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ABSTRACT 

In this paper we introduce imageFARMER, a framework that 

allows information retrieval researchers and educators to 

develop and customize domain-specific content-based image 

retrieval systems with ease while developing a deeper 

understanding of the underlying representation of domain-

specific image data. imageFARMER incorporates different 

aspects of image processing and content-based information 

retrieval, such as: image representation via image parameter 

extraction, validation via image parameters, analysis of 

multiple dissimilarity measures for accurate data analysis, 

testing of dimensionality reduction methods for storage and 

processing optimization, and indexing algorithms for fast and 

efficient querying. The unique capabilities of this framework 

have not been available together as an open-source software 

package designed for research, while offering enhanced 

knowledge discovery and validation of all steps involved 

when creating large-scale content-based image retrieval 

systems.   
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software applications, evaluation framework. 
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1. INTRODUCTION 
Developing large-scale content-based image retrieval (CBIR) 

systems is an important computer science challenge due to the 

current deluge of digital image data [1, 2]. To facilitate the 

creation of such systems, a framework that provides a testing 

environment that allows experimentation with image 

parameters and large scale image processing techniques in 

different, domain-specific image retrieval tasks is needed. 

Said framework should also cover other important CBIR 

steps, such as: unsupervised and supervised attribute 

evaluation, dimensionality reduction, and high-dimensional 

data indexing.  

In this work we introduce imageFARMER (Framework for 

the creAtion of laRge-scale content-based iMagE Retrieval – 

freely available in [3]), a novel framework that combines 

aspects of large-scale data processing, which is geared 

towards the creation of better suited retrieval mechanisms for 

different domain-specific image data sources. Such a 

framework will allow researchers and educators to experiment 

with different aspects, to determine optimal combinations and 

integrations of their own components. Since many image 

retrieval techniques tend to produce significantly different 

results depending on the domain of the data being used, a 

flexible experimenting environment is highly needed.  As of 

writing time, we are not aware of any freely available 

software that allows the extensive experimentation and testing 

that imageFARMER permits. 

We believe that a framework like ours, outlined in Figure 1, 

will be an invaluable tool for the community, allowing 

researchers to spend their efforts on the actual problem at 

hand rather than the construction of a set-up that will allow 

them to have a flexible and configurable testing environment. 

By providing a testing platform, researchers and educators 

working on state-of-the-art image retrieval problems can 

contribute new plugins while adapting it for their work, 

allowing them to enrich the experience of future users.  

 

Figure 1. imageFARMER modules and flow 

2. BACKGROUND 
Content-Based Image Retrieval (CBIR), in broad terms, is the 

application of computer vision techniques to the image 

retrieval task of finding visually similar images and can be 

dated back to 1992 [4]. The term ‘content-based’ implies that 

a search will analyze the contents of images, rather than text 

metadata such as keywords, tags, and descriptions generally 

associated with images. Said image content is analyzed by 

extracting: descriptors, histograms, colors, shapes, textures, 

etc., generated from the image. In our particular domain of 

application, NASA’s Solar Dynamics Observatory (SDO) 

mission generates approximately 69,000 images per day, thus 

making the task of hand labeling them (meta-data generation) 

impossible, and making it a relevant problem for CBIR. There 

are several important surveys on CBIR [5, 6, 7, 8], but we 

found that until [1], there has not been new work done in 

CBIR. For the domain specific problem of solar images that 

this framework was originally developed for, we referred to 
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surveys of high-dimensional indexing of multimedia data [9] 

and applications to medicine [10], which fit the constraints of 

our particular application.  

Wide usage of CBIR systems is still not very common, and 

very few widely used systems exist. Examples include Yahoo! 

Image Search, and Google Image Search, both of which rely 

heavily on metadata and have weak performance when it 

comes to complicated searches, in particular of regions within 

the images. In terms of CBIR systems freely available for 

other researchers to customize, we have the Flexible Image 

Retrieval Engine (FIRE) [11], created by Thomas Deselaers, 

as the only well-known framework. While the interface and 

relevance feedback mechanisms are already provided, this 

system is somewhat complicated to extend and implement 

new image parameters on it, and it is no longer supported.  

