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ABSTRACT 
Let G(V,E) be a graph with p vertices and q edges.A graph 

G(p,q)  is said to be a Beta combination graph if there exist a 

bijection  f: V(G)       {1,2 …., p } such that the induced 

function Bf: E(G)N, N is a natural number, given by Bf 

(uv)=
f(v)!f(u)!

 f(v)]!+[f(u)
,every edges uv   G and are all distinct 

and the function f is called the Beta combination labeling of G 

[8].In this paper, we prove quadrilateral snake Qn,double 

triangular snake , alternate triangular snake A(Tn), alternate 

quadrilateral snake A(Qn), helm Hn ,the gear graph,Comb 

PnʘK1 ,the graph CnʘK1 and the diamond graph  are the Beta 

combination graphs. 
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1. INTRODUCTION 
Graph labeling ,where the vertices and edges are assigned real 

values or subsets of a set are subject to certain 

conditions.Throughout this paper, by a graph we mean a 

finite, undirected, simple graph. The vertex set and the edge 

set of a graph G are denoted by V(G) and E(G) respectively. 

Let G(p,q) be a graph with p = | V(G) | vertices and q = | E(G)|  

edges. A detailed survey of graph labeling can be found in 

[6].Combinations play a major role in combinatorial 

problems.The concept of beta combination labeling of graphs 

was introduced in [8] which is a logical-mathematical attempt. 

We use the following definitions in the subsequent sections. 

Definition 1.1. [8] 

A graph G(p,q)  is said to be a Beta combination graph if there 

exist a bijection  f: V(G)  {1,2 …., p } such that the induced 

function Bf: E(G)  N, N is a natural number, given by Bf 

(uv) =
f(v)!f(u)!

 f(v)]!+[f(u)

 , every  edges uv   G and are all 

distinct and the function f is called the Beta combination 

labeling. 

Definition 1.2.[5] 
A quadrilateral snake is obtained from a path u1,u2,…,un by 

joining ui,ui+1 to new vertices vi ,wi .That is ,every edge of 

the path is replaced by the cycle. 

Definition 1.3.[5] 

A triangular snake is obtained from a path v1,v2,….,vn by 

joining vi and vi+1 to a new vertex wi for i=1,2,….,n-1. 

 

 

 

Definition 1.4.[5] 

A double  triangular snake consists of two triangular snakes 

that have a common path.That is , a double triangular snake is 

obtained from a path u1,u2,…,un by joining ui and ui+1 to new 

vertex vi  for i=1,2,…,n-1 and to a new vertex wi for 

i=1,2,…,n-1. 

Definition 1.5.[7] 

An alternate triangular snake A(Tn) is obtained from a path   

u1, u2, …,un by joining ui and ui+1 (alternatively) to new vertex 

vi .That is every alternative edge of a path is replaced by a 

cycle C3. 

Definition 1.6.[7] 

An alternate quadrilateral snake A(Qn) is obtained from a path 

u1, u2, …,un by joining ui and ui+1(alternatively) to new vertex 

vi ,wi respectively and then joining vi and wi .That is every 

alternative edge of a path is replaced by  a cycle C4. 

Definition 1.7.[5] 

The wheel Wn ( n ≥ 3) is obtained by joining all nodes of 

cycle Cn to a further node called the center, and contains (n+1)  

nodes and 2n edges.  

Definition 1.8 .[5]        
The  helm Hn is the graph obtained from a wheel by 

attachaing a pendent edge at each vertex of the n-cycle. 

Definition 1.9 .[5]   
A gear graph is obtained from the wheel Wn by adding a 

vertex between every pair of adjacent vertices of the n-cycle. 

Definition 1.10.[5] 

The corona G1ʘG2 of two graphs G1 and G2 is defined as the 

graph G obtained by taking one copy of G1(which has p 

points)and p copies of G2 and then joining the ith point of G1 

to every point in the ith copy of G2. 

In this paper, we prove quadrilateral snake Qn,double 

triangular snake , alternate triangular snake A(Tn), alternate 

quadrilateral snake A(Qn), helm Hn ,the gear graph,Comb 

PnʘK1 ,the graph CnʘK1 and the diamond graph  are the Beta 

combination graphs. 

2.  MAIN RESULTS 
Theorem: 2.1 The quadrilateral snake Qn is a beta 

combination graph. 

Proof: Let Qn  be the quadrilateral snake with   3n-2  vertices  

u1, u2, …,un ,v1,v2,..,vn-1, w1,w2, …,wn-1.Let u1, u2, …,un 

be the vertices of the path Pn and every ui  and ui+1 are joined 

to new vertices vi and wi respectively and every  vi and wi  

are joined by an edge  vi wi  for 1  i  n-1. 

Then E(Qn)={ uiui+1  ;  uivi ; ui+1wi  ; vi wi  if 1  i  n-1 } and  

|E(Qn)| = 4n-4.Define a bijection f:V(Qn){1,2,…,3n-2} by 

f(ui)=3i-2 if 1  i  n and f(vi) =3i-1 if 1≤ i≤ n-1 ; f(wi)=3i if 

1≤ i≤ n-1.And f induces Bf: E(Qn )N by  
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Bf (uv)=
f(v)!f(u)!

 f(v)]!+[f(u)
, for every  edges  uv of Qn  and are 

all distinct. 

