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ABSTRACT 

Today we are working with the networks all around and that’s 

why it becomes very important to find the effective flow of 

the commodity within that network. This paper aims to 

provide an analysis of the best known algorithm for 

calculating maximum flow of any network and to propose an 

approximate algorithm, which can solve the same problem 

with lesser complexity, desirably lesser than the complexity of 

the known Stoer-Wagner algorithm. This paper addresses this 

problem with a new approach, which uses upper bound values 

of each node in the  network.Results are compared with fixed 

number of nodes and variable number of nodes in the 

network. Moreover  networks with variable densities are also 

considered. Results are obtained by programming the both 

algorithms in C++.Unix scripts are also used for formatting 

the results. 
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1. INTRODUCTION 
Ever since the evolution of networks, they have been the most 

important part of our lives. Today we have networks of 

computers, communities, railways, distributors, retailers, film 

industry etc. The underlying concept of each network is flow 

of information. No network can exist without information. 

This flow of information inside the network or between two or 

more networks is done on the cost of some resources. 

Computer scientists are trying to maximize the flow of 

information with minimum possible exploitation of resources. 

This journey started when a computer scientist Ford Fulkerson 

came up with a solution to this problem. He tried to find a 

augmentation path in the graph. If any augmentation path 

exists that means the flow is not maximized. After this 

Gomory and Hu proved that maximum flow through a graph 

is the flow through its min-cut. Moreover they also proved 

that min-cut or max flow between all pairs of vertices in an 

undirected graph can be computed by doing only n-1 max 

flow computation rather than naïve (n
2) max flow 

computations. They proposed a Gomory Hu tree(minimum cut 

tree) which needs to create through the process and which 

gives the exact value of maximum flow of min-cut through 

that network. Since then many scientist have done enormous 

amount of work to achieve the minimum cut  tree and luckily 

they succeed but now the major problem was not to solve the 

problem, it was to minimize the complexity of algorithm. 

Stoer and Wagner tried to solve the same problem but with 

minimum complexity. They proposed a solution having 

minimum complexity among the algorithms to solve this 

problem known till now. One thing that was common to all 

algorithms is that all use max flow subroutines. In this paper 

we proposed an approximation algorithm to solve the 

problem. In which we  are calculating upper bound values of 

each vertex (node) and then we relax that upper bound value 

till we found the minimum cut of the graph.  

2. PROBLEM STATEMENT 
In any edge weighted graph having a vertex set V with edge 

set E, the problem is to build a tree such that ∀ u ,v ϵ V, edge 

having minimum weight on the unique path connecting u and 

v in the tree represents the value of minimum cut of graph 

separating u and v. This tree is known as minimum cut tree.. 

2.1 Min Cut Tree[7] 
In any edge weighted graph having a vertex set V with edge 

set E,and weight function w:E ϵ R, It can be shown that out of 

all possible nC2 pairs of nodes there can be n-1 min-cuts. These 

n-1 min-cuts are represented by a (not necessarily unique) 

tree, called Min-Cut tree, and has the following properties: 

1. The tree consists of the same number of nodes as that in 

initial graph and each edge is assigned a value which is 

not directly related to the weights of the initial graph. 

2. We can find the minimum cut for every pair s,t in the tree 

by following the unique path between the nodes. For 

example if an edge have the minimum value on the path 

then that value is also the minimum cut in the original 

graph. 

3. In order to find the cut between s and t we remove the 

edge with the minimum value on s-t path. The min-cut 

between s and t in the initial graph G is also defined by 

two connected sub sets of nodes in the tree. 

2.2 Notations [7] 
Cut: A cut of graph is basically partitioning its vertices in two 

subsets (V,S-V)  and it is represented by C. Weight of a cut 

can be defined as the summation of all the edges that connect 

the two subsets V and S-V. 

w(C)= ∑ w(u, v) where (u,v)ϵE and uϵS, v∉S 

s-t Cut: S-t cut for any two vertices s and t can be defined as 

a cut  such that s ϵ S and t  ∉ S . 

Min s-t Cut: Among all the s-t cuts of the Graph G, cut 

having minimum value is known as Min s-t cut. 

Min-Cut: Min cut of an undirected edged weighted graph G 

is set of edges with minimum sum of weights, such that 

removal of this leads to unconnected of the graph. 

3. EXISTING APPROACHES 

3.1 Max Flow Min Cut Theoram 
According to the max-flow min-cut theorem in a flow 

network, the maximum possible flow from the source node to 

the sink node, is equal to the minimum capacity which when 

removed from the network causes no flow. The max-flow 

min-cut theorem states the maximum value of an s-t flow is 

equal to the minimum capacity of an s-t cut.. 

3.2 Gomory-Hu Algorithm[4] 
According to the Gomory and Hu, a graph having n nodes can 

have n-1 numerically different flows. So all flows can be 

deduced after only n-1 different flows have been computed. 