During our literature review process of CBIR systems, we 

discovered that very few researchers actually address their 

parameter selection in great detail as in [12]. And even in this 

discussion, there are several key types of dissimilarity 

evaluations that are not addressed to the extent provided by 

imageFARMER. Our framework addresses those deficiencies 

and provides a useful tool for researchers embarking on the 

task of building domain-specific CBIR systems. 

3. BENCHMARK DATASETS USED 
In order to show the functionality of imageFARMER, we 

selected six different image datasets based on their unique 

characteristics to contrast them with our base application, the 

SDO CBIR system. By selecting very different types of 

datasets we will show the domain-dependency of the image 

parameters and the need to use all of the modules of 

imageFARMER in order to gain valuable insights on the 

experimental datasets. We selected a total of eight classes and 

1,600 images (200 per class) for each dataset. 

3.1 Solar dataset 
The dataset was created from the Transition Region and 

Coronal Explorer (TRACE) mission, fully described in [13]. 

 

Figure 2. Sample of Solar dataset images 

3.2 INDECS dataset 
INDECS stands for INDoor Environment under Changing 

conditions, described and available in [14].  

 

Figure 3. Sample of INDECS dataset images 

3.3 ImageCLEF datasets (2005 and 2007) 
ImageCLEF is the cross-language image retrieval track that is 

a part of the Cross Language Evaluation Forum (CLEF) 

described in [15]. We created two different datasets from 

images of the 2005 and 2007 editions. 

 

Figure 4. Sample of CLEFMED dataset images 

3.4 PASCAL Datasets (2006 and 2008) 
The PASCAL Visual Object Classes (VOC) challenge is a 

popular benchmark in visual object category recognition and 

detection. Fully described in [16], we created two different 

datasets from the images of 2006 and 2008 editions. 

 

Figure 5. Sample of PASCAL dataset images 

4. CLASSIFICATION ALGORITHMS 
In order to provide quantitative evaluation results, most of the 

modules in imageFARMER’s generate WEKA ARFF files. 

These files will enable the researcher to experiment with the 

wide variety of classification algorithms offered in WEKA 

[17], such as the ones used in this paper: Naïve Bayes (NB), 

C4.5, and Support Vector Machines (SVM). By using 

imageFARMER in conjunction with a popular tool such a 

WEKA researchers will be able to test their findings in a 

familiar and well supported environment. 

5. FEATURE EXTRACTION MODULE 
While building imageFARMER, we started like previous 

researchers, by carefully selecting the parameters we wish to 

extract from images [12, 18, 19]. Since our framework was 

developed in parallel with the SDO large-scale CBIR system 

we primarily implement texture-based image parameters 

because our images are grayscale and do not contain perfectly 

outlined shapes, as explained in [12, 20]. Our quantitative 

analysis in this work uses the 10 most useful parameters 

determined for our dataset in [18, 19]. However, the 

framework capabilities allow researchers to implement and 

test any parameters that they know that work for their domain-

specific images. Our framework also allows the usage of 

software packages that extract image parameters like WND-

CHARM [21], and provides extensive facilities for testing and 

visualization. 

Please note that this work is not an overview of image 

parameters, it just indicates which image parameters have 

been implemented in our framework. For a comprehensive 

comparison of image parameters, please refer to [12, 19]. 

Table 1. List of default image parameters available 

Label Image parameter 

P1 Entropy 

P2 Mean 

P3 Standard Deviation 

P4 3rd Moment (skewness) 

P5 4th Moment (kurtosis) 

P6 Uniformity 

P7 Relative Smoothness (RS) 

P8 Fractal Dimension 

P9 Tamura Directionality 

P10 Tamura Contrast 
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5.1 Grid-based segmentation 
Based on our previous work on the solar dataset [20] and the 

observations presented on [13], we divide the image with an 

n-by-n grid before extracting the image parameters. 

imageFARMER is flexible enough to allow researchers to 

specify their own grid sizes (if any), or their own image 

segmentation before extracting their image parameters. After 

the image segmentation is completed, the extraction of image 

parameters begins on each section. 

