On Beta Combination Labeling Graphs

T. THARMARAJ
Department of Mathematics, Udaya School of Engineering, Vellamodi, Tamil Nadu

P.B.SARASIJA
Department of Mathematics, Noorul Islam
University,
Kumaracoil,Tamil Nadu

Abstract

Let $G(V, E)$ be a graph with p vertices and q edges.A graph $\mathrm{G}(\mathrm{p}, \mathrm{q})$ is said to be a Beta combination graph if there exist a bijection $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2 \ldots, \mathrm{p}\}$ such that the induced function $B_{f}: E(G) \rightarrow N, N$ is a natural number, given by B_{f} $(u v)=\frac{[f(u)+f(v)]!}{f(u)!f(v)!}$, every edges $u v \in G$ and are all distinct and the function f is called the Beta combination labeling of G [8].In this paper, we prove quadrilateral snake Q_{n}, double triangular snake, alternate triangular snake $\mathrm{A}\left(\mathrm{T}_{\mathrm{n}}\right)$, alternate quadrilateral snake $A\left(Q_{n}\right)$, helm H_{n}, the gear graph,Comb $P_{n} O K_{1}$,the graph $C_{n} \odot K_{1}$ and the diamond graph are the Beta combination graphs.

General Terms

Mathematical subject classification (2010) 05C78.

Keywords

Beta combination graph and Beta combination labeling.

1. INTRODUCTION

Graph labeling ,where the vertices and edges are assigned real values or subsets of a set are subject to certain conditions.Throughout this paper, by a graph we mean a finite, undirected, simple graph. The vertex set and the edge set of a graph G are denoted by $\mathrm{V}(\mathrm{G})$ and $\mathrm{E}(\mathrm{G})$ respectively. Let $G(p, q)$ be a graph with $p=|V(G)|$ vertices and $q=|E(G)|$ edges. A detailed survey of graph labeling can be found in [6].Combinations play a major role in combinatorial problems. The concept of beta combination labeling of graphs was introduced in [8] which is a logical-mathematical attempt. We use the following definitions in the subsequent sections.
Definition 1.1. [8]
A graph $\mathrm{G}(\mathrm{p}, \mathrm{q})$ is said to be a Beta combination graph if there exist a bijection $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2 \ldots, \mathrm{p}\}$ such that the induced function $\mathrm{Bf}: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{N}, \mathrm{N}$ is a natural number, given by Bf

$$
[f(u)+f(v)]!
$$

(uv) $=f(u)!f(v)!$, every edges $u v \in G$ and are all distinct and the function f is called the Beta combination labeling.

Definition 1.2.[5]

A quadrilateral snake is obtained from a path $u 1, \mathrm{u} 2, \ldots, \mathrm{un}$ by joining ui,ui+1 to new vertices vi, wi .That is ,every edge of the path is replaced by the cycle.

Definition 1.3.[5]

A triangular snake is obtained from a path $\mathrm{v} 1, \mathrm{v} 2, \ldots, \mathrm{vn}$ by joining vi and vi+1 to a new vertex wi for $\mathrm{i}=1,2, \ldots, \mathrm{n}-1$.

Definition 1.4.[5]

A double triangular snake consists of two triangular snakes that have a common path.That is, a double triangular snake is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} to new vertex v_{i} for $i=1,2, \ldots, n-1$ and to a new vertex w_{i} for $\mathrm{i}=1,2, \ldots, \mathrm{n}-1$.

Definition 1.5.[7]

An alternate triangular snake $\mathrm{A}\left(\mathrm{T}_{\mathrm{n}}\right)$ is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} (alternatively) to new vertex v_{i}. That is every alternative edge of a path is replaced by a cycle C_{3}.

Definition 1.6.[7]

An alternate quadrilateral snake $A\left(Q_{n}\right)$ is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} (alternatively) to new vertex v_{i}, w_{i} respectively and then joining v_{i} and w_{i}. That is every alternative edge of a path is replaced by a cycle C_{4}.
Definition 1.7.[5]
The wheel $\mathrm{W}_{\mathrm{n}}(\mathrm{n} \geq 3)$ is obtained by joining all nodes of cycle C_{n} to a further node called the center, and contains ($\mathrm{n}+1$) nodes and 2 n edges.
Definition 1.8 .[5]
The helm H_{n} is the graph obtained from a wheel by attachaing a pendent edge at each vertex of the n-cycle.

