
International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 17, October 2013

18

An Improved Secured Client Authentication to Protect

Software against Piracy

G. Syam Prasad
B.Tech,M.Tech, Ph.D

Associate prof &HOD in CSE Dept
Usha Rama college of Engineering

& Technology, Telaprolu,
Vijayawada.

 G.Samuel Vara Prasad Raju

M.Tech., Ph.D
Professor in CSE Department

Andhra University, Visakhapatnam
.

ABSTRACT
Software protection and security plays a vital role to the

business and commercial organizations. Various techniques

has been proposed to enhance the security of the client’s

system to authenticate the software against piracy protection.

Various software attacks like hardware cloning, software

cloning ,software cracking, virus scripts provides high

influence on economic development. So it is necessary to

develop an enhanced framework to protect software systems

against piracy. Existing approaches provide solutions against

using smart cards or internet based secured user

authentication mechanisms. Existing literature work mainly

provides solutions to software piracy against different attacks.

But existing approaches doesn’t protect software’s through

reverse engineering or hardware cloning threats. This paper

proposed a framework which can be used to protect piracy

against hardware piracy. Experimental results shows proposed

approach provides better software protection against existing

smart card based techniques.

Keywords

Software Protection, Authentication, Hashing, Internet,

Piracy.

1. INTRODUCTION
Despite the high public profile of piracy as a threat to

intellectual property owners, surprisingly little useful research

continues to be done to understand the variety technical

solutions that may feasible. Piracy, like credit card fraud and

computer security, hazards go which cannot be solved

completely.

Research identified technical systems that offer content

owners the ability to control their risk. The most practical and

effective of these combine programmable code with encrypted

digital content. This code could be distributed along with

content, execute dynamically during playback, and enforce

each title’s security policies. Publishers could then control

security for his or her own content. Various robust

technologies and smart cards , have been applied as solutions

to the problem of piracy, but most of the commercial smart

card devices failed once an implementation is compromised.

Software-splitting [1] is naturally a conceptually simple as

well as appealing technique for protecting software from

piracy. Remove small but essential components that are

caused by the application putting them on a secure server,

either on any secure coprocessor or across the Internet. The

server provides the missing functionality, but rarely the

missing components. If reverse engineering the constituents

that are caused by the functionality is very tough, the server

may have absolute control over the circumstances under

which is situation software may be used.

Software cracking serves as a serious threat to several within

the software industry. It s the problem in which a cracker,

having obtained a copy of a given software he likes to attack,

succeeds in breaking the protection that typically comes built

into it. Typically, crackers would create modified little

examples of the software, or crackz, whose copy protection or

usage control mechanisms have been disabled. Cracked

software can then be illegally redistributed to the public,

exacerbating the application piracy problem. With commerce

and distribution of copyrighted multi-media rapidly moving

online, the demand for software protection is more urgent than

before: client software code running on untrusted machines

really needs to be secured against tampering[2].

Protection mechanisms that will effectively protect software

running in untrusted environments should have some

fundamental properties:

Resilience: The protection does not have any single points of

failure that is more difficult to disable.

Self-defense: Ready to detect and immediately take actions

against tampering (i.e., code modification).

Checksum another section of program code at runtime and

verify its integrity (i.e., check if it was tampered with). In the

event the guarded code can be found altered, the guard will

trigger whichever sequence of actions is desired regarding the

situation, directly from the mildest of silently logging the

detection event, into the extreme of producing the software

program un- usable (e.g., by halting its execution, or even

better, causing an eventual crash that is going to be hard to

trace back to the guard). If no code changes are detected, the

program execution proceeds normally. Programs guarded by

checksumming guards are made, using some sense, \self-

aware\" of their own honesty.

There are actually three major threats recognized contrary to

the intellectual property contained in software. Software

piracy happens to be the illegal reselling of legally obtained

copies regarding a program. Software tampering happens to

be the illegal modification of a program to circumvent license

checks, must purchase use of digital media protected through

software, etc. Malicious reverse engineering would be the

extracting of causing section of a program as a way to reuse it

in ones own[9].

Protecting code from attacks such as reverse engineering ,

analysis and tampering attacks is among the main concerns

for software providers. If a competitor succeeds in obtaining

and reusing a algorithm, it'd bring about major issue.

Moreover, secret keys, confidential data or security related

code typically are not planned to be examined, extracted,

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 17, October 2013

19

stolen or corrupted. No matter if legal actions which can

include patenting and cyber crime laws are in place, these

techniques remain an important threat to software developers

and security expert[3].

