
International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 12, October 2013

41

Resource Management in a Hybrid Cloud Infrastructure

Kaustav Choudhury
Department of Computer
Science & Engineering

Heritage Institute of Technology

Diptam Dutta
Department of Computer
Science & Engineering

Heritage Institute of Technology

Kasturi Sasmal
Department of Computer
Science & Engineering

Heritage Institute of Technology

ABSTRACT

In this paper, a resource management technique is proposed to

handle the request of Virtual Machines (VM’s) as per the need

of users, consisting of resources (mips, vm image size,

network bandwidth, number of cpu’s) containing cloudlets

which in turn are cloud-based application services (content

delivery, social networks) commonly deployed in data

centers. There are three priority mechanisms governing the

user’s requests namely low, medium and high priority

requests. Here, the priority is given to the amount of VM’s

requested. To implement the above concept, the Hybrid Cloud

model is used by which the benefits of both the private and

public clouds can be reaped. This model has its advantages

that it proves to be cost-effective as the resources are

effectively utilized from private clouds and only when

exhausted are taken from public clouds which is cheaper.

General Terms

Cloud Computing, Distributed and Parallel Systems.

Keywords

Cloud Computing, Hybrid Cloud, Resource Management.

1. INTRODUCTION
Cloud Computing can be viewed as an abstraction of software

and hardware resources which are outsourced to an

organization or a user on a pay-per-usage basis.

The architecture followed by a Cloud infrastructure is that of

the combination of parallel and distributed type where the

resources are dynamically provisioned over the Internet

through Service Level Agreements between the consumer and

the Cloud Service Provider. [1]

Cloud Computing is based upon service-based resources.

Resource management is the effective deployment of an

organization's resources when they are required. Resource

management system in data centers are supported by Service

Level Agreement (SLA)-oriented resource allocation

methods. The SLA Resource Allocator serves as the interface

between the Cloud Infrastructure and the external users or

broker. The user interacts with the Cloud Management

Systems through the broker who acts on the users behalf for

the submission of service requests from anywhere in the

world to the Cloud Infrastructure. The resource provisioning

stage is the time when the cloud broker makes a decision to

provision the resources on-demand and to allocate the VMs to

cloud providers for utilizing these resources. Here, all the

requests of users for the resources are addressed by the Cloud

Services Manager (CSM) which manages all resources and

their corresponding costs. Next, the CSM interacts with the

Virtual Infrastructure Manager (VIM) for meeting the user’s

resource requests. The VIM next interacts with the Data

Center Broker to fulfill these requests from the available

existing resources. The Cloud Brokers act as intermediaries

between the end users and cloud providers. The multiple VMs

can concurrently run applications based on different operating

system environments on a single physical machine. The

multiple virtual machines are started and stopped in a

dynamic fashion to meet the accepted services requests.

Physical hosts, Data Center Broker and the VIM comprise a

Cloud. These are the key components of a Cloud at the

Infrastructure as a Service layer. This layer is also known as

the Hardware as a Service layer. When a user requests for

resources, the Resource Manager accepts the request and tries

to fulfill them by allocating these resources first from the

private cloud. More preference of resource utilization is given

to private cloud as they reside within the organization itself. If

the resources are not available in the private cloud (due to the

limited scalability of private cloud) then the Resource

Manager allocates the resources from the public cloud by

interacting with its CSM. [2]

2. RELATED WORK
In [2] the authors have categorized the user’s request into two

types based on their resource requirements that is critical data

processing and data security. These requests are assigned

according to priority, if the user’s need to perform critical data

processing or when security demand is high then the request is

classified as a high priority and if the request is to run non

critical tasks then it classified as low priority. The Resource

Manager recognizes the suitable cloud to be used to fulfill a

request. The high priority request always accesses resources

from the private cloud itself, because it has confidential

(secure) information. The next low priority requests can be

fulfilled from either public cloud or private cloud. But if the

private cloud resources are available, it must be used first as

these resources are possessed by the enterprise and should be

utilized.