Definition 1.9 .[5]

A gear graph is obtained from the wheel W_{n} by adding a vertex between every pair of adjacent vertices of the n-cycle.

Definition 1.10.[5]

The corona $G_{1} \Theta_{2}$ of two graphs G_{1} and G_{2} is defined as the graph G obtained by taking one copy of G_{1} (which has p points)and p copies of G_{2} and then joining the $i^{\text {th }}$ point of G_{1} to every point in the $\mathrm{i}^{\text {th }}$ copy of G_{2}.
In this paper, we prove quadrilateral snake Q_{n}, double triangular snake, alternate triangular snake $\mathrm{A}\left(\mathrm{T}_{\mathrm{n}}\right)$, alternate quadrilateral snake $A\left(Q_{n}\right)$, helm H_{n},the gear graph,Comb $P_{n} \odot K_{1}$,the graph $C_{n} \odot K_{1}$ and the diamond graph are the Beta combination graphs.

2. MAIN RESULTS

Theorem: 2.1 The quadrilateral snake Q_{n} is a beta combination graph.
Proof: Let Qn be the quadrilateral snake with $3 n-2$ vertices
u1, u2, ...,un ,v1,v2,..,vn-1, w1,w2, ...,wn-1.Let u1, u2, .., un be the vertices of the path Pn and every ui and ui+1 are joined to new vertices vi and wi respectively and every vi and wi are joined by an edge vi wi for $1 \leq \mathrm{i} \leq \mathrm{n}-1$.
Then $E\left(Q_{n}\right)=\left\{u_{i} u_{i+1} ; u_{i} v_{i} ; u_{i+1} w_{i} ; v_{i} w_{i}\right.$ if $\left.1 \leq i \leq n-1\right\}$ and $\left|\mathrm{E}\left(\mathrm{Q}_{\mathrm{n}}\right)\right|=4 \mathrm{n}$-4.Define a bijection $\mathrm{f}: \mathrm{V}\left(\mathrm{Q}_{\mathrm{n}}\right) \rightarrow\{1,2, \ldots, 3 \mathrm{n}-2\}$ by $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=3 \mathrm{i}-2$ if $1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=3 \mathrm{i}-1$ if $1 \leq \mathrm{i} \leq \mathrm{n}-1 ; \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=3 \mathrm{i}$ if $1 \leq \mathrm{i} \leq \mathrm{n}-1$. And f induces $\mathrm{B}_{\mathrm{f}}: \mathrm{E}\left(\mathrm{Q}_{\mathrm{n}}\right) \rightarrow \mathrm{N}$ by
$B_{f}(u v)=\frac{[f(u)+f(v)]!}{f(u)!f(v)!}$, for every edges $u v$ of Q_{n} and are all distinct.

Theorem: 2.2 Every double triangular snake is a beta combination graph.
Proof: Let G be a double triangular snake with $3 \mathrm{n}-2$ vertices $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}, \mathrm{v}_{1}, \mathrm{v}_{2}, . ., \mathrm{v}_{\mathrm{n}-1}, \mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{n}-1}\right\}$.
$E(G)=\left\{u_{i} u_{i+1} ; u_{i} v_{i} ; u_{i} w_{i} ; u_{i+1} v_{i} ; u_{i+1} w_{i}\right.$ if $\left.1 \leq i \leq n-1\right\}$ and $|\mathrm{E}(\mathrm{G})|=5 n-5$. Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, 3 \mathrm{n}-2\}$ by
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{n}-2+\mathrm{i}$ if $1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}-1$ if $1 \leq \mathrm{i} \leq \mathrm{n}-1$;
$\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=2 \mathrm{i}$ if $1 \leq \mathrm{i} \leq \mathrm{n}-1$.And f induces that $\mathrm{B}_{\mathrm{f}}: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{N}$ by
$B_{f}(u v)=\frac{[f(u)+f(v)]!}{f(u)!f(v)!}$, for every edges uv of G and are all distinct.

Example:2.3The beta combination labeling of a double triangular snake is shown in the Fig-1.

Fig-1.
Theorem: 2.4 Every alternate triangular snake $\mathrm{A}\left(\mathrm{T}_{\mathrm{n}}\right)$ is a beta combination graph.