Consider a flow network whose nodes have been separated in 
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two sets A and A’, by  a minimum cut(A, A’), in such a way 

that nodes  Ni ϵ A and Nj ϵ A’. Now if  all nodes in A’ are 

replaced by a single node P to which all the arcs of the cut are 

attached then a new condensed network will result. In this 

condensed network consider the maximum flow between two 

ordinary nodes Ne and Nk. Gomory and Hu proposed the 

following lemma: 

Lemma II: the flow between two ordinary nodes Ne and Nk 

 in the condensed network is numerically equal to the flow 

f(e,k) in the original network. 

3.3 Stoer Wagner Algorithm[3] 
M.Stoer and F.Wagner have given a simple and compact 

algorithm for finding the minimum cut of a graph. The 

algorithm is remarkably simple and has the fastest running 

time so far. The algorithm uses the following very interesting 

theorem. 

Theorem I: Let s and t be two vertices of a graph G. Let 

G/{s, t} be the graph obtained by merging s and t. Then a 

minimum cut of G can be obtained by taking the smaller of a 

minimum s-t-cut of G and a minimum cut of G/{s, t}. 

4.5.2.1 Proof: The theorem holds since either there is a 

minimum cut of G that separates s and t, then a minimum s-t-

cut of G is a minimum cut of G; or there is none, then a 

minimum cut of G/{s, t} does the job. So a procedure finding 

an arbitrary minimum s-t-cut can be used to construct a 

recursive algorithm to find a minimum cut of a graph. 

Procedure: 
MINIMUMCUTPHASE (G, w, a) 
A ← {a} 
While (A ≠ V) 
Add to A the most tightly connected vertex 
Store the cut-of-the-phase and shrink G by merging the two 

vertices added last. 

A subset A of the graphs vertices grows starting with an 

arbitrary single vertex until A is equal to V. In each step, the 

vertex outside of A most tightly connected with A is added. 

Formally, we add a vertex 

z ∉A such that w( A, z)= max{w(A,y)|y∉A} 
Where w( A, y) is the sum of the weights of all the edges 

between A and y. At the end of each such phase, the two 

vertices added last are merged, that is, the two vertices are 

replaced by a new vertex, and any edges from the two vertices 

to a remaining vertex are replaced by an edge weighted by the 

sum of the weights of the previous two edges. Edges joining 

the merged nodes are removed. 

The cut of V that separates the vertex added last from the rest 

of the graph is called the cut-of-the-phase. The lightest of this 

cuts-of-the-phase is the result of the algorithm, the desired 

minimum cut. 

MINIMUMCUT(G, w, a) 
while |V|> 1 
MINIMUMCUTPHASE(G, w, a) 
if the cut-of-the-phase is lighter than the current minimum cut 
then store the cut-of-the-phase as the current minimum cut 

Notice that the starting vertex a stays the same throughout the 

whole algorithm. It can be selected arbitrarily in each phase 

instead. 

 

3.4 Run Time Complexity 
The algorithm consist of |V|-1 identical phases each of which 

requires O(|E|+|V|log|V|) time yielding an overall running 

time of O(|V||E|+|V|2log|V|).. 

4. Our Approach 
This work proposes a new approximation algorithm for 

constructing the minimum cut tree. Upper-bound value for 

each node of the graph is calculated. Upper-bound value of 

any node is defined as the value of edge, which upon removal 

separates this node from rest of the graph i.e. 

Upper bound(u)= ∑ w(u, v)  where vϵ Adj(u) 
Lemma IV: The value of minimum cut of a graph G 

separating Ni and Nj is less than or equal to minimum of the 

upper bound values of two nodes Ni and Nj. 

Proof: Simple reasoning can be given to prove it. Let (A,A’) 

represent the  minimum cut of G, which separates both Ni and 

Nj. Upper-bound(Ni) and Upper-bound(Nj) are the values of 

two cuts which also separate Ni and Nj. Therefore, 

w(A,A’) ≤  min(Upper-bound(Ni), Upper-bound(Nj)) where 
w(A,A’)=∑ w(Ni, Nj) where Ni ϵ A and Nj ϵ A’ 

4.1 Algorithm 
Find an edge uv such that upon merging the two nodes Nu and 

Nv upper bound values reduces i.e. 
max(Upperbound(Nu),Upperbound(Nv))>Upperbound(Nu)+Up

p-erbound(Nv)-2*w(u,v) 

Start from the node having the minimum upper-bound value 

and check for all of the edges leaving it. If upper bound values 

can be reduced  by merging it with any of the nodes, then 

nodes are merged and procedure is repeated. If reduction of 

upper bound values is not possible , then check for rest of the 

nodes in the increasing order of upper-bound values. The 

reason behind considering the nodes in increasing order of 

upper-bound values will be clear in next lemma. 

After all the nodes in the graph are merged and it has only one 

node left, construct the min-cut tree by using the information 

from intermediate stages. Move from last to first stage and at 

each stage we see the two nodes that were merged during last 

stage and separate the node with smaller of the two upper-

bound values from the other by an arc bearing the value equal 

to the smaller of the two upper-bound values. Since we 

separate the two merged nodes in the tree by an arc having the 

value equal to smaller of the two upper-bound values, it is 

necessary to consider the nodes during merging process in the 

increasing order of upper-bound values so that the node with 

less upper-bound value will be merged first , if possible all. 