5.2 Experimental results 
After the initial extraction of our proposed image parameters 

from Table 1, we present the WEKA classification accuracy 

results on the six datasets in Figure 6. Note that these 

preliminary results only assess how accurate the selected 

image parameters are and they do not represent the final 

classification results after running all modules. We 

immediately observe the domain dependency of the image 

parameters since we have two main performance clusters that 

correspond to how well the parameters are intended to 

represent the images (good in the top and bad in the bottom).  

 

Figure 6. Initial classification accuracy for our six datasets 

using 10-fold cross validation 

6. ATTRIBUTE EVALUATION 

MODULE 
Choosing redundant image parameters in a CBIR system adds 

computational overhead when processing images, unnecessary 

data storage, and retrieval costs. The main goal of this module 

is to determine which parameters can be safely removed while 

maintaining a high quality parameter-based representation. 

6.1 Unsupervised attribute evaluation 
Several automatic methods for image parameter selection 

have been proposed in [22]. However, these automatic 

methods do not directly explain how attributes are chosen. 

The method proposed in [12] analyzes correlations between 

the values of the parameters themselves and provides the user 

with information aid in the selection of an appropriate set of 

attributes using similarity matrices. These matrices will be 

analyzed in order to find the correlations between parameters. 

6.2 Supervised attribute evaluation 
By using the class labels of our training dataset, 

imageFARMER relies on the following supervised attribute 

evaluation methods found in WEKA [17]: Chi Squared 

Method, Gain Ratio Method, and Info Gain Method [23]. 

6.3 Experimental results – unsupervised 

evaluation 
To build Figure 7, we randomly selected a query image from 

any class and then analyzed the correlation between the rest of 

the same class images in order to observe which parameter 

correlates within the same class (intra-class). imageFARMER 

can also analyze the correlation between the query image class 

and the rest of the classes, in order to observe which 

parameters feature correlations to the rest of the classes, and 

to the same class (more details in [18]). 

 

Figure 7. Average correlation map of image parameters of 

the AR class in the solar dataset for the intra-class 

correlation scenario 

Since some of the correlation differences are not that visible 

from the correlation maps, we use multi-dimensional scaling 

plots [24] to better show the correlations as seen on [18]. 

6.4 Experimental results – supervised 

evaluation 
Table 2 shows the ranking results for the supervised methods. 

Table 2. Supervised attribute evaluation top 3 results 

Chi Squared Info Gain Gain Ratio 

Ranking Label Ranking Label Ranking Label 

2039.06 P7 0.8440 P7 0.3597 P9 

2036.05 P6 0.8425 P6 0.3152 P4 

2016.69 P1 0.8292 P1 0.3140 P5 

6.5 Combined experimental results  

Combining the ranking results presented in Table 2 and the 

correlations in Figure 7, we created four different experiments 

that are explained in Table 3 for the solar dataset. 

Table 3. Description of attribute evaluation experiments 

Label  - Experiment Description 

Exp 1  -  All Parameters used 

Exp 2  - Parameters P3, P6, P10 removed 

Exp 3  - Parameters P2, P3, P10 removed 

Exp 4  - Parameters P1, P4, P7 removed 

Exp 2 is removes image parameters that are uncorrelated and 

correlated, according to Figure 7, while Exp 3 and 7 remove 

the bottom and top 3 attributes respectively based on Table 2. 

Table 4. Classification Accuracy Results 

Label NB C45 SVM 

Exp 1 74.50% 86.56% 89.94% 

Exp 2 76.81% 85.75% 89.94% 

Exp 3 75.19% 85.25% 89.75% 

Exp 4 72.88% 85.56% 92.56% 

Clearly these experimental results show the value and need of 

performing attribute evaluation in order to determine 

relevance of the image parameters that are selected for a 

CBIR system. As shown in Tab. 4, we achieved very similar 

accuracy in Exp 2 using 30% less image parameters. 
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7. DISSIMILARITY MEASURES 

MODULE 
Working as a sub-module for the Attribute Evaluation 

module, we provide 18 dissimilarity measures that are widely 

used for clustering, classification, and retrieval of images [25, 

26] in order to determine which ones would provide a better 

differentiation between the dataset’s classes. These measures 

are listed in Table. 5; for more information see [19]. 

