
International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 15, October 2013

5

De-De Dodging Algorithm for Scheduling Multiple
Workflows in Hybrid Cloud

B.Arunkumar
Assistant Professor

Dept. of CSE

Coimbatore, Tamilnadu, India

 T.Ravichandran
Principal

Hindustan Institute of Technology

Coimbatore, Tamilnadu, India

ABSTRACT
Workflow-based applications usually consist of multiple

instances depending on a single workflow, which are jobs with
control or data dependencies to provide a well-defined scientific

computation task, with each instances acting on its own input

data. Due to the raise in convention of many applications

currently, there is necessitating for high processing and storage

capacity along with the consideration of cost and instance use
and also without any deadlocks between those instances. To

improve the performance of the entire system a high degree of

concurrency is obtained by running multiple instances at the

same time. On the other hand, since the amount of storage is

limited on most systems, deadlock due to numerous storage
requests would-be a problem. In this paper we have proposed a

new dependency and deadlock avoidance (De-De algorithm)

algorithm along with the consideration of both instance and

value. The TCHC algorithm that comes to the decision of

desiring which resource should be chartered from public
providers is now combined with the newly proposed De-De

algorithm considering that each instance of both single and

multiple workflows should work without any deadlocks. To

address this problem, we have combined two new concepts with

the traditional problem of deadlock avoidance by proposing a
single algorithm that can maximize active (not just allocated)

resource utilization and minimize makespan. Our approach is

based on the well-known banker’s algorithm, but our algorithms

make the important distinction between active and passive

resources, which is not a part of previous approaches. Through
simulation-based studies, we show how our proposed algorithms

are better than the classic banker’s algorithm.

Keywords
TCHC algorithm, De-De algorithm, Scheduling, Multiple

workflows, hybrid cloud.

1. INTRODUCTION

Several high-performance computing (HPC) and a set of

computations to be completed, such as those already discussed

in bioinformatics [2], [3], biomedical informatics [4],

cheminformatics [5] and geoinformatics [6], are complicated
workflows of single job. [9] Batch workloads that are typical

runs on controlled local area cluster environments. On the other

hand organizations that have high workload demands

increasingly need ways to share resources across the wide-area,

both to lower costs and to increase productivity. One approach
to accessing resources across the wide-area is to simply run a

local area batch system across multiple clusters that are spread

over the wide-area and to use a distributed file system as a

backplane for data access. Alas, this approach is loaded with

difficulty, largely due to the way in which I/O is handled. The
principal problem in using a traditional distributed file system is

in its approach to control: many decisions concerning caching,

consistency, and fault tolerance are made implicitly within the

file system. Although these decisions are reasonable for the

workloads for which these file systems were designed, they are

ill-suited for a wide-area batch computing system.

The workflow is usually organized as a directed acyclic graph
(DAG), in which the constituent jobs (i.e., nodes) are either

control or data dependent (i.e., edges).Control-flow dependency

specifies that one job has to be completed before other jobs start

their process. In contrast, dataflow dependency specifies that a

job cannot start until all its input data (typically created by
previously completed jobs) is available [7]. Control-flow is the

more commonly used abstraction to reason about the

relationship between different jobs, but we show how dataflow

information is more valuable to effectively utilize the storage. A

workflow-based workload may consist of multiple instances of a
workflow. Typically, each instance of the workflow is data-

independent of other instances since they compute with different

inputs or parameters. [8]Additionally, workflows are

collaboratively designed, assembled, validated, and analyzed.

Workflows can be shared in the same manner that data
collections and compute resources are shared today among

communities. The scale of the analysis and thus of the

workflows often necessitates that substantial computational and

data resources be used to generate the required results. [9] So as

a remedy for this, Cloud computing is designed such a way that
provides on-demand resources to the users, so as to provide

locally available computational power, delivering new

computing resources when necessary.

Over the last several years, virtual machines have become a

usual deployment object. Virtualization advance enhances
flexibility because it abstracts the hardware to the point where

software stacks can be deployed and redeployed without being

tied to a specific physical server. Virtualization technology

enables a dynamic datacenter where servers provide a pool of

resources that are attached as needed, and where the relationship
of applications to compute, storage, and network resources

changes dynamically in order to meet both workload and

business demands.