Theorem: 2.2 Every double triangular snake is a beta 

combination graph.  

Proof: Let G be a  double triangular snake with 3n-2 vertices 

{u1, u2,…,un ,v1,v2,..,vn-1, w1,w2, …,wn-1}.  

E(G) ={ uiui+1  ;  uivi  ; uiwi ; ui+1vi ;  ui+1 wi  if 1  i  n-1 } 

and  |E(G)| = 5n-5. Define f:V(G){1,2,…,3n-2} by 

 f(ui) =2n-2+i  if 1  i  n   and f(vi) = 2i-1 if 1≤ i ≤ n-1 ; 

 f(wi)=2i  if 1≤ i≤ n-1.And f induces that  Bf: E(G ) N by 

 Bf (uv) = 
f(v)!f(u)!

 f(v)]!+[f(u)
 , for every  edges  uv of  G and  

are all distinct. 

Example:2.3The beta combination labeling of  a double 

triangular snake is shown in the Fig-1. 

                                                   Fig-1. 

Theorem: 2.4 Every  alternate triangular snake A(Tn) is a 

beta combination graph. 

Proof: 

Case (i) If the triangle starts from u1. 

    In this case A(Tn) has  (3n/2) (n is even ) vertices 

{u1,u2,…,un,v1,v2,… ,vn/2} such that u1,u2,…,un be the vertices 

of  Pn and every u2i-1 and u2i are adjacent to vi for 1 i  (n/2).  

E(A(Tn)) ={uiui+1  if 1  i  n-1 ; u2i-1vi ;vi u2i  if  1  i ( n/2)}  

and  |E(A(Tn))| =2n-1. Define f:V(A(Tn)){1,2,…, (3n/2)} by 

f(u2i-1)=3i-2 if 1  i  (n/2); f(u2i)=3i  if 1  i  (n/2)  and 

 f(vi) =3i-1 if 1≤ i≤( n/2). 

Case (ii) If the triangle starts from u2. 

 In this case A(Tn) has  (3n-2)/2 (n is even ) vertices 

{u1,u2,…,un,v1,v2,… ,v((n-2)/2} such that u1,u2,…,un be the 

vertices of path Pn and every u2i and u2i+1 are adjacent to vi for 

1  i (n-2)/2.  

E(A(Tn))={uiui+1 if  1 i n-1 ;u2ivi ; vi u2i+1  if 1 i ( n-2)/2 }.  

and |E(A(Tn))| =2n-3. Define f:V(A(Tn)){1,2,…, (3n-2)/2} 

by f(u2i-1)=3i-2 if 1  i  (n/2); f(u2i)=3i-1  if 1  i  (n/2)  

and f(vi) =3i if 1≤ i≤( n-2)/2. 

In the above two cases ,   f  induces Bf: E(A(Tn))N by  

Bf (uv)=
f(v)!f(u)!

 f(v)]!+[f(u)
, for every  edges  uv of  A(Tn)  and 

are all distinct. 

Theorem: 2.5 Every alternate quadrilateral snake A(Qn) is a 

beta combination graph. 

Proof: Case (i) If the quadrilateral starts from u1. 

In this case A(Qn) has  2n vertices {u1,u2,…,un,v1,v2,… ,vn/2, 

w1,w2,… ,wn/2} such that u1,u2,…,un be the vertices of Pn and 

u2i-1 is adjacent to vi and u2i is adjacent to wi  and vi is adjacent 

to wi  for 1  i  (n/2). 

E(A(Qn))=
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 and  |E(A(Qn))| =(5n-2)/2. Define f:V(A(Qn)){1,2,…, 2n} 

by f(u2i-1)=4i-3 if 1  i  (n/2); f(u2i)=4i  if 1  i  (n/2) ;  

f(vi) =4i-2 if 1≤ i≤( n/2) and f(wi) =4i-1 if 1≤ i≤( n/2). 

Case (ii) If the quadrilateral starts from u2. In this case A(Qn) 

has  2n-2 vertices {u1,u2,…,un,v1,v2,… ,v(n-2)/2, w1,w2,… ,w(n-

2)/2} such that u1,u2,…,un be the vertices of path Pn and every 

u2i is adjacent to vi and u2i+1 is adjacent to wi  and vi is 

adjacent to wi  for 1  i  (n-2)/2.  

E(A(Qn)) = 
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and  |E(A(Qn))| =(5n-8)/2. Define f:V(A(Qn)){1,2,…, 2n-2} 

by f(u2i-1)=4i-3 if 1  i  (n/2); f(u2i)=4i-2  if 1  i  (n/2) ; 

f(vi) =4i-1 if 1≤ i≤( n-2)/2 and f(wi) =4i if 1≤ i≤(n-2)/2. 

