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ABSTRACT 

         Clustering is a primary method for DB mining. The 

clustering process becomes very challenge when the data is 

different densities, different sizes, different shapes, or has 

noise and outlier. Many existing algorithms are designed to 

find clusters. But, these algorithms lack to discover clusters of 

different shapes, densities and sizes. This paper presents a 

new algorithm called DBCLUM which is an extension of 

DBSCAN to discover clusters based on density. DBSCAN 

can discover clusters with arbitrary shapes. But, fail to 

discover different-density clusters or adjacent clusters. 

DBCLUM is developed to overcome these problems. 

DBCLUM discovers clusters individually then merges them if 

they are density similar and joined. By this concept, 

DBCLUM can discover different-densities clusters and 

adjacent clusters. Experiments revealed that DBCLUM is able 

to discover adjacent clusters and different-densities clusters 

and DBCLUM is faster than DBSCAN with speed up ranges 

from 11% to 52%. 

 

General Terms 

Data mining, Clustering, Density-based  
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1. INTRODUCTION 
Clustering in data mining is a discovery process that 

groups a set of data based on similarity in which intra cluster 

similarity is maximized and inter cluster is minimized. 

Clustering in spatial databases is very important and used in 

many applications like data segmentation, discretization of 

continuous attributes, data reduction, outlier detection, noise 

filtering, pattern recognition and image processing. These 

discovered clusters are considered foundation for other data 

mining techniques such categorizing web documents, 

grouping of genes and proteins, grouping of spatial location to 

predict the mobility   and so on. There are existing clustering 

algorithms such as K-MEANS[8], PAM (Partitioning Around 

Medoids)[10], CLARANS(A Clustering Algorithm based on 

Randomized Search)[11], DBSCAN (Density-Based Spatial 

Clustering of Applications with Noise)[1] and ROCK (Robust 

Clustering using linKs)[16]. All above clustering data based 

on measuring similarity among data points, but they lack 

clustering data of different size and different densities.  

This paper presents a new density-based clustering algorithm 

DBCLUM, which is an extension of DBSCAN [1].In 

DBSCAN, the density associated with a point is obtained by 

counting the number of points in a region of specified radius 

around the point. Points with a density above a specified 

threshold are constructed as clusters. The DBSCAN has the 

ability in discovering clusters with arbitrary shape such as 

spherical, drawn-out, linear, and elongated, etc. Furthermore, 

in contrast to some clustering algorithms, it does not require 

the predetermination of the number of clusters.  

DBSCAN cannot handle different densities or different sizes 

datasets. If adjacent clusters are found, DBSCAN lacks to 

identify clusters and noise. In addition to, DBSCAN assumes 

that all points within genuine clusters are density reachable 

and points across different clusters are not. DBCLUM is 

developed to resolve these issues.  

DBCLUM has two main steps; Clustering and merging. The 

clustering is to identify all the points within a given region 

w.r.t. eps and minPnts for every point in the dataset. So now a 

huge number of clusters are found. The following step is to 

merge only shared and density-similar clusters. So DBCLUM 

can resolve the problems of DBSCAN easily because, 

merging process can be controlled by decreasing or increasing 

threshold value. If threshold value is large, it will behave like 

DBSCAN. in contrast, if threshold value is reduced. 

The rest of paper is organized as follows. Section 2 describes 

Related Works and section 3 describes basic concepts of 

density-based clustering. Section 4 describes the DBCLUM 

algorithm. Section 5 describes performance evaluation. 

Section 6 describes conclusion and future works. 

.  

2. RELATED WORKS 

In this section, brief descriptions of existing clustering 

algorithms are introduced. 

K-Means[8] which has widespread use. K-means tries to 

assign points to clusters such that the mean square distance of 

points to the centroid is minimized. The centroid is a center of 

gravity. Major drawback in k-means is a predetermined 

number of clusters K. K-Medoid [9], PAM [10] and 

CLARANS [11]. These techniques try to find representative 

points called medoids such that minimize the sum of distances 

of points from their closest medoid. These techniques have 

problems with datasets of different sizes, shapes and non-

globular shapes like clusters in Figure 1. 
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Figure 1: Datasets with different sizes and different shapes. 

The DBSCAN (Density Based Spatial Clustering of 

Application with Noise) [1] is the basic clustering algorithm 

to mine the clusters based on objects density. In this 

algorithm, first the number of objects present within the 

neighbour region (Eps) is computed. If the neighbour objects 

count is below the given threshold value, the object will be 

marked as NOISE. The new cluster is formed when the 

number of points w.r.t eps is larger than minimum number of 

points MinPts. DBSCAN is a density based, i.e. it groups 

dense regions together. 

