniques for the legacy code, the profiling techniques shall 

be discussed elsewhere. 

5.1 Effect of Bandwidth scaling 
Let us consider an example from Table 1, for an 8 processor 

system, if the bandwidth is increased by a factor of 8 (i.e. k = 

8); CPU processing time will remain the same, i.e. 392msec 

but communication time will be 66
8

528
= msec, and the 

speedup will become 6.7. In fact, the Table 1 will be modified 

for k = 8 in equation (2) as shown in Table 2. 

Similarly, for a 16 processor system; CPU processing time is 

201msec and communication time will be 87.5
8

700
= msec, 

then the speedup will become 10.7. Therefore, in an 8 

processor system, the efficiency is increased from 3.3 to 6.7 

and in a 16 processor system the efficiency is increased from 

3.4 to 10.7.  The Table 3 gives the speedup values for 

different bandwidth of the order k = 2m where 0 ≤ m ≤ 4. 



International Journal of Computer Applications (0975 – 8887)  

Volume 79 – No4, October 2013 

21 

Table 2: Speedup obtained for original application code 

Boards 

CPU 

Processing 

Time 

(msec) 

Communication 

Time 

(msec) 

Actual 

Processing 

Time 

(msec) 

Speed up 

1 3077 0.3 3077.3 1 

2 1541 22.6 1563.6 2 

4 774 44.0 818.0 3.8 

8 392 66.0 458.0 6.7 

16 201 87.5 288.5 10.7 

 

Table 3. Bandwidthwise Speedup of original test code 

Scaling of 

Bandwidth 

(k) 

No. of Boards 

1 2 4 8 16 

1 1.0 1.8 2.7 3.3 3.4 

2 1.0 1.9 3.2 4.7 5.6 

4 1.0 1.9 3.6 5.9 8.2 

8 1.0 2.0 3.8 6.7 10.7 

16 1.0 2.0 3.9 7.2 12.6 

  

 

Figure 2. Effect of Bandwidth scaling on speedup. 

The graph in Figure 2 shows the change in speedup for 

various bandwidths. It is observed that as the bandwidth 

scaling increases i.e. the communication time reduces, the 

speedup of the application code increases when more no. of 

processors are used. 

5.2 Effect of Bandwidth Scaling on 

Modified Code 
For better parallelisation efficiency, the option of code 

rearrangement plays a vital role-very often not considered 

seriously while handling legacy codes. For example, in the 

present code for which data is presented in Table 1, the 

operations of computation and communication are disjoint; 

but in the case if the code is rewritten the computation and 

communication may be made to overlap, one will have the 

following table of efficiency as shown in Table 5.  

Then effective processing time in equation (1) would be 

t = tcpu + tcomm - tov ……….(3) 

where tcpu is the CPU processing time, tcomm is the 

communication time and tov is the overlapped communication 

time. Then again in Table 1, considering the case of 8 boards, 

the CPU processing time is 392 msec and communication 

time is 528msec, the overlapped communication time is 392 

msec, then the effective processing time will be 392+528-

392=528 msec and the efficiency is 5.8
528

3077
=  as shown in 

Table 4. 

Table 4. Speed up obtained for modified code with 

different number of boards 

Boards 

CPU 

Processi

ng Time 

(msec

) 

Communicati

on Time 

(msec) 

Overlapped 

communicati

on time 

(msec) 

Effective 

processi

ng time 

(msec) 

Spee

d up 

1 3077 2 2 3077 1 

2 1541 181 181 1541 2.0 

4 774 352 352 774 4.0 

8 392 528 392 528 5.8 

16 201 700 201 700 4.4 

 

The graph in Figure 3 shows the trend in the speedup for 

different number of processors.  If the bandwidth scaling is 

observed in the case of modified code, the bandwidth being 

increased by a factor of k, the calculation of effective 

processing time in equation (2) becomes, 

t = tcpu + 
k

tcomm
 - tov  ………(4) 

The comparative figures for the different bandwidth scaling of 

application code and modified application codes are given in 

Table 5. Figure 4 shows the comparison graph for various 

bandwidths scaling for original and modified codes. It is 

observed that the performance speedup in the case of 

modified code is dramatic for sizeable scaling of bandwidth. 

