
International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 14, October 2013

1

DBCLUM: Density-based Clustering
and Merging Algorithm

Mohammad Fawzy

Computer Science
Department

Faculty of Computers
and information

Fayoum University, Egypt

Amr Badr
Computer Science

Department
Faculty of Computers

and information
Cairo University, Egypt

Mostafa Reda

Computer Science
Department

Faculty of Computers
and information

Cairo University, Egypt

Ibrahim Farag

Computer Science
Department

Faculty of Computers
and information

Cairo University, Egypt

ABSTRACT

 Clustering is a primary method for DB mining. The

clustering process becomes very challenge when the data is

different densities, different sizes, different shapes, or has

noise and outlier. Many existing algorithms are designed to

find clusters. But, these algorithms lack to discover clusters of

different shapes, densities and sizes. This paper presents a

new algorithm called DBCLUM which is an extension of

DBSCAN to discover clusters based on density. DBSCAN

can discover clusters with arbitrary shapes. But, fail to

discover different-density clusters or adjacent clusters.

DBCLUM is developed to overcome these problems.

DBCLUM discovers clusters individually then merges them if

they are density similar and joined. By this concept,

DBCLUM can discover different-densities clusters and

adjacent clusters. Experiments revealed that DBCLUM is able

to discover adjacent clusters and different-densities clusters

and DBCLUM is faster than DBSCAN with speed up ranges

from 11% to 52%.

General Terms

Data mining, Clustering, Density-based

Keywords

Data mining, DBSCAN, Density-Based Clustering

1. INTRODUCTION
Clustering in data mining is a discovery process that

groups a set of data based on similarity in which intra cluster

similarity is maximized and inter cluster is minimized.

Clustering in spatial databases is very important and used in

many applications like data segmentation, discretization of

continuous attributes, data reduction, outlier detection, noise

filtering, pattern recognition and image processing. These

discovered clusters are considered foundation for other data

mining techniques such categorizing web documents,

grouping of genes and proteins, grouping of spatial location to

predict the mobility and so on. There are existing clustering

algorithms such as K-MEANS[8], PAM (Partitioning Around

Medoids)[10], CLARANS(A Clustering Algorithm based on

Randomized Search)[11], DBSCAN (Density-Based Spatial

Clustering of Applications with Noise)[1] and ROCK (Robust

Clustering using linKs)[16]. All above clustering data based

on measuring similarity among data points, but they lack

clustering data of different size and different densities.

This paper presents a new density-based clustering algorithm

DBCLUM, which is an extension of DBSCAN [1].In

DBSCAN, the density associated with a point is obtained by

counting the number of points in a region of specified radius

around the point. Points with a density above a specified

threshold are constructed as clusters. The DBSCAN has the

ability in discovering clusters with arbitrary shape such as

spherical, drawn-out, linear, and elongated, etc. Furthermore,

in contrast to some clustering algorithms, it does not require

the predetermination of the number of clusters.

DBSCAN cannot handle different densities or different sizes

datasets. If adjacent clusters are found, DBSCAN lacks to

identify clusters and noise. In addition to, DBSCAN assumes

that all points within genuine clusters are density reachable

and points across different clusters are not. DBCLUM is

developed to resolve these issues.

DBCLUM has two main steps; Clustering and merging. The

clustering is to identify all the points within a given region

w.r.t. eps and minPnts for every point in the dataset. So now a

huge number of clusters are found. The following step is to

merge only shared and density-similar clusters. So DBCLUM

can resolve the problems of DBSCAN easily because,

merging process can be controlled by decreasing or increasing

threshold value. If threshold value is large, it will behave like

DBSCAN. in contrast, if threshold value is reduced.

The rest of paper is organized as follows. Section 2 describes

Related Works and section 3 describes basic concepts of

density-based clustering. Section 4 describes the DBCLUM

algorithm. Section 5 describes performance evaluation.

Section 6 describes conclusion and future works.

.

2. RELATED WORKS

In this section, brief descriptions of existing clustering

algorithms are introduced.

K-Means[8] which has widespread use. K-means tries to

assign points to clusters such that the mean square distance of

points to the centroid is minimized. The centroid is a center of

gravity. Major drawback in k-means is a predetermined

number of clusters K. K-Medoid [9], PAM [10] and

CLARANS [11]. These techniques try to find representative

points called medoids such that minimize the sum of distances

of points from their closest medoid. These techniques have

problems with datasets of different sizes, shapes and non-

globular shapes like clusters in Figure 1.

