
International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 17, October 2013

14

An Improvised Algorithm for Improving Software

Reliability

Taraq Hussain Sheakh
Research Scholar JJTU Jhunjunu, Rajasthan

ABSTRACT

In order to improve the reliability of Software, we need to

implement better testing methods, but an attempt is made to

the selection of the test is near to impossible task. The

reliability of the software can be achieved by analyzing the

test which is direly reliant upon the system. This research

paper, tend to emphasize the selection of testing method and

an algorithm which generate the reliability and an emphasis is

made to generate the results reliability on the basis of faults

and errors.

Keywords
Software Testing, Static Testing, and Dynamic Testing.

1. INTRODUCTION
Research on software reliability engineering has been

conducted for more than 35 years and more than 70 statistical

models have been proposed for measuring, estimating and

improving software reliability. Most of the existing models

predicting software reliability are purely based on observation

of software failures24. However relevant information for the

software development and improvement, the method of failure

detection, environmental factors etc, are ignored. The demand

for composite software systems has augmented more rapidly

than the ability to design, implement, test, and maintain them,

and the reliability of software systems has become a major

concern for our modern society.IEEE (1991) defines software

reliability as the probability of failure-free software operations

for a specified period of time in a specified environment8.

Mathematically, reliability R(T) is the probability that a

system will be successful in the interval from time 0 to time t

R(T) =P(T>0), t ≥0 25
It is one of the attributes of software quality, and is generally

accepted as the key one since it quantifies software failures

2. SOFTWARE RELIABILITY
Software Reliability is defined as the probability that software

will provide failure-free operation in a fixed environment for

a fixed interval of time In fact software reliability is the

foremost thing for the software engineering which propagates

not only the functionality but also the operations of software

quality. Software reliability also makes certain the prevention

of the errors and failures that is the cause and concern of the

barriers of reliability23.

 Software Reliability Engineering, consequently, is the field

that quantifies the operational behavior of software-based

systems with respect to user requirements concerning

reliability25. It includes: 1. Software reliability measurement,

which includes estimation and prediction, with the help of

software reliability models established in the literature24; 2.

The attributes and metrics of product design, development

process, system architecture, software operational

environment, and their implications on reliability24; and 3.

The application of this knowledge in specifying and guiding

system software architecture, development, testing,

acquisition, use, and maintenance24
.

3. SOFTWARE TESTING
Software Testing defines the building of a program which

emphasis the whether the inputs of the particular program

ensures the expected and desired results. Software testing is

an important component of software quality assurance, and

many software organizations are spending up to 40% of their

resources on testing. For risky software like flight control

testing is very important and expensive as a consequence of

much research on the risk analysis has been made and need to

resolve out also.

Thus the possibility that a software project will experience

undesirable events, such as schedule delays, cost overruns, or

outright cancellation and other related operations should be

controlled and measured26. Software testing is a process of

executing a program with the goal of finding errors’ and

consequently to reduce it as far as possible so that the

software will become approached to the accuracy of

reliability. So, testing means that one inspects behavior of a

program on a finite set of test cases (a set of inputs,

implementation preconditions, and expected outcomes

developed for a particular objective, such as to exercise a

particular program path or to validate conformity with a

specific obligation, for which appreciated inputs always

exist24.In practical the complete set of test is considered as

infinitely large and theoretically there are many test cases for

even simple or effortless programs. So how to select the most

appropriate test cases? For the risk analysis need depth study

and the research for the engineering expertise.

3.1. Static Testing techniques

Static testing/ Non-implementation based techniques focus on

the range of ways that are used to prove the program

irrespective of real execution of the program.

Failure Rate

 Testing Time

 Fig.1 Basic Ideas of Software Reliability

It is not generally comprehensive testing, but verify the code,

or document, it is mainly concerned with the analysis and

scrutiny of system representation such requirements

documents, design diagrams and the program source code,

Testing

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 17, October 2013

15

either manually or automatically, without actually executing

the code26. Techniques in this area include code inspection,

program analysis, symbolic analysis, and model checking26

etc.Testing is an activity performed for evaluating software

quality and for improving it. Hence, the goal of testing is

 No

 No

Yes

Yes

Fig.2 An Improvised Algorithm

Took a Problem

Analyze the Problem

Select an Appropriate

Test Model

If the Test is

Optimum

Generate the Result

If the Result

meets

Reliability

Matrix

Implement It

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 17, October 2013

16

systematical detection of different classes of errors (error can

be defined as a human action that produces an incorrect result,

in a minimum amount of time and with a minimum amount of

effort

3.2. Dynamic Testing
Whenever we choose techniques that are used to discover

software quality and authenticate the software through actual

executions of the software under test26. We test the software

with real or stipulated inputs, both normal and abnormal,

under controlled and predictable conditions to check how a

complex, non deterministic system might respond with

different behaviors to same input, depending on the system

state only by studying levels set for the dynamic aspects

evaluated are met.