Proof:

Case (i) If the triangle starts from u_{1}.

In this case $\mathrm{A}\left(\mathrm{T}_{\mathrm{n}}\right)$ has (3n/2) (n is even) vertices $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n} / 2}\right\}$ such that $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}$ be the vertices of P_{n} and every $u_{2 i-1}$ and $u_{2 i}$ are adjacent to v_{i} for $1 \leq i \leq(n / 2)$.
$\mathrm{E}\left(\mathrm{A}\left(\mathrm{T}_{\mathrm{n}}\right)\right)=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right.$ if $1 \leq \mathrm{i} \leq \mathrm{n}-1 ; \mathrm{u}_{2 \mathrm{i}-1} \mathrm{v}_{\mathrm{i}} ; \mathrm{v}_{\mathrm{i}} \mathrm{u}_{2 \mathrm{i}}$ if $\left.1 \leq \mathrm{i} \leq(\mathrm{n} / 2)\right\}$
and $\left|E\left(A\left(T_{n}\right)\right)\right|=2 n-1$. Define $f: V\left(A\left(T_{n}\right)\right) \rightarrow\{1,2, \ldots,(3 n / 2)\}$ by $\mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}-1}\right)=3 \mathrm{i}-2$ if $1 \leq \mathrm{i} \leq(\mathrm{n} / 2)$; $\mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}}\right)=3 \mathrm{i}$ if $1 \leq \mathrm{i} \leq(\mathrm{n} / 2)$ and
$f\left(v_{i}\right)=3 i-1$ if $1 \leq i \leq(n / 2)$.
Case (ii) If the triangle starts from u_{2}.

In this case $A\left(T_{n}\right)$ has (3n-2)/2 (n is even) vertices $\left\{\mathrm{u}_{1}, \mathbf{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{((\mathrm{n}-2) / 2}\right\}$ such that $\mathrm{u}_{1}, \mathbf{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}$ be the vertices of path P_{n} and every $u_{2 i}$ and $u_{2 i+1}$ are adjacent to v_{i} for $1 \leq \mathrm{i} \leq(\mathrm{n}-2) / 2$.
$E\left(A\left(T_{n}\right)\right)=\left\{u_{i} u_{i+1}\right.$ if $1 \leq i \leq n-1 ; u_{2 i} v_{i} ; v_{i} u_{2 i+1}$ if $\left.1 \leq i \leq(n-2) / 2\right\}$.
and $\left|E\left(A\left(T_{n}\right)\right)\right|=2 n-3$. Define $\mathrm{f}: \mathrm{V}\left(\mathrm{A}\left(\mathrm{T}_{\mathrm{n}}\right)\right) \rightarrow\{1,2, \ldots,(3 \mathrm{n}-2) / 2\}$ by $f\left(u_{2 i-1}\right)=3 i-2$ if $1 \leq i \leq(n / 2) ; f\left(u_{2 i}\right)=3 i-1 \quad$ if $1 \leq i \leq(n / 2)$ and $f\left(v_{i}\right)=3 \mathrm{i}$ if $1 \leq \mathrm{i} \leq(\mathrm{n}-2) / 2$.

In the above two cases, f induces $\mathrm{B}_{\mathrm{f}}: \mathrm{E}\left(\mathrm{A}\left(\mathrm{T}_{\mathrm{n}}\right)\right) \rightarrow \mathrm{N}$ by
$B_{f}(u v)=\frac{[f(u)+f(v)]!}{f(u)!f(v)!}$, for every edges uv of $A\left(T_{n}\right)$ and are all distinct.