 

OPTICS (Ordering Points To Identify the Clustering 

Structure) [4] adopts DBSCAN to handle varying densities 

problems. OPTICS achieves that by ordering points in a 

dataset provided that closest points become neighbor in the 

ordering. Although OPTICS actually does not produce a 

clustering of a data set explicitly, but instead creates an 

augmented ordering of the database representing its density-

based clustering structure. 

 

Incremental DBSCAN [12] algorithm is also is used for 

incremental updates of a clustering taking care insertion or 

deletion of a new object to the database. 

 

SDBDC (Scalable Density-Based Distributed Clustering) [13] 

algorithm is applying DBSCAN on both local sites and global 

site to cluster distributed objects. In this method, DBSCAN 

algorithm is firstly carried out on each local site. Then, based 

on these local clustering results, cluster representatives are 

determined. Then, use local representatives on the global site 

to construct the distributed clustering. 

 

DENCLUE [15] algorithm uses kernel density estimation. The 

result of density function gives the local density maxima 

value and this local density value is used to form the clusters. 

If the local density value is very small, the objects of clusters 

will be discarded as NOISE. 

 

CURE (Clustering Using Representatives)[14], the concept of 

representative points is also employed in CURE to find non-

globular clusters. The representative points to figure out non-

globular clusters. Because, CURE finds out representative 

points with some criteria, it cannot handle some non-globular 

shapes, i.e., it finds points along the boundary, and then 

shrinks those points towards the center of the cluster.  

 

MITOSIS [7] finds arbitrary shapes of arbitrary densities for 

high dimensional data.  

 

2.1.1 SNN (A New Shared Nearest Neighbor Clustering 

Algorithm)[2] is also based on DBSCAN and it is applicable 

to high-dimensional data consisting of time series data. 

 

A Fast DBSCAN (FDBSCAN) Algorithm [6] has been 

invented to improve the speed of the original DBSCAN 

algorithm. It considers only few selected representative 

objects belonging inside a core object’s neighbor region as 

seed objects for the further expansion. But it suffers with the 

loss of result accuracy. 

 

ST-DBSCAN [5], it is also based on DBSCAN. It handles 

problem of clustering spatial–temporal data according to its 

non-spatial, spatial and temporal attributes. It can detect some 

noise points when clusters of different densities exist by 

assigning to each cluster a density factor. Finally, it detects 

adjacent clusters by comparing the average value of a cluster 

with the new coming one. 

 

The CHAMELEON [3] is a two phase algorithm. It generates 

a k-nearest graph in the first phase and then to find the 

clusters by combining the sub clusters. The Chameleon 

algorithm’s key feature is that it gives importance for both 

interconnectivity and closeness in identifying the most similar 

pair of clusters. But, it suffers from low execution. 

 

3. BASIC CONCEPTS 
 

Definition 1: (Eps-neighborhood of a point) The Eps-

neighborhood of a point p, denoted by NEps(p), is defined by 

NEps(p) = {q∈D | dist(p,q) ≤ Eps}. 

 

Definition 2: (Core point) the core point in NEps(p) is 

defined by Co(p) = {q ∈  NEps(p) | N(Eps) ≥ MinPts}. 

Therefore, for every point p in a cluster C there is a point p in 

C so that q is inside of the Eps-neighborhood of p and 

NEps(p) contains at least MinPts points. 

 
Figure 2: core points 

 

Definition 3: (Noise point) the noise point in a cluster C is 

defined by N(p) = {q ∈  NEps(p) | N(Eps) ≤ MinPts}. 

If Eps-neighborhood is less than minimum number of points 

MinPts, the point is marked as noise as in Figure 2. 

Definition 4: (SM(C) ) (x,y) is point P, SM(C)={x | x is the 

smallest}. It is to find the smallest x or y in all the points as in 

Figure 3. 

Definition 5: (LR(C) ) (x,y) is point P, LR(C)={x | x is the 

largest}. It is to find the largest x or y in all the points as in 

Figure 3. 

Definition 6: (Area(C) ) Area(C) = (LR(x) – SM(x)) * 

(LR(y)-SM(y)) as in Figure 3. 

http://www.cs.umn.edu/~kumar/papers/siam_hd_snn_cluster.pdf
http://www.cs.umn.edu/~kumar/papers/siam_hd_snn_cluster.pdf
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Figure 3: cluster area computation. 

Definition 7: (Density Factor) C is cluster, C  ={
  

        
 |  

no is the number of points in C}. density factor is used to 

measure the density and availability to merge with others. 

Definition 8: MinMax (x,y)={ 
     

         
 }. 

Definition 9: The overlapped clusters in Dataset D id 

denoted by O(C1,C2)={C1 ∈  D, C2 ∈  D | o ∈  C1 and o∈  

C2}. Use to test if any two clusters are joined and overlapped. 

