
International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 17, October 2013

26

Analysis and Optimization of Max Flow Min-cut

Nitin Mukesh Tiwari
Department of IT

NIT Srinagar

Swatie Bansal
Department of Computer

Engineering

Abhishek Tripathi
Department of Computers

NIT Srinagar

ABSTRACT

Today we are working with the networks all around and that’s

why it becomes very important to find the effective flow of

the commodity within that network. This paper aims to

provide an analysis of the best known algorithm for

calculating maximum flow of any network and to propose an

approximate algorithm, which can solve the same problem

with lesser complexity, desirably lesser than the complexity of

the known Stoer-Wagner algorithm. This paper addresses this

problem with a new approach, which uses upper bound values

of each node in the network.Results are compared with fixed

number of nodes and variable number of nodes in the

network. Moreover networks with variable densities are also

considered. Results are obtained by programming the both

algorithms in C++.Unix scripts are also used for formatting

the results.

Keywords

Min-cut, maximum flow, edge weighted graphs,.

1. INTRODUCTION
Ever since the evolution of networks, they have been the most

important part of our lives. Today we have networks of

computers, communities, railways, distributors, retailers, film

industry etc. The underlying concept of each network is flow

of information. No network can exist without information.

This flow of information inside the network or between two or

more networks is done on the cost of some resources.

Computer scientists are trying to maximize the flow of

information with minimum possible exploitation of resources.

This journey started when a computer scientist Ford Fulkerson

came up with a solution to this problem. He tried to find a

augmentation path in the graph. If any augmentation path

exists that means the flow is not maximized. After this

Gomory and Hu proved that maximum flow through a graph

is the flow through its min-cut. Moreover they also proved

that min-cut or max flow between all pairs of vertices in an

undirected graph can be computed by doing only n-1 max

flow computation rather than naïve (n
2) max flow

computations. They proposed a Gomory Hu tree(minimum cut

tree) which needs to create through the process and which

gives the exact value of maximum flow of min-cut through

that network. Since then many scientist have done enormous

amount of work to achieve the minimum cut tree and luckily

they succeed but now the major problem was not to solve the

problem, it was to minimize the complexity of algorithm.

Stoer and Wagner tried to solve the same problem but with

minimum complexity. They proposed a solution having

minimum complexity among the algorithms to solve this

problem known till now. One thing that was common to all

algorithms is that all use max flow subroutines. In this paper

we proposed an approximation algorithm to solve the

problem. In which we are calculating upper bound values of

each vertex (node) and then we relax that upper bound value

till we found the minimum cut of the graph.

2. PROBLEM STATEMENT
In any edge weighted graph having a vertex set V with edge

set E, the problem is to build a tree such that ∀ u ,v ϵ V, edge

having minimum weight on the unique path connecting u and

v in the tree represents the value of minimum cut of graph

separating u and v. This tree is known as minimum cut tree..

2.1 Min Cut Tree[7]
In any edge weighted graph having a vertex set V with edge

set E,and weight function w:E ϵ R, It can be shown that out of

all possible nC2 pairs of nodes there can be n-1 min-cuts. These

n-1 min-cuts are represented by a (not necessarily unique)

tree, called Min-Cut tree, and has the following properties:

1. The tree consists of the same number of nodes as that in

initial graph and each edge is assigned a value which is

not directly related to the weights of the initial graph.

2. We can find the minimum cut for every pair s,t in the tree

by following the unique path between the nodes. For

example if an edge have the minimum value on the path

then that value is also the minimum cut in the original

graph.

3. In order to find the cut between s and t we remove the

edge with the minimum value on s-t path. The min-cut

between s and t in the initial graph G is also defined by

two connected sub sets of nodes in the tree.

2.2 Notations [7]
Cut: A cut of graph is basically partitioning its vertices in two

subsets (V,S-V) and it is represented by C. Weight of a cut

can be defined as the summation of all the edges that connect

the two subsets V and S-V.

w(C)= ∑ w(u, v) where (u,v)ϵE and uϵS, v∉S

s-t Cut: S-t cut for any two vertices s and t can be defined as

a cut such that s ϵ S and t ∉ S .