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 14, October 2013

2

Figure 1: Datasets with different sizes and different shapes.

The DBSCAN (Density Based Spatial Clustering of

Application with Noise) [1] is the basic clustering algorithm

to mine the clusters based on objects density. In this

algorithm, first the number of objects present within the

neighbour region (Eps) is computed. If the neighbour objects

count is below the given threshold value, the object will be

marked as NOISE. The new cluster is formed when the

number of points w.r.t eps is larger than minimum number of

points MinPts. DBSCAN is a density based, i.e. it groups

dense regions together.

OPTICS (Ordering Points To Identify the Clustering

Structure) [4] adopts DBSCAN to handle varying densities

problems. OPTICS achieves that by ordering points in a

dataset provided that closest points become neighbor in the

ordering. Although OPTICS actually does not produce a

clustering of a data set explicitly, but instead creates an

augmented ordering of the database representing its density-

based clustering structure.

Incremental DBSCAN [12] algorithm is also is used for

incremental updates of a clustering taking care insertion or

deletion of a new object to the database.

SDBDC (Scalable Density-Based Distributed Clustering) [13]

algorithm is applying DBSCAN on both local sites and global

site to cluster distributed objects. In this method, DBSCAN

algorithm is firstly carried out on each local site. Then, based

on these local clustering results, cluster representatives are

determined. Then, use local representatives on the global site

to construct the distributed clustering.

DENCLUE [15] algorithm uses kernel density estimation. The

result of density function gives the local density maxima

value and this local density value is used to form the clusters.

If the local density value is very small, the objects of clusters

will be discarded as NOISE.

CURE (Clustering Using Representatives)[14], the concept of

representative points is also employed in CURE to find non-

globular clusters. The representative points to figure out non-

globular clusters. Because, CURE finds out representative

points with some criteria, it cannot handle some non-globular

shapes, i.e., it finds points along the boundary, and then

shrinks those points towards the center of the cluster.

MITOSIS [7] finds arbitrary shapes of arbitrary densities for

high dimensional data.

2.1.1 SNN (A New Shared Nearest Neighbor Clustering

Algorithm)[2] is also based on DBSCAN and it is applicable

to high-dimensional data consisting of time series data.

A Fast DBSCAN (FDBSCAN) Algorithm [6] has been

invented to improve the speed of the original DBSCAN

algorithm. It considers only few selected representative

objects belonging inside a core object’s neighbor region as

seed objects for the further expansion. But it suffers with the

loss of result accuracy.

ST-DBSCAN [5], it is also based on DBSCAN. It handles

problem of clustering spatial–temporal data according to its

non-spatial, spatial and temporal attributes. It can detect some

noise points when clusters of different densities exist by

assigning to each cluster a density factor. Finally, it detects

adjacent clusters by comparing the average value of a cluster

with the new coming one.

The CHAMELEON [3] is a two phase algorithm. It generates

a k-nearest graph in the first phase and then to find the

clusters by combining the sub clusters. The Chameleon

algorithm’s key feature is that it gives importance for both

interconnectivity and closeness in identifying the most similar

pair of clusters. But, it suffers from low execution.

3. BASIC CONCEPTS

Definition 1: (Eps-neighborhood of a point) The Eps-

neighborhood of a point p, denoted by NEps(p), is defined by

NEps(p) = {q∈D | dist(p,q) ≤ Eps}.

Definition 2: (Core point) the core point in NEps(p) is

defined by Co(p) = {q ∈ NEps(p) | N(Eps) ≥ MinPts}.

Therefore, for every point p in a cluster C there is a point p in

C so that q is inside of the Eps-neighborhood of p and

NEps(p) contains at least MinPts points.

Figure 2: core points

Definition 3: (Noise point) the noise point in a cluster C is

defined by N(p) = {q ∈ NEps(p) | N(Eps) ≤ MinPts}.

If Eps-neighborhood is less than minimum number of points

MinPts, the point is marked as noise as in Figure 2.

Definition 4: (SM(C)) (x,y) is point P, SM(C)={x | x is the

smallest}. It is to find the smallest x or y in all the points as in

Figure 3.

Definition 5: (LR(C)) (x,y) is point P, LR(C)={x | x is the

largest}. It is to find the largest x or y in all the points as in

Figure 3.

Definition 6: (Area(C)) Area(C) = (LR(x) – SM(x)) *

(LR(y)-SM(y)) as in Figure 3.

http://www.cs.umn.edu/~kumar/papers/siam_hd_snn_cluster.pdf
http://www.cs.umn.edu/~kumar/papers/siam_hd_snn_cluster.pdf

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 14, October 2013

3

Figure 3: cluster area computation.