Lemma V: If  nodes to be merged are considered in the 

increasing order of upper-bound values,  and while examining 

the adjacency list of Ni,  Nj  is found, as the node which upon 

merging with Ni will reduce the upper-bound value of Ni, 

then     

1. Either upper-bound(Nj) will also be reduced. 
2. Or upper-bound(Ni) can’t be reduced. 

Proof: Nodes are considered in the increasing order of upper-

bound values, and so 
Case 1:  upper-bound(Nj) ≥ upper-bound(Ni) 
Since merging Ni and Nj reduces the upper-bound value of 

Ni, therefore 
Upper-bound(Nj) + upper-bound(Ni) – 2*w(i, j)  ≤ upper-

bound(Ni) 
It is clear from above two equations : 
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Upper-bound(Nj) + upper-bound(Ni) – 2*w(i, j)  ≤ upper-

bound(Nj) 
i.e. upper-bound(Nj) is also reduced  
Case 2: upper-bound(Nj) < upper-bound(Ni) 
Since Nodes are considered in the increasing order of upper-

bound values, , checking for Ni itself implies that Nj has 

already been checked and it was not possible to reduce its 

upper-bound value at all. So in this case upper-bound(Nj) 

can’t be reduced. 

If it is not possible to merge any node at any stage , then  node 

causing minimum increase in Upper bound values is merged. 

4.2 Assumptions 
This algorithm is based on the assumption that if two nodes 

Ni and Nj  are being merged and if upper-bound(Ni) < upper-

bound(Nj) then it is not possible to merge Nj with any other 

node which will result in a node having upper-bound value 

which is less than upper-bound(Ni). However , this 

assumption is not true always. 

During the course of this algorithm, if a pair of nodes Ni and 

Nj are being merged such that: 

 upper-bound(Ni) < upper-bound(Nj) and, 

 It was possible to merge Nj with some other node Nk 

such that upper-bound value of the resulting node(let it 

be val) would have been less than upper-bound(Ni), 

In this case, the resulting min-cut tree will not be correct and 

will give wrong min-cut values for some pair of nodes. More 

precisely, it would give the value of min Ni-Nj cut as upper-

bound(Ni) but the correct value is val.  We call such a pair of 

nodes Wrong pair to merge. 

For sparse graphs, the probability of choosing the wrong pair 

of nodes to merge is high due to the less number of available 

pairs among which to choose i.e. due to less number of edges. 

For dense graph, the probability choosing the wrong pair of 

nodes to merge is very less because of  the large number of 

available pairs among which to choose.. 

For dense graph this algorithm produces surprisingly good 

results. After running the procedure with more than 15000 

randomly generated graphs we have figured out that for all 

graph densities, success rate of algorithm is approximately 

100%. 

4.3 Time Complexity O(V2.logV+V2.d) 
Where V is no. of vertices in given graph and d is degree of 

graph. 

Min-Cut Tree(G) 

Input:  Edge-weighted Undirected graph G 

Output: Min-Cut Tree 

Calculate the upper-bound values for each node. 

While (number of vertices in the current graph >1) 

   Loop (Consider the vertices in the increasing order 

of upper-bound value) 

          If (upper-bound value can be reduced by merging a 

node with any adjacent node) 

         Then those two adjacent nodes are merged 

              Break: 

         End if 

 End loop 

If (It is not possible to merge any pair of nodes) 

Pair of nodes which results in minimum increment of the 

upper-bound value are merged 

End if 

End While 

Min-Cut Tree T is constructed  by using the information 

collected from intermediate stages as described: 

a.     Move from last to first stage. 

b.     At each stage check the two nodes that were 

merged during last stage. 

c.  Separate the node with lower upper-bound value 

from the other by an arc bearing the value equal to 

the lower upper-bound value. 

Return T 

5. RESULTS 

5.1 Random Graph with random number 

of nodes 
We generated 7500 random graphs of different densities and 

number of nodes in them were also random(5-55). Edges 

weights were also random and were between 1-300.Results of 

running our algorithm with these graphs are summarized as 

follows:  
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Figure 1 Density v/s Success for graph having random number of nodes 

 

 

Density 

Figure 2 Density v/s Deviation graph for random number of nodes in Graph 

It is clear from the graph that success rate is around 100%. 

But the results may have an error of 0.5% for the cases of 

extremely sparse graphs. But as the connectivity of graph 

increases the error is eliminated. 

 

5.2 Random Graph with fixed number of 

nodes (55 nodes) 
We generated 7500 random graphs of different densities and 

number of nodes in them were also random(5-55). Edges 

weights were also random and were between 1-300.Results of 
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running our algorithm with these graphs are summarized as follows:  
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Figure 3 Density v/s Deviation for graph having 55 nodes 
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Figure 4 Density v/s Deviation graph for 55 nodes in Graph 
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t is clear from the graph that success rate is around 100%. But 

the results may have an error of 0.5% for the cases of 

extremely sparse graphs. But as the connectivity of graph 

increases the error is eliminated. 
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