This paper provides a solution on software protection and

gives better client server secure software installation process

which would encourage further research to protect software

against piracy. This paper additionally provides various

viewpoints, discuss challenges and suggest future directions.

2. BACKGROUND AND RELATED

WORK
Collberg C.S. and Thomborson C. et al. [3] provided a

compact outline approaches to protect against these threats.

Piracy, reverse engineering and tampering have already been

the key software threats. Software watermarking which

specializes protecting software reactively against piracy.

When that data is distinctive for each example, anyone can

mark out copied software into the source unless the

watermark is smashed. It usually implants hidden, distinctive

data into a remedy in such a manner that it may be guaranteed

that a certain software instance is one amongst a certain

individual or company. The next group, code obfuscation,

protects the software from reverse engineering attacks. This

approach comprises of one of these program alterations that

alter a program in such a manner that its functionality remains

identical but analyzing the internals of the program becomes

very tough. Another team of approaches focuses in order to

make software “tamper-proof”, referred to tamper-resistant.

Most of the developed software products which overcomes

the reverse engineering attacks while developing the code

segments[4-6].

Most software tempering is completed not by altering a lot of

the executable.[4]Oblivious hashing requires provide both

results and stealth. Attention is paid to blend executable code

with hashing code, making it difficult for hackers to extract to

get program that executes the program. Wile program is

compiling with the degree of generating the tree of execution,

hashing code is injected and hence shares the very same

registers and executes the same manner like the application

making it virtually impossible to identify. Oblivious hashing

computes an incredible hash value dependent upon the order

of execution, therefore is aware of the the process software

executes.

In this particular paper, Hongxia Jin et al., [5] concentrates on

the attacker identification and forensic examination. This

paper focuses on the protection associated with a software

application and the content, many have seen billions of

dollars spent each year through industries just for software

piracy and digital media piracy. The achievement of the

content/software security within the huge segment is based

on the flexibility of protecting software code against

tampering and identifying the attackers who issue the pirate

copies. This paper discussed in regards to proactive detection

approach for defeating an on-going attack prior to a

cooperation has occurred. The author also describes another

detection approach for post-compromise attacker

identification. But this system has limitation regarding the

user identification against the hardware piracy.

In [6] proposed a secure user authentication mechanism

between client and server using Elliptical cryptography

algorithms. Software authors can use strong encryption to

delay the disassembly of their own applications. Lacking the

proper decryption key or algorithm, the encryption defeats

both the static and dynamic analyses. An attack must either

defeat the encryption process itself or find yet another way to

search for the decryption key. After obtaining the important

thing, the attacker can decrypt the encrypted binary revealing

the binary executable. This case is perfect for reverse-

engineering, because of the fact that the reverser is capable of

doing static and convincing analysis upon the deciphered

application. Often times, the reverser can dynamically

analyze this program, because many programs decrypt

themselves during execution. The decryption method can use

an internally or externally stored key. A good developer can

store the decryption key in the program possibly in an

encoded form or calculate it at runtime. Then again, the

developer could store the important thing external to this

program either on a local hardware device or on an overseas

key server. Among the latter scenario, the program requests

the key from the key server at runtime and of course the

server would only supply the encryption key after

authenticating the client[7,8].

3. PROPOSED SYSTEM
Software Piracy protection in this proposed framework is

achieved in two phases as Client phase and Server Phase. In

the client phase user system details are requested and stored

securely in the software product manufacturers company. In

the second phase user’s system details are validated at the

company’s server in order to check whether the user’s license

is standalone or not. The whole working process in each phase

is described in this section.

3.1 Client Side Registration Phase
Before deploying the software product, the software

manufacturer company has to embed proposed secure privacy

mechanism in their product for software protection and user

validation. After delivering the product all the users has to

register the product through this secure client registration

phase.

In the client registration phase all the users has to install the

product with internet connectivity. The overview architecture

of client side process is given below:

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 17, October 2013

20

3.2 Client Side Registration Process

In this process client system reads processor_id,cpu_id and

hdd_id from the client system along with nonce random

number. After reading security parameters from the system

machine_id is generated as:

MachineID Generation:
Machine_ID=Concat(Processor_id,Cpu_id,Hdd_id)mod256.

If ((Bytes lengths of Machine_ID) ==256)

Flag=true;

Else

PaddingSize=256-Size(Machine_ID);

Machine_ID=Machine_ID+Padding_bytes;

Whirlpool Hash Function:
The Whirlpool Hash Algorithm is 512-bit hash function

designed by Vincent Rijmen and Paulo S.L.M. Barreto is one

of the best hashing approach used for privacy

Whirlpool is block cipher based hash function intended to

provide security and performance that is comparable than that

found in non block cipher based hash functions such as SHA.