Min s-t Cut: Among all the s-t cuts of the Graph G, cut

having minimum value is known as Min s-t cut.

Min-Cut: Min cut of an undirected edged weighted graph G

is set of edges with minimum sum of weights, such that

removal of this leads to unconnected of the graph.

3. EXISTING APPROACHES

3.1 Max Flow Min Cut Theoram
According to the max-flow min-cut theorem in a flow

network, the maximum possible flow from the source node to

the sink node, is equal to the minimum capacity which when

removed from the network causes no flow. The max-flow

min-cut theorem states the maximum value of an s-t flow is

equal to the minimum capacity of an s-t cut..

3.2 Gomory-Hu Algorithm[4]
According to the Gomory and Hu, a graph having n nodes can

have n-1 numerically different flows. So all flows can be

deduced after only n-1 different flows have been computed.

Consider a flow network whose nodes have been separated in

http://en.wikipedia.org/wiki/Turned_a

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 17, October 2013

27

two sets A and A’, by a minimum cut(A, A’), in such a way

that nodes Ni ϵ A and Nj ϵ A’. Now if all nodes in A’ are

replaced by a single node P to which all the arcs of the cut are

attached then a new condensed network will result. In this

condensed network consider the maximum flow between two

ordinary nodes Ne and Nk. Gomory and Hu proposed the

following lemma:

Lemma II: the flow between two ordinary nodes Ne and Nk

 in the condensed network is numerically equal to the flow

f(e,k) in the original network.

3.3 Stoer Wagner Algorithm[3]
M.Stoer and F.Wagner have given a simple and compact

algorithm for finding the minimum cut of a graph. The

algorithm is remarkably simple and has the fastest running

time so far. The algorithm uses the following very interesting

theorem.

Theorem I: Let s and t be two vertices of a graph G. Let

G/{s, t} be the graph obtained by merging s and t. Then a

minimum cut of G can be obtained by taking the smaller of a

minimum s-t-cut of G and a minimum cut of G/{s, t}.

4.5.2.1 Proof: The theorem holds since either there is a

minimum cut of G that separates s and t, then a minimum s-t-

cut of G is a minimum cut of G; or there is none, then a

minimum cut of G/{s, t} does the job. So a procedure finding

an arbitrary minimum s-t-cut can be used to construct a

recursive algorithm to find a minimum cut of a graph.

Procedure:
MINIMUMCUTPHASE (G, w, a)
A ← {a}
While (A ≠ V)
Add to A the most tightly connected vertex
Store the cut-of-the-phase and shrink G by merging the two

vertices added last.

A subset A of the graphs vertices grows starting with an

arbitrary single vertex until A is equal to V. In each step, the

vertex outside of A most tightly connected with A is added.

Formally, we add a vertex

z ∉A such that w(A, z)= max{w(A,y)|y∉A}
Where w(A, y) is the sum of the weights of all the edges

between A and y. At the end of each such phase, the two

vertices added last are merged, that is, the two vertices are

replaced by a new vertex, and any edges from the two vertices

to a remaining vertex are replaced by an edge weighted by the

sum of the weights of the previous two edges. Edges joining

the merged nodes are removed.

The cut of V that separates the vertex added last from the rest

of the graph is called the cut-of-the-phase. The lightest of this

cuts-of-the-phase is the result of the algorithm, the desired

minimum cut.

MINIMUMCUT(G, w, a)
while |V|> 1
MINIMUMCUTPHASE(G, w, a)
if the cut-of-the-phase is lighter than the current minimum cut
then store the cut-of-the-phase as the current minimum cut

Notice that the starting vertex a stays the same throughout the

whole algorithm. It can be selected arbitrarily in each phase

instead.

3.4 Run Time Complexity
The algorithm consist of |V|-1 identical phases each of which

requires O(|E|+|V|log|V|) time yielding an overall running

time of O(|V||E|+|V|2log|V|)..

4. Our Approach
This work proposes a new approximation algorithm for

constructing the minimum cut tree. Upper-bound value for

each node of the graph is calculated. Upper-bound value of

any node is defined as the value of edge, which upon removal

separates this node from rest of the graph i.e.