With application deployment decoupled from server

deployment, applications can be deployed and scaled rapidly,
without having to first procure physical servers. Virtual

machines have become the prevalent abstraction — and unit of

deployment — because they are the least-common denominator

interface between service providers and developers. Using

virtual machines as deployment objects is sufficient for 80
percent of usage, and it helps to satisfy the need to rapidly

deploy and scale applications. Virtual appliances, virtual

machines that include software that is partially or fully

configured to perform a specific task such as a Web or database

server, further enhance the ability to create and deploy
applications rapidly. The combination of virtual machines and

appliances as standard deployment objects is one of the key

features of cloud computing.

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 15, October 2013

6

Cloud Computing vendors combine virtualization (one computer

hosting several “virtual” servers), automated provisioning

(servers have software installed automatically) and Internet

connectivity technologies to provide the service.
Consequentially, acquisition costs are low but tenants never own

the technology asset and might face challenges if they need to

“move” or end the service for any reason. Something that is

often overlooked when evaluating Cloud Computing costs is the

continued need to provide LAN services that are robust enough
to support the Cloud solution. These costs are not always small.

For example, if you have 6 or more workstation computers, you

will probably need to continue to maintain a server in a domain

controller role (to ensure name resolution), at least one switch

(to connect all of the computers to each other and the router),
one or more networked printers, and the router for the Internet

connection.

Basically these are the following types of the Cloud Services:

SaaS (Software as a Service) It provides all the functions of a

sophisticated traditional application to many customers and
often thousands of users, but through a Web browser, not a

“locally-installed” application. It eliminates customer worries

about application servers, storage, application development and

related, common concerns of IT. Highest-profile examples are

Yahoo and Google, and VoIP from Vonage and Skype. PaaS
(Platform as a Service) Delivers virtualized servers on which

customers can run existing applications or develop new ones

without having to worry about maintaining the operating

systems, server hardware, load balancing or computing capacity.

These vendors provide APIs or development platforms to create
and run applications in the cloud – e.g. using the Internet. IaaS

(Infrastructure as a Service) delivers utility computing

capability, typically as raw virtual servers, on demand that

customers configure and manage. IaaS is designed to augment or

replace the functions of an entire data center. This saves cost
(time and expense) of capital equipment deployment but does

not reduce cost of configuration, integration or management and

these tasks must be performed remotely. Apart from these we

have the following Cloud computing infrastructure models:

Public clouds are run by third parties, and applications from
different customers are likely to be mixed together on the

cloud’s servers, storage systems, and networks. Private clouds

are built for the exclusive use of one client, providing the utmost

control over data, security, and quality of service. Hybrid clouds

combine both public and private cloud models. They can help to
provide on-demand, externally provisioned scale. The ability to

augment a private cloud with the resources of a public cloud can

be used to maintain service levels in the face of rapid workload

fluctuations. Sometimes called “surge computing,” a public

cloud can be used to perform periodic tasks that can be deployed

easily on a public cloud.

2. DE-DE ALGORITHM DESCRIPTION

Workflows F: {f1, f2, f3…fn}

Deadline E
Resource H

Predestined Start Value PSV

Predestined Finish Value PFV

Public resource pool FB

Private Resource Pool G
Rescheduling group N

Priority Pr

Pending task PT

Application Remaining Time ART

Node set NS

Time & Cost value TCV

Job J with the instance i

Instance of workflows to be scheduled, Ii

Time taken for completion of a job, time ()
Temporary variables Wi and Ri

Storage request for the job getWriteSet ()

Storage allocation of the job getReadSet ()

Need of i resources in time t alloc (i, t) / need (i, t)

System safety check safetycheck ()
Deadlock Dependency Detection Algorithm (De-De),

2.1. ALGORITHM

1) F= Set of Workflows{ F=Workflows==set of tasks

TS==single task T}

2) function De-De (Ii , F)

3) R i← getReadSet ();

4) J ← J − (|Wi| − |Ri|) ;

5) alloc (i, t) ← alloc (i, t) + (|Wi
| − |R i |);

6) need (i, t) ← need (i, t) − |Wi
|

7) if (safetycheck (Ii))

8) J ← J − |Ri |;

9) alloc (i, t) ← alloc(i, t) + | Ri |;

10) return true;

11) goto line 19;

12) else

13) J ← J + (|Wi | − | Ri |);

14) alloc (i, t) ← alloc(i, t) − (|Wi | − |R i |);

15) need (i, t) ← need(i, t) + | Wi |;
16) return false;