 

Figure 3. Speedup in case of modified code 
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Table 5. Effect of Bandwidth on original and modified 

code (small parallel processing) 

Scaling of 

Bandwidth 

(k) 

No. of boards Remarks 

1 2 4 8 16 

1 
1.0 1.8 2.7 2.7 3.4 Old 

1.0 2.0 4.0 5.8 4.4 Modified 

2 
1.0 1.9 3.2 3.2 5.6 Old 

1.0 2.0 4.0 7.8 8.8 Modified 

4 
1.0 1.9 3.6 3.6 8.2 Old 

1.0 2.0 4.0 7.8 15.3 Modified 

8 
1.0 2.0 3.8 3.8 10.7 Old 

1.0 2.0 4.0 7.8 15.3 Modified 

16 
1.0 2.0 3.9 3.9 12.6 Old 

1.0 2.0 4.0 7.8 15.3 Modified 

 

 

(a) 

 

(b) 

Figure 4. Comparison of Speedup between original and 

modified code for varying Bandwidth 

It will be interesting to have a comparison table for large 

number of processors and scaling of bandwidth as shown in 

Table 6, so that performance issues may be put into 

perspective. Figure 5 shows the comparison graph point for 

various higher bandwidths scaling of the order up to 512, for 

original and modified codes. It shows that as the no. of 

processors increases, for the bandwidth scaling by a 

considerable scale (say half the no. of processors), the 

performance speedup in the case of modified code is almost 

double. 

Table 6. Effect of Bandwidth on original and modified 

code (moderate parallel processing) 

Scaling of 

Bandwidth 

(k) 

No. of boards Remarks 

32 64 128 256 512 

1 
3.1 2.7 2.4 2.1 1.9 Old 

3.4 2.8 2.4 2.1 1.9 Modified 

16 
20.2 26.6 29.9 30.0 28.5 Old 

32.1 45.6 39.1 34.0 30.2 Modified 

32 
24.8 37.6 48.6 53.7 54.1 Old 

32.1 64.1 78.1 68.0 60.5 Modified 

64 
28 47.4 70.4 89.0 97.8 Old 

32.1 64.1 128.2 136.0 120.9 Modified 

128 
29.9 54.5 90.9 132.0 164.3 Old 

32.1 64.1 128.2 256.4 241.7 Modified 

256 
30.9 58.9 106.4 174.3 248.9 Old 

32.1 64.1 128.2 256.4 483.8 Modified 

 
(a) 

 
(b) 

Figure 5. Comparison of Speedup between original test 

code and modified test code for higher Bandwidth 

6. CONCLUSION 
The VARSHA code has been analysed for its bandwidth 

requirements for both its existing and modified forms.  It is 

noted that, if the overall processing time (Table 1) has to be 
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decreased from 3079 msec to around 800 msec i.e. processing 

time be reduced roughly by a factor of 4, it is not enough to 

increase the number of boards from 1 to 16 which is far more 

than 4 needed for expected reduction; instead if the number of 

boards are only increased from 1 to 4 and the bandwidth 

increased from 1 to 8 (Table 2), the timing requirements will 

be met.  This clearly brings out the fact that by increasing 

number of boards or CPUs or cores is insufficient for reducing 

processing time, it needs to be backed up by the increase in 

communication bandwidth. 

The analysis suggests that a present day parallel processing 

centre needs to have network hardware which supports 

bandwidth on demand keeping overall resources intact. It is 

understandable that at a given point of time all the tasks will 

not require peak bandwidth; hence it is meaningful to consider 

that the resources can be combined. Currently such hardware 

do not exist, suggesting that there is a need to develop such 

class of hardware if these centres are not identified with 

specific application programmes.  This idea shall give rise to a 

completely new paradigm of bandwidth on demand in parallel 

computing. 
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