Whirlpool has the following features:

 Hash code is 512 bits.

 The overall structure of the hash function is one that has

been shown to be resistant to the usual attacks on block

cipher based hash codes.

 Uses Static S box.

 Easy to attack intermediate matrices using existing

shifting columns operations.

Proposed Hash Function:
Hash Function Structure:

Given a message consisting of a sequence of blocks

b1;b2;…bt, the Modified hash function is expressed as

follows:

HASH(0) = IV

HASHi = W(HASH(i-1);bi) +(HASH)i-1 + bi

HASHt = Final Hash Code.

Proposed algorithm takes maximum length of 512 bits as

input a message and produces as output a 512-bit message

digest.

For each Round following Four operations are performed :

 Add Key in Each Round and Next Round.

 Bytes Substitution Approach.

 Shift columns using modified approach.

 Mix Rows/Columns for security.

This process is repeated until all rounds are executed. Finally

Hash code is generated.

READ PROCESSOR Id

Read CPU-ID

Read HDD-ID

Generate Nonce

Generate Machine-ID

Convert Machine-ID to

Byte Array

Generate Hash Code

Using Proposed Approach

Encrypt the Hash Code

For secure Transmission

Send Encrypted Hash along

with other parameters to

Server

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 17, October 2013

21

Dynamic S-BOX

Randomization:

In the Dynamic S_BOX for each client it will generate unique

S_BOX dynamically. Based on the Machine_ID it will generate
unique Dynamic SBOX.

First it reads clients Machine_ID and then it converts into byte[] as

S_BOX[]. After that S_BOX[] is initially Permuatated it will save
into M_SBOX[]. After the M_SBOX[] is initialized with initial

Permutation,

i) Get row/column wise odd elements and copy into temp1[].

Mach_id=Machine_ID

Padlen=128-Len(Mach_id)

Find the Avglen

of Mach_id

bytes[]

STACK

n1

n2

n3

-

-

nd

String temp=temp+

0

()
i d

i

i

toBinary n

POP

Int val=Convert temp

to decimal

Padchar=LastIndexDig(val

)

Padding Mach_id with

padchar to get 128 chars.

Machine_ID=toUnicode(128

padded byte string)

Machine_ID string with

128 Unicode chars.

Read Calculated

Machine _ID

Convert to Byte[]

S_BOX[]=Bytes[](Machine_ID)

Perform Initial Permutation

M_SBOX[]=IP(S_BOX[])

Get row/column

wise odd number of

elements and copy

in Temp1[]

Get row/column

wise even number

of elements and

copy in Temp2[]

Final SBox

F_SBox[]=Temp1[]+Temp2[];

Randomization

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 17, October 2013

22

ii) Get row/column wise Even elements and copy into temp2[].

Finally SBOX is generated by permuting the concatenation of

both temp1[] and temp2[].

Example:

Proposed algorithm generates 256 size dynamic sbox

Unicode value is

Machine id:
75J66BSBFEBFBFF000206522020202020202020202020205

636374538585143

SBOX value:
\u0037\u0035\u004a\u0036\u0036\u0042\u0053\u0042\u0046

\u0045\u0042\u0046\u0042\u0046\u0046\u0030\u0030\u0030

\u0032\u0030\u0036\u0035\u0032\u0032\u0030\u0032\u0030

\u0032\u0030\u0032\u0030\u0032\u0030\u0032\u0030\u0032

\u0030\u0032\u0030\u0032\u0030\u0032\u0030\u0032\u0030

\u0032\u0030\u0035\u0036\u0033\u0036\u0033\u0037\u0034

\u0035\u0033\u0038\u0035\u0038\u0035\u0031\u0034\u0033

\u0034\u0034

Creating a dynamic SBOX is based on client system condition

as:

If(Machine_ID exist in ServerDB)

{

Use Existing SBOX;

}

Else

{

Create new SBOX;

}

Initial Permutation:

i = 0;

for j = 0 to 255;

do i = (i + SBOX[j])mod256;

swaping (SBOX[j] , SBOX[i]);

end;

MODIFIED SHIFT COLUMNS:

The Shift Every element in a Column down by x rows where

x equals to the column number cause a circular downward

shift of each column of state c except the first column. For

the second column, a 1-byte circular downward shift is

performed; for the third column, a 2- byte circular downward

shift is performed; and so on.

For each sub matrix of input size 8x8 transpose the matrix i.e

each rows is transform to corresponding columns. After

transformation is performed XOR operation is performed to

initial sub matrix and transposed matrix .