Definition 7: (Density Factor) C is cluster, C ={

 |

no is the number of points in C}. density factor is used to

measure the density and availability to merge with others.

Definition 8: MinMax (x,y)={

 }.

Definition 9: The overlapped clusters in Dataset D id

denoted by O(C1,C2)={C1 ∈ D, C2 ∈ D | o ∈ C1 and o∈

C2}. Use to test if any two clusters are joined and overlapped.

Definition 10: (Merge Clusters) A,B ∈ Dataset D and

 . If o ∈ A and o ∈ B and MinMax() < threshold

then A,B are merged in one cluster.

4. DBCLUM: DENSITY-BASED

CLUSTERING AND MERGING
 In this section, DBCLUM (Density Based Clustering and

Merging) which is based on DBSCAN is presented. DBSCAN

fails to identify varying densities datasets because it based on

density-reachable concept. As Figure 4 shows, DBSCAN

detects the two clusters as one cluster despite the varying

densities and that is why, C2 is density-reachable from point

O which included in C1. And then, points in C2 are density-

reachable from O. Consequently, two clusters are detected as

one cluster by DBSCAN. To enable DBCLUM to identify

varying densities clusters, the concept of density-reachable is

discarded. DBCLUM structure is different from DBSCAN

structure and does not depend on density-reachable concept.

Figure 4: example of different densities clusters

Firstly, DBCLUM detects all the clusters individually, i.e.

starts with an arbitrary point and get all neighbors within Eps

region using Euclidean distance then travel to another point

and form its cluster and so on to get all points in dataset

finished.

Finally, merge overlapped clusters O(C1,C2) as in definition 9

into one cluster if MinMax(C1,C2) as in definition 8 <

threshold.

By this way, the varying densities clusters problem is solved.

DBSCAN lacks to identify and differentiate between adjacent

clusters as Figure 5 shows.

Figure 5: an example of adjacent clusters.

Because the adjacent clusters problem occur only when there

is an ambiguous point or more between two clusters as in

figure 5. In this case, density dictates joining it to C1 and

distance dictates joining it to C2. Most of the algorithms use

the distance option. DBCLUM get that point and get the all

neighbors then it computes the density factor C for that

cluster and also C1 for the first cluster C2 for the second

one. Then apply MinMax among the three factors and join it

to the closest cluster.

4.1 DBCLUM Algorithm
 While DBSCAN was requiring two input parameters,

DBCLUM is requiring three parameters Eps,MinPts and

Thresold to complete clustering process. Eps is the radius to

get all neighbors within this radius, MinPts is the minimum

number of points required to form a cluster In [1], a simple

heuristic is used to determine the parameters Eps and MinPts.

The heuristic suggests MinPts ≈ ln(n) where n is the size of

the database and Eps must be picked depending on the value

of MinPts. Finally, Threshold is the value on which it will

determine whether merging two clusters or not.

The algorithm starts with a point p and gets all neighbors with

respect to Eps, if the number of points is larger than MinPts, a

cluster is formed and labeled. Otherwise, the point labeled as

noise. After that, the algorithm visits another point and tries to

form a cluster. This process is repeated until all points in the

dataset are labeled as a cluster or as a noise. As shown in

Figure 2, a random point is retrieved and retrieve the region of

it w.r.t Eps. If size is less than MinPts, label this point as

noise. Else label it as a cluster, set cluster id and add it to list

of clusters.

Clusters DBCLUSTER (points,Eps,MinpPts)

 clusId := nextId(NOISE);

 FOR i from 1 to points.size DO

 Point : points.get(i);

 IF Point.rank > 1 THEN

 Continue;

 IF Point. clusId = UNCLASSIFIED THEN

 region = getRegion(points,Point,eps);

 IF region.size < MinPts Then

 Point.clusId = NOISE

 ELSE

 Clusters.add(region) ;

 clusId := nextId(clusId);

 END IF

 END IF

 END FOR

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 14, October 2013

4

 Now, the clusters are formed, but these clusters are

overlapped and same points are found in more than one

cluster. After that, clusters will be merged together based on

joined clusters as in figure [6].

Figure 6: Clusters A,B are overlapped and joined in O point.