17) goto line 54

18) End function

19) Perform initial schedule

20) Dependency De=0-5
21) For each W in TW

22) For each T in TS do

23) If T < De Do

24) If (H Є G) then

25) Schedule F in G

26) While (time(F) > E && iteration =F) do
27) Select node from NS with ↑Pr

28) If ni Э NS then

29) Add ni to NS

30) Iteration=iteration+1

31) End while
32) Schedule the H with ↓ PFV

33) De-De (Ii, H);

34) else select next task from TS

35) else select next workflow from WT

36) Else

37) Wi← getWriteSet ();
38) While (| Wi | > G && iteration =F) do

39) Request for H in FB

40) If PFV > ART then

41) Queue PT to execute

42) For each W in TW
43) For each T in TS do

44) If T < De Do

45) Select H Є FB then

46) Calculate TCV for new H

47) If TCV < (H Є G) then
48) Add H to FB

49) else select next task from TS

50) else select next workflow from WT

51) Schedule H with ↓ PFV

52) De-De (Ii, H);

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 15, October 2013

7

53) End while

54) End else

A cloud system receives numerous numbers of requests for a set
of resource to complete their jobs. These jobs are termed as

workflows. Each of these workflows consists of set of task

which in turn is dependent on one another by some means. In

this paper the De-De algorithm consider a set of workflows and

detects whether deadlocks occur between them by using the well
known banker’s algorithm.

The First line of the algorithm initializes the set of workflows

that consists of set of tasks T to a variable F. The Function De-

De algorithm is defined clearly which includes some of the

parameters associated with the instance Ii (i.e., r (t), alloc (i, t)
and need (i, t)) are updated accordingly.

In the third line the function De-De is clearly given where Ri is

assigned with the allocated resources of the workflows. In the

variable G the remaining resource is calculated by subtracting

the available resource in the private pool along with the already
allocated and requested resources. De-De algorithm first checks

if the current available storage is sufficient to satisfy the request

of the job (obtained via getWriteSet ()). If not, the job has to

request from the public resource pool. In line seven the safety

check algorithm is invoked for verifying whether the system is
in safe state or not for each of the workflow. Once verified the

line 19 is called if it returns true. In the 19th line initial

scheduling is done in which it considers only the Private

resource pool and schedule these workflow in the Private

resource pool itself based on some attributes like communication
cost, priority and time, resource allocation is done. We have

assigned a range for dependency for instance: dependency De

value is between 0 - 5. The 23rd line checks the range and once if

the dependency value is less than the range, the allocation or

request to the resource is done else it is not. Next the algorithm
checks whether the available resources are enough or not. If it is

sufficient enough to finish the job, the workflow is requested in

the private cloud itself else it is requested in the public cloud.

Once scheduled the workflows in the private cloud, until the

deadline is met the task is running inside the private cloud. The
iteration is repeated until the deadline E is met, where the

algorithm continues by selecting a node Ni from the node set NS

with the highest priority. Then the safety check is algorithm is

called.

If it returns true then the system is in safe state else system is
said to wait and next workflow is considered.

Simultaneously if the resource is not enough in the private pool

it is requested in public pool as in line 39. The line 40 in the

algorithm verifies whether the Predestined Finish value PFV is

greater than ART, then queue the tasks to execute. Again the
dependency range is checked for the new and once if the

dependency value is less than the range, the allocation or request

to the resource is done else it is not. In line 46 evaluate the new

TCV for new resource allocation. Once the value of TCV is less

than the available resource in the private cloud then only the
public cloud is requested. Since the TCV is considered to be less

than the old TCV the resource is added to the set NS. Now

schedule the resource with the lowest PFV, suppose the TCV

value is larger than verify inside the private cloud itself. In line

41 the De-De algorithm is invoked again for checking safety and
if it returns true allocate the resource with the lowest PFV.

Finally our algorithm is well furnished to bind between selecting

public and private cloud and allocates the requested resources to

the particular workflow with the low cost and time and without

any occurrence of deadlocks and dependencies between them
successfully.