S.No No. of Errors in % Reliability in %

1. E >70 Nil

2. E > 50 and E< =70 20 %

3. E >30 and E <=50 40%

4. E > 10 and E <=30 60%

5. E <=10 Maximum

Table 1. Reliability Matrix

Fig.3 Line Chart Showing Reliability Matrix

Fig.1 shows that on removing the faults entirely from the

software lot of time is needed i.e. failure rate decreases with

the consumption of more time for test.

Fig.2 shows An Improvised Algorithm which will be used

ensures the reliability of software. The prime facie of the

Algorithm is to choose an appropriate test model which

further generates the quality.As mention in 3.2 dynamic testin

-g ensures the quality as well as the reliability of software if

the inputs are taken in controlled environment.

Table 1. generates the reliability matrix on the accord of error

In percentage. But it is almost practically impossible to have

 Errors lesser than 10% and reliability maximum which

further offer the research problem.

4. FACTORS FOR SELECTING

SOFTWARE TECHNIQUES
For the introduction of the software in the organization it not

only meet the requirements but also solve their needs

effectively and efficiently. On the other hand organization

should also ready to adopt the new changes with the

controlled environment. The tool should help in building the

strengths of the organization and should also address its

weaknesses. The organization needs to be ready for the

changes that will come along with the new tool if the latest

testing techniques do not full fill the obligation for the end

user, and then it is necessary that the organization must

choose steps to improvise the testing practices.

Certainly, the processes can be improvised by introducing

parallel tool to support those practices and it can always pick

up some good ideas for improvement from the ways that the

tools work. However, it do not depend on the tool for

everything, but it should provide support to your organization

as expected.

The following factors are important during tool selection:

 Accessing the organization’s maturity.

 Pick out the techniques in the problem domain of

organization that will help to improve the testing process.

 Estimation and Evaluation of techniques of problem

domain for requirement and objective area.

 Evidence to show that whether the product works for the

desired objectives and requirement.

 Evaluation of the vendor (training, support and other

commercial aspects) or open-source network of support;

 Identifying and preparation internal execution.

5. EXPERIMENTATION PROBLEM26
1) A comparison of testing techniques is to filter out errors

and faults so as to produce effectiveness and efficiency.
A criterion for comparative analysis of testing techniques

is usually not well defined.

2) As most of the studies do not focus on the comparative

analogy, thus creating ambiguity in test technique

selection.

3) Previously studies show the difference according to the

number and parameter chosen. A common standard is

missing for their comparison.

4) As much of studies also do not emphasize the factors of

experimental control.

5) Many experimental techniques generate faults and errors

which result to less random variation in fault rate and

more statistical power.

6) We have another drastic problem that only small sample

are chosen for experimental evaluation which

demonstrate the better outcome than other.

7) Experimental techniques biased either towards academic

or industrial evaluation on the basis of academic and

industrial system.

6. DISCUSSIONS AND CONCLUSIONS
Software reliability modeling has drawn a focus to and

various research Scholars attempt to leads to software quality.

Which thereafter boost the various industries seriousness of

software quality measurement? In order to provide reliability

to the software, it demands effective software testing

techniques. Although any efficient software testing

procedures demand time and cost. As static testing focus on

the documentation, Tester needs to emphasize and depend

upon the dynamic testing for improving the reliability. There

lies the authentic problem. Research scholars have to consider

0

0.2

0.4

0.6

0.8

Reliability in %

Reliability in
%

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 17, October 2013

17

the dynamic testing techniques that will used to debug the

errors or faults in minimum time and cost.

7. FUTURE SCOPE
There are many techniques and method which have been used

in order to provide the reliability of the Software, but some of

them have been proved the reliability, but it is also true that

not any methods have the ability to realized 100% percent

reliability of software in practical. In this regard if this

algorithm is used, it will provide the reliability, which is the

theme of the problem. This Paper further defines the problem

domain and the area for Research.

8. REFERENCES
[1] Crow, L.H., 1974. "Reliability Analysis for Complex

Repairable Systems," Reliability and Biometry, F.

Proshan and R.J. Serfling *(eds.) SIAM, Philadelphia,

379-410.

[2] Dalal, S.R. and C.L. Mallows. 1988. When should one

stop software testing? J. Amer. Statist. Assoc. 83:872-

879.

[3] Dalal, S.R. and C.L. Mallows. 1990. Some graphical aids

for deciding when to stop testing software., IEEE J.