Upper bound(u)= ∑ w(u, v) where vϵ Adj(u)
Lemma IV: The value of minimum cut of a graph G

separating Ni and Nj is less than or equal to minimum of the

upper bound values of two nodes Ni and Nj.

Proof: Simple reasoning can be given to prove it. Let (A,A’)

represent the minimum cut of G, which separates both Ni and

Nj. Upper-bound(Ni) and Upper-bound(Nj) are the values of

two cuts which also separate Ni and Nj. Therefore,

w(A,A’) ≤ min(Upper-bound(Ni), Upper-bound(Nj)) where
w(A,A’)=∑ w(Ni, Nj) where Ni ϵ A and Nj ϵ A’

4.1 Algorithm
Find an edge uv such that upon merging the two nodes Nu and

Nv upper bound values reduces i.e.
max(Upperbound(Nu),Upperbound(Nv))>Upperbound(Nu)+Up

p-erbound(Nv)-2*w(u,v)

Start from the node having the minimum upper-bound value

and check for all of the edges leaving it. If upper bound values

can be reduced by merging it with any of the nodes, then

nodes are merged and procedure is repeated. If reduction of

upper bound values is not possible , then check for rest of the

nodes in the increasing order of upper-bound values. The

reason behind considering the nodes in increasing order of

upper-bound values will be clear in next lemma.

After all the nodes in the graph are merged and it has only one

node left, construct the min-cut tree by using the information

from intermediate stages. Move from last to first stage and at

each stage we see the two nodes that were merged during last

stage and separate the node with smaller of the two upper-

bound values from the other by an arc bearing the value equal

to the smaller of the two upper-bound values. Since we

separate the two merged nodes in the tree by an arc having the

value equal to smaller of the two upper-bound values, it is

necessary to consider the nodes during merging process in the

increasing order of upper-bound values so that the node with

less upper-bound value will be merged first , if possible all.

Lemma V: If nodes to be merged are considered in the

increasing order of upper-bound values, and while examining

the adjacency list of Ni, Nj is found, as the node which upon

merging with Ni will reduce the upper-bound value of Ni,

then

1. Either upper-bound(Nj) will also be reduced.
2. Or upper-bound(Ni) can’t be reduced.

Proof: Nodes are considered in the increasing order of upper-

bound values, and so
Case 1: upper-bound(Nj) ≥ upper-bound(Ni)
Since merging Ni and Nj reduces the upper-bound value of

Ni, therefore
Upper-bound(Nj) + upper-bound(Ni) – 2*w(i, j) ≤ upper-

bound(Ni)
It is clear from above two equations :

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 17, October 2013

28

Upper-bound(Nj) + upper-bound(Ni) – 2*w(i, j) ≤ upper-

bound(Nj)
i.e. upper-bound(Nj) is also reduced
Case 2: upper-bound(Nj) < upper-bound(Ni)
Since Nodes are considered in the increasing order of upper-

bound values, , checking for Ni itself implies that Nj has

already been checked and it was not possible to reduce its

upper-bound value at all. So in this case upper-bound(Nj)

can’t be reduced.

If it is not possible to merge any node at any stage , then node

causing minimum increase in Upper bound values is merged.

4.2 Assumptions
This algorithm is based on the assumption that if two nodes

Ni and Nj are being merged and if upper-bound(Ni) < upper-

bound(Nj) then it is not possible to merge Nj with any other

node which will result in a node having upper-bound value

which is less than upper-bound(Ni). However , this

assumption is not true always.

During the course of this algorithm, if a pair of nodes Ni and

Nj are being merged such that:

 upper-bound(Ni) < upper-bound(Nj) and,

 It was possible to merge Nj with some other node Nk

such that upper-bound value of the resulting node(let it

be val) would have been less than upper-bound(Ni),

In this case, the resulting min-cut tree will not be correct and

will give wrong min-cut values for some pair of nodes. More

precisely, it would give the value of min Ni-Nj cut as upper-

bound(Ni) but the correct value is val. We call such a pair of

nodes Wrong pair to merge.

For sparse graphs, the probability of choosing the wrong pair

of nodes to merge is high due to the less number of available

pairs among which to choose i.e. due to less number of edges.