Definition 10: (Merge Clusters) A,B ∈  Dataset D and 

      . If o ∈  A and o ∈  B and MinMax(     ) < threshold 

then A,B are merged in one cluster. 

 

4. DBCLUM: DENSITY-BASED 

CLUSTERING AND MERGING  
        In this section, DBCLUM (Density Based Clustering and 

Merging) which is based on DBSCAN is presented. DBSCAN 

fails to identify varying densities datasets because it based on 

density-reachable concept. As Figure 4 shows, DBSCAN 

detects the two clusters as one cluster despite the varying 

densities and that is why, C2 is density-reachable from point 

O which included in C1. And then, points in C2 are density-

reachable from O. Consequently, two clusters are detected as 

one cluster by DBSCAN. To enable DBCLUM to identify 

varying densities clusters, the concept of density-reachable is 

discarded. DBCLUM structure is different from DBSCAN 

structure and does not depend on density-reachable concept. 

  

 

 

Figure 4: example of different densities clusters 

Firstly, DBCLUM detects all the clusters individually, i.e. 

starts with an arbitrary point and get all neighbors within Eps 

region using Euclidean distance then travel to another point 

and form its cluster and so on to get all points in dataset 

finished. 

Finally, merge overlapped clusters O(C1,C2) as in definition 9 

into one cluster if MinMax(C1,C2) as in definition 8 < 

threshold. 

By this way, the varying densities clusters problem is solved. 

DBSCAN lacks to identify and differentiate between adjacent 

clusters as Figure 5 shows. 

 

Figure 5: an example of adjacent clusters. 

Because the adjacent clusters problem occur only when there 

is an ambiguous point or more between two clusters as in 

figure 5. In this case, density dictates joining it to C1 and 

distance dictates joining it to C2. Most of the algorithms use 

the distance option. DBCLUM get that point and get the all 

neighbors then it computes the density factor C  for that 

cluster and also C1  for the first cluster C2  for the second 

one. Then apply MinMax among the three factors and join it 

to the closest cluster. 

4.1 DBCLUM Algorithm 
        While DBSCAN was requiring two input parameters, 

DBCLUM is requiring three parameters Eps,MinPts and 

Thresold to complete clustering process. Eps is the radius to 

get all neighbors within this radius, MinPts is the minimum 

number of points required to form a cluster In [1], a simple 

heuristic is used to determine the parameters Eps and MinPts. 

The heuristic suggests MinPts ≈ ln(n) where n is the size of 

the database and Eps must be picked depending on the value 

of MinPts. Finally, Threshold is the value on which it will 

determine whether merging two clusters or not. 

The algorithm starts with a point p and gets all neighbors with 

respect to Eps, if the number of points is larger than MinPts, a 

cluster is formed and labeled. Otherwise, the point labeled as 

noise. After that, the algorithm visits another point and tries to 

form a cluster. This process is repeated until all points in the 

dataset are labeled as a cluster or as a noise. As shown in 

Figure 2, a random point is retrieved and retrieve the region of 

it w.r.t Eps. If size is less than MinPts, label this point as 

noise. Else label it as a cluster, set cluster id and add it to list 

of clusters. 

 

Clusters DBCLUSTER (points,Eps,MinpPts) 

  clusId := nextId(NOISE); 

  FOR i from 1 to points.size DO 

    Point : points.get(i); 

    IF Point.rank > 1 THEN 

        Continue; 

    IF Point. clusId = UNCLASSIFIED THEN 

        region = getRegion(points,Point,eps); 

        IF region.size < MinPts Then 

            Point.clusId = NOISE 

        ELSE 

           Clusters.add(region) ; 

           clusId := nextId(clusId); 

        END IF 

    END IF 

  END FOR      
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   Now, the clusters are formed, but these clusters are 

overlapped and same points are found in more than one 

cluster. After that, clusters will be merged together based on 

joined clusters as in figure [6].  

                                              

                                          

 

Figure 6: Clusters A,B are overlapped and joined in O point. 

Merge process is applied on all clusters. After clusters are 

formed in the previous method, clusters are passed to 

DBMERGE method to run merge process. Firstly, get first 

cluster. If that cluster is joined and has overlap with another 

cluster, compute the density of the two clusters as defined in 

Definition 7 (Density Factor). By definition 8 (MinMax) , if 

densities are similar, join the two clusters. If the two clusters 

are not similar, clusters will be disjoined through getting 

overlapped points and distribute them to the cluster which is 

most density similar to them. To do that, overlapped point will 

be gotten, get its cluster and then compute the density factor 

to join this point to the most density-similar cluster. The 

remaining points in the cluster are discarded. Repeat these 

steps to reach that there are not joined clusters. The available 

clusters are the result of clustering. 