Merge process is applied on all clusters. After clusters are

formed in the previous method, clusters are passed to

DBMERGE method to run merge process. Firstly, get first

cluster. If that cluster is joined and has overlap with another

cluster, compute the density of the two clusters as defined in

Definition 7 (Density Factor). By definition 8 (MinMax) , if

densities are similar, join the two clusters. If the two clusters

are not similar, clusters will be disjoined through getting

overlapped points and distribute them to the cluster which is

most density similar to them. To do that, overlapped point will

be gotten, get its cluster and then compute the density factor

to join this point to the most density-similar cluster. The

remaining points in the cluster are discarded. Repeat these

steps to reach that there are not joined clusters. The available

clusters are the result of clustering.

// Merge Method

DBMERGE(clusters,thr)

FOR i FROM 1 TO clusters.size DO

 curCl := clusters.get(i);

 FOR j FROM i+1 TO clusters.size DO

 matC := clusters.get(j);

 IF Overlapped(curCl, matC) THEN

 curDen := computeDensity (curCl);

 matDen := computeDensity (matC);

 IF MinMax(curDen, matDen) < threshold THEN

 Merge(curCl, matC);

 flag := true;

 ELSE

 Overlapped := getOverlappedRegion(curCl, matC)

 FOR k FROM 1 TO Overlapped.size DO

 currPoint := Overlapped.get(k)

 curPReg := clusters.getRegion(clusters,currPoint ,eps);

 curPDen := computeDensity (curCl);

 IF MinMax(curPDen, curDen, matDen) < thr THEN

 matC.remove(currPoint);

 ELSE

 curCl.remove(currPoint);

 END IF

 END FOR

 IF curCl.size < MinPts THEN

 curCl.empty();

 clusters.remove(curCl);

 END IF

 IF matDen.size < MinPts THEN

 matDen.empty();

 matDen.remove(curCl);

 END IF

 END IF

 END IF

 END FOR

END FOR

5. PERFORMANCE EVALUATION
 In this section, experimental results of DBCLUM are

presented, and compare it with weka[17] available version of

DBSCAN. DBCLUM was developed under weka 3-6-6

version to be available for public use and test. Although

DBCLUM is applicable to any dataset, 2D dataset is chosen to

make comparison and visualization much easier. Also, similar

datasets are used to evaluate algorithms which will be

compared with.

the experiment is based on three different datasets with

different shapes and densities as shown in figure 7.First

dataset, DS1, as shown in figure 7, has two different clusters

in shape, density and size. The second dataset, DS2, not only

has two different clusters in shape, size and density, but also,

the two clusters are very close and adjacent. Because most of

clustering algorithms lack to identify adjacent clusters,

choosing two very adjacent clusters are cared. The third data

set, DS3, has two nested clusters and noise beside the

difference in shape, size and density. The size of these data

sets ranges from 2,500 to 5,500 points, and their exact size is

indicated in Figure 7. Note that, these data sets are generated

synthetically.

By the way, all experiments are employed on PC which has

windows 7, Core 2 Duo CPU @ 2.20GHz and 2 GB RAM.

5.1 Time Comparison

DBSCAN and DBCLUM are compared from time consuming

view. As table 1 show, DBCLUM is faster than DBSCAN and

speed up ranges from 11% to 52%.

Dataset DBCLUM DBSCAN Speed up

DS1 1.1 seconds 2.28 seconds 52%

DS2 3.91 seconds 4.39 seconds 11%

DS3 7.16 seconds 9.09 seconds 22%

Table 1: Running time of algorithms in seconds.

5.2 Qualitative comparison

To cluster dataset using DBCLUM, three parameters

(Eps,MinPts and threshold) must be entered. Eps and MinPts

like DBSCAN to identify clusters and threshold to merge

similar clusters in density. Figure 8, shows the clusters

identified by DBCLUM algorithm and Figure 9 shows the

clusters identified by DBSCAN algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 14, October 2013

5

From two figures, DBCLUM proved its ability to identify

different shapes, sizes, densities clusters and identify noise

points like DBSCAN. By comparing figure 8(DS2) and figure

9(DS2), DBSCAN fails to identify adjacent clusters while

DBCLUM can identify them. If noise points are very similar

to cluster points but has different density as in DS3, DBSCAN

lacks to identify. DBCLUM can identify these noise points as

figure 8 (DS3) shows.

Figure 7: DS1, DS2 and DS3(5180, 2590 and 5180 points)

Figure 8: clusters and noises discovered by DBCLUM.

Figure 9: DBSCAN on the DS1, DS2, and DS3 data sets with

different values of the Eps parameter.