For dense graph, the probability choosing the wrong pair of

nodes to merge is very less because of the large number of

available pairs among which to choose..

For dense graph this algorithm produces surprisingly good

results. After running the procedure with more than 15000

randomly generated graphs we have figured out that for all

graph densities, success rate of algorithm is approximately

100%.

4.3 Time Complexity O(V2.logV+V2.d)
Where V is no. of vertices in given graph and d is degree of

graph.

Min-Cut Tree(G)

Input: Edge-weighted Undirected graph G

Output: Min-Cut Tree

Calculate the upper-bound values for each node.

While (number of vertices in the current graph >1)

 Loop (Consider the vertices in the increasing order

of upper-bound value)

 If (upper-bound value can be reduced by merging a

node with any adjacent node)

 Then those two adjacent nodes are merged

 Break:

 End if

 End loop

If (It is not possible to merge any pair of nodes)

Pair of nodes which results in minimum increment of the

upper-bound value are merged

End if

End While

Min-Cut Tree T is constructed by using the information

collected from intermediate stages as described:

a. Move from last to first stage.

b. At each stage check the two nodes that were

merged during last stage.

c. Separate the node with lower upper-bound value

from the other by an arc bearing the value equal to

the lower upper-bound value.

Return T

5. RESULTS

5.1 Random Graph with random number

of nodes
We generated 7500 random graphs of different densities and

number of nodes in them were also random(5-55). Edges

weights were also random and were between 1-300.Results of

running our algorithm with these graphs are summarized as

follows:

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 17, October 2013

29

Figure 1 Density v/s Success for graph having random number of nodes

Density

Figure 2 Density v/s Deviation graph for random number of nodes in Graph

It is clear from the graph that success rate is around 100%.

But the results may have an error of 0.5% for the cases of

extremely sparse graphs. But as the connectivity of graph

increases the error is eliminated.

5.2 Random Graph with fixed number of

nodes (55 nodes)
We generated 7500 random graphs of different densities and

number of nodes in them were also random(5-55). Edges

weights were also random and were between 1-300.Results of

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

20

40

60

80

100

120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Density

Success Rates

Deviation

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 17, October 2013

30

running our algorithm with these graphs are summarized as follows:

 Density

Figure 3 Density v/s Deviation for graph having 55 nodes

Density

Figure 4 Density v/s Deviation graph for 55 nodes in Graph

0

20

40

60

80

100

120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Success Rates

Deviation

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 17, October 2013

31

t is clear from the graph that success rate is around 100%. But

the results may have an error of 0.5% for the cases of

extremely sparse graphs. But as the connectivity of graph

increases the error is eliminated.

6. ACKNOWLEDGMENTS
Our thanks to my head of department Mrs Roohie Naaz Mir

for providing me guidance for the paper and technica aspects.

7. REFERENCES
[1] D. R. Karger, “Minimum cuts in near-linear time.”

Journal of the ACM, vol. 47, 2000..

[2] GauravAggarwal, Rajeevkumar, DineshSharma, Anshul

Meena,Mausham Ghosh, ”Min-Cut Tree”, 2010

[3] MECHTHILD STOER, FRANK WAGNER, “A Simple

Min-Cut Algorithm”, 1995

[4] R. E. Gomory, T. C. Hu. “Multi-terminal network ”,

 Journal of the Society for Industrial and Applied

Mathematics, vol. 9, 1961.

[5] Schrijver, “Combinatorial Optimization.”, Springer-

Verlag Berlin Heidelberg, 2003..

[6] S. M. Sadegh, Tabatabaei Yazdi Serap A. Savari ,”A

Max-Flow/Min-Cut Algorithm for a Class of Wireless

Networks “.

[7] Thomas H. Cormen, Leiserson, Reivest, Stein (MIT),

 ”Introduction to algorithms”, MIT Press – 2nd Edition

2001.

[8] Yuri Boykov and Vladimir Kolmogorov, “An

Experimental Comparison of Min-Cut/Max-Flow

Algorithms for Energy Minimization in Vision “, 2004

[9] Steven S. Skiena, “Algorithms design Manual”.

IJCATM : www.ijcaonline.org