In the above two cases ,  f induces Bf : E(A(Qn))N by    

Bf (uv)=
f(v)!f(u)!

 f(v)]!+[f(u)
, for every  edges  uv of  A(Qn)  and 

are all distinct. 

Example:2.6 The beta combination labeling of  alternate 

quadrilateral snake A(Q4) is shown in the Fig-2. 
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                                                  Fig-2. 

Theorem: 2.7 Every helm Hn is a beta combination graph. 

Proof: Let Hn be the helm graph with 2n+1 vertices u1, u2, 

…,un,un+1 ,v1,v2,....,vn   such that  u1, u2, …,un be the vertices 

of cycle Cn  and ui+1 be the center vertex and every vertex vi is 

adjacent to ui  through n pendent edges for 1  i  n .  

Let {uiui+1 if 1  i  n-1 ; u1un ; uiun+1 if 1  i  n ; ui vi }be the 

3n edges of Hn. Define f: V(Hn) {1,2, ….,2n+1} by  

f(ui) = n+i  if 1  i  n+1 and f(vi) = i if 1  i n. And f 

induces that  Bf: E(Hn) N  by Bf (uv) = 
f(v)!f(u)!

 f(v)]!+[f(u)
, 

for every  edges uv of Hn and  are all distinct. 

Theorem:2.8 Every  gear graph  admits a beta combination 

labeling. 

Proof: Let G be a gear graph  with 2n+1 vertices  u1, u2, …,un 

,un+1,v1,v2,..,vn such that u1, u2, …,un be the vertices of cycle 

Cn and every vi  between every pair of adjacent vertices of Cn 

for 1  i  n. E(G) ={ uiun+1  if  1  i  n ;  uivi if 1  i  n ; 

viui+1 if  1  i  n-1 ;  vn u1} and  |E(G)| = 3n. Define a 

bijection f:V(G){1,2,…,2n} by f(ui)=2i-1 if 1  i  n and 

f(ui) = 2n+1 ; f(vi)=2n-2(i-1)  if 1≤ i≤ n. And f induces that  

Bf: E(G ) N by Bf (uv) = 
f(v)!f(u)!

 f(v)]!+[f(u)
 , for every  

edges  uv of  G and  are all distinct. 

Example:2.9 The beta combination labeling of helm H5  is 

shown in the Fig-3. 

 

 

 

 

                                          

Fig-3. 

Theorem:2.10 The Comb PnʘK1  admits a beta combination 

labeling. 

Proof: Let u1, u2, …,un  be the  vertices of Path Pn and vi be 

the vertex of ithcopy of the complete graph K1 for 1≤ i ≤n. 

Therefore Comb PnʘK1  has 2n vertices.  

Then E(PnʘK1) ={ uiui+1  if  1  i  n-1 ;  uivi if 1  i  n} and  

|E(PnʘK1)| = 2n-1. Define  f:V(PnʘK1)  {1,2,…,2n} by 

f(ui)=2i-1 and  f(vi)=2i  if 1≤i≤ n. And f induces that   

Bf: E(PnʘK1) N  by Bf (uv) =
f(v)!f(u)!

 f(v)]!+[f(u)
, for every  

edges  uv of PnʘK1 and  are all distinct. 

Example: 2.11 The beta combination labeling of   Comb 

P5ʘK1  is shown in the Fig-4 . 

                                               Fig-4 

Theorem :2.1 The graph CnʘK1 is a beta combination graph.  

Proof: Let u1,u2,……,un  be the n vertices of Cn and vi be the 

vertex of ith copy of the complete graph K1 for 1≤ 

i≤n.Therefore CnʘK1  has 2n vertices.E(CnʘK1)={ uiui+1  if  1 

 i  n-1;  u1un ;  uivi if 1  i  n} and  |E(CnʘK1)| = 2n. 

Define a bijection f:V(CnʘK1)  {1,2,…,2n} by f(ui)=n+i if 

1≤ i≤ n and  f(vi)=i  if 1≤ i≤ n. And f induces that Bf: 

E(CnʘK1) N by Bf (uv) = 
f(v)!f(u)!

 f(v)]!+[f(u)
, for every  

edges  uv of  CnʘK1 and  are all distinct. 

Example:2.13 The beta combination labeling of  C8ʘK1  is 

shown in the Fig-5. 

 

 

 

 

 

 

 

 

 

 

                                                     Fig-5. 

Theorem :2.14 Every  diamond graph is a Beta Combination 

graph.  

Proof: Let G be a diamond graph  with 4 vertices  u1, u2, 

u3,u4. E(G) ={ uiui+1  if  1  i  n-1 ;  u1u4 ; u2u4} and  |E(G)| = 

5. Define f:V(G)→{1,2,3,4} is defined by f(ui)= i , if 1≤ 

i≤4.And f induces that Bf:E(G) →N by Bf(uv) = 

f(v)!f(u)!

 f(v)]!+[f(u)
for every edges uv in G and are all distinct.  
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3. CONCLUSION 
 We have planned to find applications of beta combination 

graphs. 
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