3. RELATED WORK

Deadlock is one of the most discussed problems in the field of

operating systems. The theoretical background of this problem

as well as its resolution methods have been ingrained and widely
deployed since decades ago. As divergent to the traditional

batch-oriented workflows, data streaming workflows are

continuous and long running in nature, requiring efficient and

everlasting transmission of data. The deadlock resolution is

particularly vital in these HPC applications because they require
high storage cloud be potentially overwhelmed by the incoming

data stream if the data arrival rates over take the processing rates

but are not properly controlled. Zhang et al. [10], [11], has

studied this problem and premeditated a suite of repertory

strategies to control the start and finish times of the data
transfers by setting up upper and lower storage limits. Their

storage-aware strategies are based on admission control, a

variant of deadlock prevention practice, which is different from

ours. As such the recent results in this area are few and far

between.
However, in this paper we have provided a case study to show

how this problem can be effectively addressed in computational

multiple workflows by extending the traditional methods with

exploitation of the workflow features. The De-De algorithm

attempts to keep the system in safe states, and continues by the
use of TCHC algorithm, the scheduling process is done by

considering both instance and value; effectively provide the

selection of choosing between the public and private cloud. Also

our paper has included the Banker’s algorithm () a prior

knowledge of the maximum amount of resources needed by each
process. Some research efforts focused on refining the banker’s

algorithm based on some interesting process models, each

differing in the amount of information that is assumed to be

available [1]. Yu-Kwong Kwok (2004) has made a pair-wise

comparison among seven scheduling algorithm under various
conditions. But the drawback of this algorithm is that it has a set

of several procedures that takes too much time to compile.

A hybrid heuristic scheduling algorithm was implemented on

heterogeneous system that comprised of three phases

(Sakellariou (2004)). The key idea of the hybrid heuristic is to
use a standard list scheduling approach to rank the nodes of the

DAG and then use this ranking to assign tasks to groups of tasks

that can be subsequently scheduled independently. Rahman, M.,

(2007). Haluk Topcuoglu has provided two performance-

effective and low complexity task scheduling algorithms namely
HEFT and CPOP algorithms for heterogeneous system.

Edwin.S.H.Hou has developed a genetic algorithm for

multiprocessor scheduling Hou, (1994). The algorithm is based

on the precedence relations between the tasks in the task graph.

He has compared the genetic algorithm with the list scheduling
and optimal schedule using random task graphs and a robot

inverse dynamics computational task graphs for various are

presented. But this existing algorithm does not provide an

optimal solution to the scheme.

4. CASE STUDY

A thorough study has been made using the simulator; it depicts

the clear view about scheduling the multiple workflows. Initial

scheduling is carried out using TCHC algorithm, TCHC
determines the scheduling of prioritized task to the public cloud.

Once the task is scheduled to carry out the computation, it is

checked against the storage allocation.

The de-de dodging algorithm shows significant result when

comparing with other algorithm; we assume that maximum
claim for a task is 400 units, because maximum claim has to be

predetermined in banker’s algorithm. The storage from a non

workflow based instance cannot be determined with the release

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 15, October 2013

8

of allocated storage. The banker’s algorithm is outperformed by

the DDA algorithm, where they have a dynamic storage

allocated for different instances. The instances scheduled to the

public cloud are chosen in such a way that it has less inter
dependency; the requested resources are buffered in local

resource pool. Figure 1 shows the dynamic storage and

calculating desired resource dynamically allows the de-de

dodging algorithm to show a significant result.

Fig1: Resource utilization

Bankers algorithm, computes the task with maximum available

storage and other task needed to execute has to wait, until the

executing task finishes the job. The waiting time for the task
increases rapidly, if the inter dependency among the task is high.

The Figure 2 shows that DDA algorithm has two states active

and inactive, which makes it efficient in terms of allocating and

deallocating the required space on demand, but it cannot manage

the inter dependency concurrency. The proposed de-de
algorithm uses TCHC algorithm to set priority to the task, which

can run on public cloud.

Fig2: Priority

F

Fig3: Makespan

The Figure 3 shows the number of workflow against the

deadline (makespan). Each task has to execute within the desired
makespan. The proposed de-de dodging algorithm curve shows

that increase in number of multiple workloads will not affect in

computing within the desired makespan.

So by the study made on comparing these algorithms we

conclude that our proposed De-De algorithm has improved
utilization on the available resource and better finds a suitable

resource selection between public and private clouds.

5. CONCLUSION

Nowadays in many organizations the needs of extra resources

are prevailing in a massive range and as a solution to this is the

hybrid clouds, which are being used to execute different kinds of

applications. Among them, workflows have an important role in

processes of many fundamental science fields, such as Physics,
Chemistry, Biology, and Computer Science. To speedup science

advancements, it is important to provide efficient resource

utilization and to execute the service without any deadlocks

among them is the major task nowadays. So as a remedy for this

in this paper we have designed a De-De algorithm to speed up
the execution of multiple workflows obeying a desired execution

time and running the system in a safe state by the use of De-De

algorithm which is providing us with a better utilization

compared to the DDA and TCHC approach.