3.3 Server Side Validation Phase
Company Server receives the client’s system information in

encrypted format. Decrypts the encrypted information and

then verifies the client’s hardware information to protect

against piracy.Server side validation phase has following

steps:

1) Decrypt the E(3DES,Nonce,HCODE,security

parameters,ipaddress,others);

2) Using security parameters it will calculate Machine_ID.

3) Checks whether the Machine_ID is exist or not.

4) If Machine_ID exists then it will returns Already

registered message.

5) If Machine_ID not exist in server DB then the client

machine will returns activation code and then installation

process will starts at the client’s machine.

6) After successful installation of the software activation

code is saved in the company server DB.

4. EXPERIMENTAL RESULTS
All experiments were performed with the configurations

Intel(R) Core(TM)2 CPU 2.13GHz, 2 GB RAM, and the

operating system platform is Microsoft Windows XP

Professional (SP2). This framework implementation requires

hardware and internet connectivity.

Perform XOR operation

Temp[][]=Input[][]^TransInput[][]

Transpose Input[][]

TransInput[][]=Trans(Input[])

For Each input 8 x 8 sub matrix

Input[][]

Shift Every element in a Column

down by x rows.

MODIFIED SHIFT

COLUMNS

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 17, October 2013

23

Figure1: Client side HomeScreen of Proposed Work

 Figure 2: Get client system Bios Serial

Figure 3: Get client system cpu serial id

Figure 4: Get client system HDD serial id

Figure 5: Generates Machine-ID

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 17, October 2013

24

Figure 6: Client side software installation

Figure 7: Generates Activation Code

Figure 8: If client user already exists

Figure 9: Client enters activation code

Figure 10: Client activation code is active and

already registered then software starts installation.

Results Comparison:

Hardware Key:
75J66BSBFEBFBFF000206522020202020202020202

020205636374538585143

MD5:
c8962575b2dde44feb597404fc461146

SHA-256:

d3a71ccadd10daf38d69f335f9763c4d68a3f51b2716404

cc3299191479004e

SHA-512:
fa6c0bd08ebdf5dc5df654217d224d382066a903a4cbf3e

80d80ec69a19b727d78734d558be4e3923fa04a7ef5c2a

1bd84b29b005f0ca58e214d994d1905f76d.

NEW HASH:
CC5084F26D249A367F8417C218A7A5544D71887C3

0D7B429C08927CB4495C107EE98F1886C7F2D6CF

D9A1334105CFEF37FDAF0EF8542E74A32ED21D7

C779DE45

5. CONCLUSION AND FUTURE SCOPE
This system proposes a robust mechanism to protect software

against piracy using two phases. First phase of client’s

registration provides secure registration of security parameters

in the company DB. Proposed approach gives better hash value

which is very difficult to break against frequency attacks. This

system gives better security than existing approaches in terms

of time, and security parameters are concern. Proposed

Framework takes less time to generate activation code and an

instance of hardware parameters for unique client registration.

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 17, October 2013

25

6. REFERENCES
[1] Virtual Leashing: Internet-Based Software Piracy

Protection Ori Dvir

[2] Protecting Software Codes By Guards Hoi Chang,

Mikhail J. Atallah.

[3] Collberg C.S. and Thomborson C., “Watermarking,

Tamper-Proofing, and Obfuscation - Tools for Software

Protection”, IEEE Transactions on Software Engineering,

Vol. 28, Issue 8, Pp. 735 – 746, 2002.

[4] Protecting against piracy: Building Tamper resistant

software By Amodha Wijekoon

[5] Hongxia Jin and Lotspiech J., “Forensic analysis for

tamper resistant software”, 14th International

Symposium on Software Reliability Engineering, 2003.

[6] B. Pinkas and T. Sander, ―Securing passwords against

dictionary at-tacks,‖ inCCS ’02: Proc. 9th ACM Conf.

Computer Communications Security, New York, 2002,

pp. 161–170, ACM.

[7] Jan Cappaert, Bart Preneel, Bertrand Anckaert, Matias

Madou, and Koen De Bosschere “Toward Tamper

Resistant Code Encryption: Practice and Experience,”

LNCS, Vol. 4991, Pp. 86-100, 2008.

[8] Jan Cappaert, Nessim Kisserli, Dries Schellekens and Bart

Preneel “Self-Encrypting Code to Protect Against

Analysis and Tampering,” 1st Benelux Workshop Inf.

Syst. Security, 2006.

[9] A Thorough Investigation on Software Protection

Techniques against Various Attacks N. Sasirekha.

IJCATM : www.ijcaonline.org