Theorem: 2.5 Every alternate quadrilateral snake $\mathrm{A}\left(\mathrm{Q}_{\mathrm{n}}\right)$ is a beta combination graph.
Proof: Case (i) If the quadrilateral starts from u_{1}.
In this case $A\left(Q_{n}\right)$ has $2 n$ vertices $\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n / 2}\right.$, $\left.\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{n} / 2}\right\}$ such that $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}$ be the vertices of P_{n} and $u_{2 i-1}$ is adjacent to v_{i} and $u_{2 i}$ is adjacent to w_{i} and v_{i} is adjacent to w_{i} for $1 \leq \mathrm{i} \leq(\mathrm{n} / 2)$.
$\mathrm{E}\left(\mathrm{A}\left(\mathrm{Q}_{\mathrm{n}}\right)\right)=\left\{\begin{array}{l}u_{i} u_{i+1} \text { if } 1 \leq i \leq n-1 \\ u_{2 i-1} v_{i} ; u_{2 i} w_{i} ; v_{i} w_{i} \text { if } 1 \leq i \leq \frac{n}{2}\end{array}\right.$
and $\left|\mathrm{E}\left(\mathrm{A}\left(\mathrm{Q}_{\mathrm{n}}\right)\right)\right|=(5 \mathrm{n}-2) / 2$. Define $\mathrm{f}: \mathrm{V}\left(\mathrm{A}\left(\mathrm{Q}_{\mathrm{n}}\right)\right) \rightarrow\{1,2, \ldots, 2 \mathrm{n}\}$ by $f\left(u_{2 i-1}\right)=4 \mathrm{i}-3$ if $1 \leq \mathrm{i} \leq(\mathrm{n} / 2) ; \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}}\right)=4 \mathrm{i}$ if $1 \leq \mathrm{i} \leq(\mathrm{n} / 2)$;
$f\left(v_{i}\right)=4 i-2$ if $1 \leq i \leq(n / 2)$ and $f\left(w_{i}\right)=4 i-1$ if $1 \leq i \leq(n / 2)$.
Case (ii) If the quadrilateral starts from u_{2}. In this case $\mathrm{A}\left(\mathrm{Q}_{\mathrm{n}}\right)$ has $2 n-2$ vertices $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{(\mathrm{n}-2) / 2}, \mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{(\mathrm{n}-}\right.$ $\left.{ }_{2) / 2}\right\}$ such that $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of path P_{n} and every $u_{2 i}$ is adjacent to v_{i} and $u_{2 i+1}$ is adjacent to w_{i} and v_{i} is adjacent to w_{i} for $1 \leq \mathrm{i} \leq(\mathrm{n}-2) / 2$.
$\mathrm{E}\left(\mathrm{A}\left(\mathrm{Q}_{\mathrm{n}}\right)\right)=\left\{\begin{array}{l}u_{i} u_{i+1} \text { if } 1 \leq i \leq n-1 \\ u_{2 i} v_{i} ; u_{2 i+1} w_{i} ; v_{i} w_{i} \text { if } 1 \leq i \leq\left(\frac{n-2}{2}\right)\end{array}\right.$
and $\left|\mathrm{E}\left(\mathrm{A}\left(\mathrm{Q}_{\mathrm{n}}\right)\right)\right|=(5 \mathrm{n}-8) / 2$. Define $\mathrm{f}: \mathrm{V}\left(\mathrm{A}\left(\mathrm{Q}_{\mathrm{n}}\right)\right) \rightarrow\{1,2, \ldots, 2 \mathrm{n}-2\}$ by $f\left(u_{2 i-1}\right)=4 i-3$ if $1 \leq i \leq(n / 2) ; f\left(u_{2 i}\right)=4 i-2$ if $1 \leq i \leq(n / 2)$; $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=4 \mathrm{i}-1$ if $1 \leq \mathrm{i} \leq(\mathrm{n}-2) / 2$ and $\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=4 \mathrm{i}$ if $1 \leq \mathrm{i} \leq(\mathrm{n}-2) / 2$.

In the above two cases, f induces $\mathrm{B}_{\mathrm{f}}: \mathrm{E}\left(\mathrm{A}\left(\mathrm{Q}_{\mathrm{n}}\right)\right) \rightarrow \mathrm{N}$ by
$B_{f}(u v)=\frac{[f(u)+f(v)]!}{f(u)!f(v)!}$, for every edges uv of $A\left(Q_{n}\right)$ and are all distinct.

Example:2.6 The beta combination labeling of alternate quadrilateral snake $A\left(Q_{4}\right)$ is shown in the Fig-2.