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 14, October 2013

6

6. CONCLUSION AND FUTURE

WORKS
In this paper, a new clustering algorithm called DBCLUM are

presented. DBCLUM can discover natural clusters of different

shape, size and density. Experimental results with different

datasets show the ability of DBCLUM to discover types of

clusters while many existing algorithms fail to find.

Eventually the performance analysis and the output shows that

the newly proposed DBCLUM algorithm gives better output,

with less time and good performance.

The future research will be directed to reduce number of

parameters of DBCLUM and get better performance.

7. ACKNOWLEDGEMENTS
We would like to thank M. Ester, H.P. Kriegel, J. Sander, and

X. Xu for providing the DBSCAN program.

8. REFERENCES
[1] Ester M., Kriegel H.-P., Sander J., and Xu X. (1996) “A

Density-Based Algorithm for Discovering Clusters in

Large Spatial Databases with Noise” In Proceedings of

the 2nd International Conference on Knowledge

Discovery and Data Mining (KDD‟96), Portland:

Oregon, pp. 226-231.Ding, W. and Marchionini, G. 1997

A Study on Video Browsing Strategies. Technical

Report. University of Maryland at College Park.

[2] P-N. Tan, M. Steinbach, V. Kumar (2005) “Introduction

to Data Mining”, Addison-Wesley.

[3] G. Karypis, E. H. Han, and V. Kumar (1999)

“CHAMELEON: A hierarchical clustering algorithm

using dynamic modeling,” Computer, vol. 32, no. 8, pp.

68–75.

[4] M. Ankerst, M. Breunig, H. P. Kriegel, and J. Sander

(1999) “OPTICS: Ordering Objects to Identify the

Clustering Structure, Proc. ACM SIGMOD,” in

International Conference on Management of Data, pp.

49–60.

[5] Derya Birant, Alp Kut (2007) ”ST-DBSCAN: An

Algorithm for Clustering Spatial-temporal data” Data

and Knowledge Engineering pg 208-221.

[6] SHOU Shui-geng, ZHOU Ao-ying JIN Wen, FAN Ye

and QIAN Wei-ning (2000) “A Fast DBSCAN

Algorithm” Journal of Software: 735-744.

[7] N. A. Yousria, M.S. Kamel, and M.A. Ismail (2009) “A

distance-relatedness dynamic model for clustering high

dimensional data of arbitrary shapes and densities,”

Pattern Recognition, pp.1193-1209.

[8] J. MacQueen (1967) “Some methods for classification

and analysis of multivariate observations”, in:

Proceedings of the Fifth Berkeley Symposium on

Mathematical Statistics and Probability, pp. 281–297.

[9] H. Vinod (1969) “Integer programming and the theory of

grouping”, Journal of the American Statistical

Association 64 (326) 506–519.

[10] L. Kaufman and P. Rousseeuw (1990) “Finding Groups

in Data: An Introduction to Cluster Analysis”: Wiley.

[11] R.T. Ng, J. Han (1994) ”Efficient and effective clustering

methods for spatial data mining, in: Proceedings of 20th

International Conference on Very Large Data Bases”,

Santiago, Chile, pp. 144–155.

[12] M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, X. Xu

(1998) “Incremental clustering for mining in a data

warehousing environment”, in: Proceedings of

International Conference on Very Large Databases

(VLDB’98), New York, USA, pp. 323–333.

[13] E. Januzaj, H.-P. Kriegel, M. Pfeifle (2004) “Scalable

density-based distributed clustering”, in: Proceedings of

PKDD, Pisa, Italy, Lectures Notes in Computer Science,

3202, Springer, pp. 231–244.

[14] S. Guha, R. Rastogi, K. Shim (1998) “CURE: an

efficient clustering algorithms for large databases”, in:

Proceeding ACM SIGMOD International Conference on

Management of Data, Seattle, WA, pp. 73–84.

[15] A. Hinneburg, D.A. Keim (1998) “An efficient approach

to clustering in large multimedia databases with noise”,

in: Proceedings of 4th International Conference on

Knowledge Discovery and Data Mining, New York City,

NY, pp. 58–65.

[16] S. Guha, R. Rastogi , K. Shim (2000) “ROCK: A robust

clustering algorithm for categorical attributes,” Inf. Syst.,

vol. 25, no. 5, pp. 345–366.

[17] I. Witten, E. Frank, L. Trigg, M. Hall, G. Holmes, and S.

Cunningham (1999) ”Weka: Practical machine learning

tools and techniques with java implementations”.

IJCATM : www.ijcaonline.org