Besides graphically visualizing the combinations of 

dissimilarity measures and image parameters, the framework 

also includes the ability to provide analysis based on multi-

dimensional scaling (MDS) applied to the dissimilarity 

matrices. This proves a mechanism for the construction of 2D 

and/or 3D visualization that depicts class separation (if any) 

under each measure-parameter combination. 

Table 5. List of dissimilarity measures used 

Label Distance 

D1 Euclidean 

D2 Standarized Euclidean 

D3 Mahalanobis 

D4 City Block 

D5 Chebychev 

D6 Cosine 

D7 Correlation 

D8 Spearman 

D9 Hausdorff 

D10 Jensen-Shannon divergence (JSD) 

D11 χ2 

D12 Kullback-Leibler divergence (KLD) A-B 

D13 Kullback-Leibler divergence (KLD) B-A 

D14-18 Fractional p=0.25,0.50,0.80,0.90,0.95 

 

7.1 Experimental results 
In Figures 8 and 9, we observe how different measures 

produce very different results. This will allow researchers to 

find hidden details on how classes are separated. 

 

Figure 8. Dissimilarity matrix plot for (a) correlation (D7) 

measure with mean (P2) and (b) Chebychev (D5) measure 

with relative smoothness (RS) (P7) 

 

Figure 9. 3D MDS plot for (a) correlation (D7) measure 

with mean (P2), (b) Chebychev (D5) measure with RS (P7) 

In Figures 8 and 9 one clearly observes how different each of 

the parameter/dissimilarity measure combinations is since we 

can see a clear separation of a class that we were not able to 

see before between a) and b). 

8. DIMENSIONALITY REDUCTION 

MODULE 
With dimensionality reduction methods already successfully 

implemented in an image retrieval context, for several 

domains [27, 28], imageFARMER provides eight 

dimensionality reduction methods. This is intended to help 

researchers determine which method is optimal for each 

particular dataset (if any), and what percentage of 

dimensionality reduction can be achieved. We selected our 

eight different methods based on their popularity in literature, 

computational expense, the preservation of local properties 

between the data, the availability of a mapping function to 

map new unseen data points into the new dimensional space, 

and the types of distances used to calculate the data points 

(Euclidean versus geodesic). These eight methods are listed in 

Table 6.  

Table 6. Dimensionality reduction methods used 

Dimensionality Reduction Methods 

Principal Component Analysis (PCA) 

Singular Value Decomposition (SVD) 

Factor Analysis (FA) 

Locality Preserving Projections (LPP) 

Isomap 

KernelPCA 

Laplacian Eigenmaps (LE) 

Locally-Linear Embedding (LLE) 

The first four methods are linear and the last four are non-

linear. A more detailed explanation and outline of these 

methods can be found in [29]. 

8.1 Experimental results - Dimensionality 

Thresholding via PCA and SVD 
In order to provide dimensionality estimations, we used the 

number of dimensions returned by PCA and SVD with a 

variance threshold between 98 and 99% as shown in Table 7. 

Table 7. Dimensionality reduction methods used 

Datasets tested 
PCA Variance SVD Variance 

98% 99% 98% 99% 

Solar 51 58 99 143 

INDECS 121 143 270 319 

ImageCLEFmed05 103 126 253 307 

ImageCLEFmed07 102 126 251 304 

Pascal2006 96 114 125 147 

Pascal2008 141 160 275 331 

Experiment Label 1 2 3 4 
 

For the remaining experiments we selected 67% of our data as 

the training set and an ‘unseen’ 33% as the test set. With six 

out of the eight methods (FA, KernelPCA, Isomap, LLE, LE, 

LPP) implemented from the Matlab Tool box for 

dimensionality reduction [30].  