Fig-2.
Theorem: 2.7 Every helm H_{n} is a beta combination graph. Proof: Let H_{n} be the helm graph with $2 \mathrm{n}+1$ vertices $\mathrm{u}_{1}, \mathrm{u}_{2}$, $\ldots, \mathrm{u}_{\mathrm{n}}, \mathrm{u}_{\mathrm{n}+1}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots ., \mathrm{v}_{\mathrm{n}}$ such that $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}$ be the vertices of cycle C_{n} and u_{i+1} be the center vertex and every vertex v_{i} is adjacent to u_{i} through n pendent edges for $1 \leq i \leq n$.
Let $\left\{u_{i} u_{i+1}\right.$ if $1 \leq i \leq n-1 ; u_{1} u_{n} ; u_{i} u_{n+1}$ if $\left.1 \leq i \leq n ; u_{i} v_{i}\right\}$ be the $3 n$ edges of H_{n}. Define $f: V\left(H_{n}\right) \rightarrow\{1,2, \ldots, 2 n+1\}$ by
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{n}+\mathrm{i}$ if $1 \leq \mathrm{i} \leq \mathrm{n}+1$ and $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}$ if $1 \leq \mathrm{i} \leq \mathrm{n}$. And f induces that $B_{f}: E\left(H_{n}\right) \rightarrow N$ by $B_{f}(u v)=\frac{[f(u)+f(v)]!}{f(u)!f(v)!}$, for every edges uv of H_{n} and are all distinct.

Theorem:2.8 Every gear graph admits a beta combination labeling.
Proof: Let G be a gear graph with $2 n+1$ vertices $u_{1}, u_{2}, \ldots, u_{n}$ $, \mathrm{u}_{\mathrm{n}+1}, \mathrm{v}_{1}, \mathrm{v}_{2}, . ., \mathrm{v}_{\mathrm{n}}$ such that $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}$ be the vertices of cycle C_{n} and every v_{i} between every pair of adjacent vertices of C_{n} for $1 \leq \mathrm{i} \leq \mathrm{n}$. $\mathrm{E}(\mathrm{G})=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{n}+1}\right.$ if $1 \leq \mathrm{i} \leq \mathrm{n} ; \mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}$ if $1 \leq \mathrm{i} \leq \mathrm{n}$; $\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}$ if $\left.1 \leq \mathrm{i} \leq \mathrm{n}-1 ; \mathrm{v}_{\mathrm{n}} \mathrm{u}_{1}\right\}$ and $|\mathrm{E}(\mathrm{G})|=3 \mathrm{n}$. Define a bijection $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, 2 \mathrm{n}\}$ by $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}-1$ if $1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{n}+1 ; \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{n}-2(\mathrm{i}-1)$ if $1 \leq \mathrm{i} \leq \mathrm{n}$. And f induces that
$B_{f}: E(G) \rightarrow N$ by $B_{f}(u v)=\frac{[f(u)+f(v)]!}{f(u)!f(v)!}$, for every
edges uv of G and are all distinct.
Example:2.9 The beta combination labeling of helm H_{5} is shown in the Fig-3.

Fig-3.
Theorem:2.10 The Comb $P_{n} \odot K_{1}$ admits a beta combination labeling.
Proof: Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of Path P_{n} and v_{i} be the vertex of $i^{\text {th }}$ copy of the complete graph K_{1} for $1 \leq i \leq n$.
Therefore Comb $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}$ has 2 n vertices.
Then $E\left(P_{n} \odot K_{1}\right)=\left\{u_{i} u_{i+1}\right.$ if $1 \leq i \leq n-1 ; u_{i} v_{i}$ if $\left.1 \leq i \leq n\right\}$ and $\left|E\left(P_{n} \odot K_{1}\right)\right|=2 n-1$. Define $\mathrm{f}: V\left(\mathrm{P}_{\mathrm{n}} \odot K_{1}\right) \rightarrow\{1,2, \ldots, 2 \mathrm{n}\}$ by $f\left(u_{i}\right)=2 i-1$ and $f\left(v_{i}\right)=2 i$ if $1 \leq i \leq n$. And f induces that
$B_{f}: E\left(P_{n} \odot K_{1}\right) \rightarrow N$ by $B_{f}(u v)=\frac{[f(u)+f(v)]!}{f(u)!f(v)!}$, for every
edges uv of $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}$ and are all distinct.

Example: 2.11 The beta combination labeling of Comb $\mathrm{P}_{5} \odot \mathrm{~K}_{1}$ is shown in the Fig-4.