// Merge Method 

DBMERGE(clusters,thr) 

FOR i FROM 1 TO clusters.size DO 

    curCl := clusters.get(i); 

    FOR j FROM i+1 TO clusters.size DO 

      matC := clusters.get(j); 

      IF Overlapped(curCl, matC) THEN 

         curDen := computeDensity (curCl); 

         matDen := computeDensity (matC); 

         IF MinMax(curDen, matDen) < threshold THEN 

           Merge(curCl, matC); 

           flag := true; 

         ELSE 

           Overlapped := getOverlappedRegion(curCl, matC) 

           FOR k FROM 1 TO Overlapped.size DO 

              currPoint := Overlapped.get(k) 

              curPReg := clusters.getRegion(clusters,currPoint ,eps); 

                curPDen := computeDensity (curCl); 

                IF MinMax(curPDen, curDen, matDen) < thr THEN 

                   matC.remove(currPoint); 

                ELSE 

                   curCl.remove(currPoint); 

                END IF 

            END FOR 

 

 

            IF curCl.size < MinPts THEN 

                 curCl.empty(); 

                 clusters.remove(curCl); 

            END IF 

            IF matDen.size < MinPts THEN 

                  matDen.empty(); 

                  matDen.remove(curCl); 

            END IF 

         END IF        

      END IF 

    END FOR 

END FOR 

 

 

5.  PERFORMANCE EVALUATION 
 In this section, experimental results of DBCLUM are 

presented, and compare it with weka[17] available version of 

DBSCAN. DBCLUM was developed under weka 3-6-6 

version to be available for public use and test. Although 

DBCLUM is applicable to any dataset, 2D dataset is chosen to 

make comparison and visualization much easier. Also, similar 

datasets are used to evaluate algorithms which will be 

compared with. 

the experiment is based on three different datasets with 

different shapes and densities as shown in figure 7.First 

dataset, DS1, as shown in figure 7, has two different clusters 

in shape, density and size. The second dataset, DS2, not only 

has two different clusters in shape, size and density, but also, 

the two clusters are very close and adjacent. Because most of 

clustering algorithms lack to identify adjacent clusters, 

choosing two very adjacent clusters are cared. The third data 

set, DS3, has two nested clusters and noise beside the 

difference in shape, size and density. The size of these data 

sets ranges from 2,500 to 5,500 points, and their exact size is 

indicated in Figure 7. Note that, these data sets are generated 

synthetically. 

By the way, all experiments are employed on PC which has 

windows 7, Core 2 Duo CPU @ 2.20GHz and 2 GB RAM. 

 

5.1 Time Comparison 
 

DBSCAN and DBCLUM are compared from time consuming 

view. As table 1 show, DBCLUM is faster than DBSCAN and 

speed up ranges from 11% to 52%. 

Dataset DBCLUM DBSCAN Speed up 

DS1 1.1 seconds 2.28 seconds 52% 

DS2 3.91 seconds 4.39 seconds 11% 

DS3 7.16 seconds 9.09 seconds 22% 

Table 1: Running time of algorithms in seconds. 

 

5.2 Qualitative comparison 
 

To cluster dataset using DBCLUM, three parameters 

(Eps,MinPts and threshold) must be entered. Eps and MinPts 

like DBSCAN to identify clusters and threshold to merge 

similar clusters in density. Figure 8, shows the clusters 

identified by DBCLUM algorithm and Figure 9 shows the 

clusters identified by DBSCAN algorithm.  
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From two figures, DBCLUM proved its ability to identify 

different shapes, sizes, densities clusters and identify noise 

points like DBSCAN. By comparing figure 8(DS2) and figure 

9(DS2), DBSCAN fails to identify adjacent clusters while 

DBCLUM can identify them. If noise points are very similar 

to cluster points but has different density as in DS3, DBSCAN 

lacks to identify. DBCLUM can identify these noise points as 

figure 8 (DS3) shows. 

 
Figure 7: DS1, DS2 and DS3(5180, 2590 and 5180 points) 

 
Figure 8: clusters and noises discovered by DBCLUM. 

 

 
 

 

 

Figure 9: DBSCAN on the DS1, DS2, and DS3 data sets with 

different values of the Eps parameter. 
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6. CONCLUSION AND FUTURE 

WORKS 
In this paper, a new clustering algorithm called DBCLUM are 

presented. DBCLUM can discover natural clusters of different 

shape, size and density. Experimental results with different 

datasets show the ability of DBCLUM to discover types of 

clusters while many existing algorithms fail to find. 

Eventually the performance analysis and the output shows that 

the newly proposed DBCLUM algorithm gives better output, 

with less time and good performance. 

The future research will be directed to reduce number of 

parameters of DBCLUM and get better performance. 
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