The far-reaching estimation carried out in this work provides
sufficient data to support the conclusion that the De-De

algorithm can provide efficient scheduling in a hybrid cloud

scenario and also maintaining the system in a safe state. Its

multicore awareness, along with the cost and time knowledge,

can provide makespans as low as the user needs. In general, the
proposed algorithm has the ability of reducing the execution

costs and time in the public cloud with the increase of the

workflow desired execution time. Finally conclude by providing

that the De-De method has the potential to achieve better

resource utilization because information on the “localized
approximate maximum claims” is used for testing system safety

by the use of banker’s algorithm.

7. REFERNCES

[1] Yang Wang and Paul Lu, “Maximizing Active Storage

Resources with Deadlock Avoidance in Workflow Based

Computations” Ieee Transactions On Computers-2012

[2] T. Werner, “Target gene identification from expression array

data by promoter analysis,” Biomolecular Engineering, vol.
17, pp. 87–94, 2001.

[3] D. Szafron, P. Lu, R. Greiner, D. Wishart, B. Poulin, R.

Eisner, Z. Lu, J. Anvik, C. Macdonell, A. Fyshe, and D.

0 5 10 15
0

200

400

600

800

1000

Task

Banker's alg

DDA

De-De

S
to

ra
g
e
 a

ll
o
c
a
ti
o
n

0 5 10 15 20
300

400

500

600

700

800

Task

P
ri

o
ri

ty

Banker's alg

DDA
De-De

0 5 10 15 20
0

100

200

300

400

500

Task

M
a
k
e
s
p
a
n

De-De

DDA

Banker's alg

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 15, October 2013

9

Meeuwis, “Proteome analyst: Custom predictions with

explanations in a webbased tool for high-throughput

proteome annotations,” Nucleic Acids Research, vol. 32,

pp. W365–W371, 7 2004, http://webdocs.

cs.ualberta.ca/∼bioinfo/PA/.

[4] GROMACS, http://www.gromacs.org.

[5] M. Schmidt, K. Baldridge, J. Boatz, S. Elbert,M. Gordon, J.

Jensen, S. Koseki, N. Matsunaga, and J. Montgomery, “The

general atomic and molecular electronic structure system,”

Journal of Computational Chemistry, vol. 14, pp. 1347–

1363, 1993,http://www.msg.
ameslab.gov/GAMESS/GAMESS.html.

[6] B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,

M. Jones, E. Lee, J. Tao, and Y. Zhao, “Scientific workflow

management and the kepler system,” Concurrency and

Computation: Practice & Experience, Special Issue on
Scientific Workflows, 2005.

[7] E. Deelman, D. Gannon, M. Shields, and I. Taylor,

“Workflows and e-science: An overview of workflow

system features and capabilities,” Future Gener. Comput.

Syst., vol. 25, no. 5, pp. 528– 540, May 2009.

[8] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman, R.

Sakellariou, K. Vahi, K. Blackburn, D. Mayers, and M.

Samidi, “Scheduling data-intensive workflows onto

storage-constrained distributed resources,” in Proceedings
of the 7th IEEE International Symposium on Cluster

Computing and the Grid, 2007, pp. 401–409.

[9] J. Bent, D. Thain, A. Arpaci-Dusseau, R. H. Arpaci-Dusseau,

and M. Livny, “Explicit control in a batch-aware distributed

file system,” in Proceedings of Networked Systems Design
and Implementation (NSDI), San Francisco, California,

USA, 2004, pp. 365–378.

[10] W. Zhang, J. Cao, Y. Zhong, L. Liu, and C. Wu, “An

integrated resource management and scheduling system for

grid data streaming applications,” in Proceedings of the
2008 9th IEEE/ACM International Conference on Grid

Computing, ser. GRID ’08. Washington, DC, USA: IEEE

Computer Society, 2008, pp. 258–265.

[11]“Block-based concurrent and storage-aware data streaming

for grid applications with lots of small files,” in
Proceedings of the 2009 9th IEEE/ACM International

Symposium on Cluster Computing and the Grid, ser.

CCGRID ’09. Washington, DC, USA: IEEE Computer

Society, 2009, pp. 538–543.

IJCATM : www.ijcaonline.org