Special Areas in Communications 8:169-175. (Special

issue on Software Quality & Productivity.)

[4] Dalal, S.R. and C.L. Mallows. 1992. Buying with exact

confidence. Ann. Appl. Prob. 2:752-765.

[5] Dalal, S.R. and A.M. McIntosh. 1994. When to stop

testing for large software systems with changing code.

IEEE Trans. Software Engineering, 20:318-323.

[6] Gaffney, J.D. and C.F. Davis, 1988. "An Approach to

Estimating Software Errors and Availability," SPC-TR-

88-007, version 1.0, March 1988, Proceedings of the 11th

Minnowbrook Workshop on Software Reliability, July

1988.

[7] Goel, A.L. and K. Okumoto, 1979. "Time-Dependent

Error-Detection Rate Model for Software and Other

Performance Measures," IEEE Transactions on

Reliability, R- 28(3):206-211.

[8] Institute of Electrical and Electronics Engineers, 1991.

ANSI/IEEE Standard Glossary of Software Engineering

Terminology, IEEE Std. 729-1991.ISO, 1991. "Quality

Management and Quality Assurance Standards - Part 3:

Guidelines for the Application of ISO 9001 to the

Development, Supply and Maintenance of Software,"

ISO 9000-3, Switzerland.

[9] Keiller, P.A., B. Littlewood, D.R. Miller, and A. Sofer,

1983. Comparison of software reliability predictions,

Proceedings of the 13th IEEE International Symposium

on Fault-Tolerant Computing (FTCS-13), Milano, Italy,

128-134.

[10] Littlewood, B and V. Verrall, 1973. A Bayesian

Reliability Model with a Stochastically Monotone

Failure Rate, IEEE Transactions on Reliability, R-

23(2):108-114.

[11] Lee, L., 1992. The Day the Phones Stopped: How people

Get Hurt When Computers Go Wrong, Donald I. Fine,

Inc.

[12] New York. Lyu, M.R., 1996. Handbook of Software

Reliability Engineering, McGraw-Hill, New York.

[13] Moranda, P.B. and Z. Jelinski, 1972. Final report on

Software Reliability Study, McDonnell Douglas

Astronautics Company, MADC Report Number 63921.

[14] Moranda, P.B., 1975. Predictions of Software Reliability

During Debugging, Proceedings of the Annual

Reliability and Maintainability Symposium, Washington,

D.C., 327-332.

[15] Musa, J.D. and K. Okumoto, 1984. A Logarithmic

Poisson Execution Time Model for Software Reliability

Measurement, Proceedings Seventh International

Conference on Software Engineering, Orlando, Florida,

230-238.

[16] Musa, J.D., A. Iannino, and K. Okumoto, Software

Reliability - Measurement, Prediction, Application, 1987.

McGraw-Hill, New York.

[17] Musa, J.D., G. Fuoco, N. Irving, D. Kropfl, and B.

Juhlin, 1996. "The Operational Profile," Chapter 5 in

(Lyu 1996), 167-218.

[18] Rome Laboratory, 1987. Methodology for Software

Reliability Prediction and Assessment, Technical Report

RADC-TR-87-171 ; revised on Technical Report RL-

TR-92-52, 1992.

[19] Schneidewind, N.F., 1975. "Analysis of Error Processes

in Computer Software," Sigplan Note, 10(6):337-346.

[20]Singpurwalla, N.D. 1991. Determining an optimal time

interval for testing and debugging software. IEEE Trans.

Software Engineering 17(4):pp313-319 Schick, G.J., and

R.W. Wolverton, 1973. "Assessment of Software

Reliability,"

[21] Proceedings of the Operations Research, Physica-Verlag,

Wurzburg-Wien, 395- 422. South West Thames Regional

Health Authority, 1993. Report of the Inquiry into the

London Ambulance Service.

[22] Yamada, S., M. Ohba, and S. Osaki, 1983. "S-Shaped

reliability Growth Modeling for Software Error

Detection," IEEE Transactions on Reliability, R-

32(5):475-478.

[23] Software Reliability by S.R Dalal, M.R Lyu, C.L

Mallows Bellore, Lucent Technologies, AT&T Research.

[24] Software Testing Methods and Techniques by Jovanovic,

Irena.

[25] Software Reliability by Hoang Pham.

[26]“Evaluating Effectiveness of Software Testing

Techniques with emphasis on enhancing Software

Reliability” by Sheikh Umar Farooq and S.M.K Quadri

on Journal of Emerging Trends in Computing and

Information Sciences Vol 2. No.12, Dec. 2011.

IJCATM : www.ijcaonline.org