A page long chart containing all the experiments (and 

settings) can be found in [29] due to space constrains. Due to 

space constraints we only present the top five results for the 

solar dataset in Table 8. This table shows that, for the solar 

dataset, we can reduce dimensionality from 640 to 143 and 

only lose 1% of accuracy, while reducing dimensionality by 

more than 90%. 
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Table 8. Top five classification results for the solar 

dataset. The number next to the dimensionality reduction 

method corresponds to the experiment label from Table 7 

NB SVM 

ORGINAL 83.86% ORIGINAL 92.12% 

PCA 3 83.49% LPP 4 91.74% 

PCA 4 82.18% PCA 4 91.18% 

PCA 2 81.99% Laplacian 4 90.99% 

SVD 2 81.99% PCA 3 90.81% 
 

9. INDEXING AND RETRIEVAL 

MODULE 
In imageFARMER, we have included several different 

indexing algorithms that are widely used by researchers in the 

fields of CBIR and database systems [28, 31]. Please note that 

we emphasize a clear separation between multi-dimensional 

algorithms that index data points in true n-dimensional spaces, 

versus single-dimensional indexing for high-dimensional data 

that maps high-dimensional data points in different ways to 

index them with single-dimensional indexing structures. 

9.1 Multi-dimensional indexing 
In our framework we have included implementations for R*-

Trees and kd-trees. These traditional algorithms offer great 

advantages for two and three dimensional objects but tend to 

get very inaccurate and computationally expensive to search 

through as the dimensionality increases [10, 31], which is a 

big issue on our dataset as shown in [19]. 

9.2 Single-dimensional indexing for multi-

dimensional data 
Because of the low number of dimensions handled by multi-

dimensional indexing algorithms, researchers have created 

new indexing algorithms that efficiently index high-

dimensional spaces utilizing underlying B+-tree structures and 

partition mechanisms to break down dimensionality. In 

imageFARMER we will provide an implementation of the 

state-of-the-art iDistance algorithm [32, 33]. Current results 

are produced with a beta version of the algorithm’s 

implementation. 

9.3 Experimental results - single-

dimensional indexing for multi-dimensional 

data 
In this paper we do no present results for the multi-

dimensional indexing algorithms since they are not designed 

to handle the dimensions we are using (640), some analysis 

can be found in [19] showing how poorly they perform. 

 

Figure 10. Average retrieval precision values 

We compared the original dimensionality of the datasets (640) 

versus the top 3 results from our dimensionality reduction 

experiments (Table 8). Figure 13 shows that the retrieval 

precision between the original dimensional space and the 

reduced ones is almost identical, validating our usage of the 

dimensionality reduction module in conjunction with this 

module of imageFARMER. The domain dependency of the 

image parameters to the datasets is again clearly shown, as we 

first saw in Figure 6. 

10. WEB-UI: THE FIRST imageFARMER 

PLUGIN 
After going through the four main modules of 

imageFARMER, we are left with all the pieces of a very 

functional and optimized CBIR system. With the Web-UI 

plugin, we bridge the gap between a research CBIR system 

and a fully working application that allows researchers and 

end-users to test the underlying CBIR system in a web 

environment that anybody can access through a browser. 

 

Figure 11. Web-UI query interface 

Similar to FIRE [11], the Web-UI front-end allows users to 

query images and observe their retrieved results. However, 

imageFARMER’s main difference is that everything 

underneath the Web-UI plugin is configurable and easily 

modifiable, producing a custom fit web-based CBIR system 

depending on the researcher’s needs and the domain-specific 

data characteristics. 

11. CONCLUSIONS AND FUTURE 

WORK 
Since imageFARMER was conceived during the process of 

building a CBIR system for the SDO mission we currently 

have a working version of this system at [3].  As proof of 

concept for imageFARMER we have demos available for the 

PASCAL 2006 and the CLEFMed 05 datasets. These last two 

demos were automatically produced with imageFARMER and 

the Web-UI plugin. As a whole, imageFARMER can produce 

fully working CBIR demos in less than 1 hour (depending on 

the number of images in the dataset) with minor configuration 

changes. The time consuming part comes with the 

experimentation of different parameters, but they still can 

quickly be tested thanks to the framework’s capabilities. 

There is ongoing development of a plugin that will enable all 

the image parameters implemented in WND-CHARM [21] to 

be usable with imageFARMER. In general, we hope that with 

the help of the data mining community, this framework grows 

in functionality and popularity for both academic research and 

teaching environments since it is open-source and fully 

expandable. 
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