Fig-4

Theorem :2.1 The graph $C_{n} \odot K_{1}$ is a beta combination graph. Proof: Let $u_{1}, u_{2}, \ldots \ldots, u_{n}$ be the n vertices of C_{n} and v_{i} be the vertex of $i^{\text {th }}$ copy of the complete graph K_{1} for $1 \leq$
$\mathrm{i} \leq$ n. Therefore $\mathrm{C}_{\mathrm{n}} \odot K_{1}$ has 2 n vertices. $\mathrm{E}\left(\mathrm{C}_{\mathrm{n}} \odot K_{1}\right)=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right.$ if 1 $\leq \mathrm{i} \leq \mathrm{n}-1 ; \mathrm{u}_{1} \mathrm{u}_{\mathrm{n}} ; \mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}$ if $\left.1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and $\left|\mathrm{E}\left(\mathrm{C}_{\mathrm{n}} \odot K_{1}\right)\right|=2 \mathrm{n}$.
Define a bijection $f: V\left(C_{n} \odot K_{1}\right) \rightarrow\{1,2, \ldots, 2 n\}$ by $f\left(u_{i}\right)=n+i$ if $1 \leq i \leq n$ and $f\left(v_{i}\right)=i$ if $1 \leq i \leq n$. And f induces that B_{f} :
$\mathrm{E}\left(\mathrm{C}_{\mathrm{n}} \odot K_{1}\right) \rightarrow \mathrm{N}$ by $\mathrm{B}_{\mathrm{f}}(\mathrm{uv})=\frac{[\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})]!}{\mathrm{f}(\mathrm{u})!\mathrm{f}(\mathrm{v})!}$, for every
edges uv of $C_{n} \odot K_{1}$ and are all distinct.
Example:2.13 The beta combination labeling of $\mathrm{C}_{8} \mathrm{OK}_{1}$ is shown in the Fig-5.

Fig-5.

Theorem :2.14 Every diamond graph is a Beta Combination graph.
Proof: Let G be a diamond graph with 4 vertices u_{1}, u_{2}, $\mathrm{u}_{3}, \mathrm{u}_{4} . \mathrm{E}(\mathrm{G})=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right.$ if $\left.1 \leq \mathrm{i} \leq \mathrm{n}-1 ; \mathrm{u}_{1} \mathrm{u}_{4} ; \mathrm{u}_{2} \mathrm{u}_{4}\right\}$ and $|\mathrm{E}(\mathrm{G})|=$ 5. Define $f: V(G) \rightarrow\{1,2,3,4\}$ is defined by $f\left(u_{i}\right)=i$, if $1 \leq$ $\mathrm{i} \leq 4$. And f induces that $\mathrm{B}_{\mathrm{f}}: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{N}$ by $\mathrm{B}_{\mathrm{f}}(\mathrm{uv})=$ $\frac{[f(u)+f(v)]!}{f(u)!f(v)!}$ for every edges $u v$ in G and are all distinct.

3. CONCLUSION

We have planned to find applications of beta combination graphs.

4. REFERENCES:

[1] B.D.Acharya and S.M.Hegde,Arithmetic graphs,J.Graph Theory,14(3)(1990),275-299.
[2] L.Beineke and S.M.Hegde,Stronly multiplicative graphs,Discuss.Math.Graph Theory, 21(2001),63-75.
[3] D.M.Burton,Elementary Number Theory,Second Edition,Wm.C.Brown company Publishers,1980.
[4]F.Harary, Graph Theory,AddisonWesley,Reading,Massachusetts,1972.
[5] S.M.Hegde and Sudhakar Shetty,Combinatorial Labelings of Graphs, Applied Mathematics E-Notes, 6(2006),251258.
[6] J.A.Gallian,A dynamic survey of graph labeling, The Electronic journal of combinatorics,5(2002),\# DS6,1144.
[7] S.S.Sandhya , S.Somasundaram , R.Ponraj, Harmonic Mean Labeling of Some Cycle Related Graphs, Int.J.of Math.Analysis, Vol. 6, 2012, no.40, 1997-2005.
[8] T.TharmaRaj, P.B.Sarasija , Betacombination Graphs , In. Journal of Computer Applications , Vol. 76 , No. 14 , 2013.

5. ACKNOWLEDGMENTS

Our thanks to the experts who have contributed towards development of the paper.