3. PROPOSED WORK AND

 ARCHITECTURAL ASPECTS
In this paper a proposal is made to implement a priority-based

Resource Manager which will address the request of virtual

machines (VMs) as per the need of users, consisting of

resources (mips, vm image size, network bandwidth, number

of cpu’s) containing cloudlets which in turn are cloud-based

application services (content delivery, social networks)

generally deployed in data centers [3].

There are three priority mechanisms governing the user’s

requests namely low, medium and high priority requests. Low

and medium priority requests for 1 or 2 VM’s respectively

will be sent to the private cloud and high priority requests (i.e.

3 VM’s) to the private cloud first (2 VMs) and then the

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 12, October 2013

42

Fig 1: Architecture of the Resource Manager

remaining to the public cloud. Here, the priority is given to

the private cloud server on the basis of the amount of VM’s

requested as the private cloud servers belong to the enterprise

and should be utilized first being also more secure.

The implication is that private cloud servers lie within an

organization, the cost of which is the liability of the

organization. Hence, the scalability of the private cloud

servers is less. Now, the problem starts when the need of the

organization increases and there is a deficit in ample amount

of resources. Overloading may take place due to excessive

demands where the cloud server gets exhausted of resources.

To overcome this limitation, help is taken from public cloud

servers which reside outside the organization. The excess

requests are redirected to the public cloud servers which

increases the overall scalability of the cloud. The public cloud

providers offer services at a cheaper cost which would be

rather expensive if the same had to be incurred by the

enterprise.

Also it must be taken into account that private cloud servers

are more secure compared to public cloud servers. This is due

to the presence of unauthenticated users in the public cloud as

most of these servers are freely available for use to the general

public. So, the request for VMs is first met from the private

cloud and when exhausted the request is redirected to the

public cloud server.

To implement the above concept, the Hybrid Cloud model is

used by which the benefits of both the private and public

clouds can be reaped. The Hybrid Cloud environment consists

of multiple internal and external providers. The Hybrid Cloud

is a combination of both public and private clouds. It can help

to provide on-demand, externally provisioned scalability,

higher security and efficiency.

This model has its benefits that it proves to be cost-effective

as the resources are effectively utilized from private clouds

and only when exhausted are taken from public clouds which

is cheaper. Also, the scalability of the private cloud is

increased which ensures that the user’s requests are met.

The architecture of the Resource Manager is depicted above

in the Fig.1.

Legend: CSM – Cloud Services Manager, VIM – Virtual

Infrastructure Manager.

4. PROPOSED ALGORITHM

4.1 Algorithm for Resource Manager
Step 1: Create the Java package priorityBasedResourceMgr.

Step 2: Create the class priorityResourceMgr which inherits

the HybridCloud class.

Step 3: Take number of VMs as input from the user.

Step 4: Call the ResourceMgr () function to do the necessary

allocation as per the no. of VM's.

Step 5: Function ResourceMgr (int req_vms)

5.1: Initialize variable ‘vmcnt’ for counting the number of

VMs in the private cloud, equal to zero.

5.2: Request Type 1: Low Priority Request

If the requested number of VMs i.e. ‘req_vms’ is equal to 1

 Call the function pvtcldCreateVM ().

End If

5.3: Request Type 2: Medium Priority Request

If the requested number of VMs i.e. ‘req_vms’ is equal to 2

 Call the function pvtcldCreateTwoVM ().

End If

5.4: Request Type 3: High Priority Request

If the requested number of VMs i.e. ‘req_vms’ is equal to 3

Call the function pvtcldCreateTwoVM ().

Count the number of VMs created in the private cloud.

If ‘vmcnt’ is less than allotted space for private cloud

 Print "No space in Private Cloud Server.

 Hence, redirecting to Public Cloud Server".

 Call function pubcldCreateVM.

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 12, October 2013

43

End If

Call function total_debt () to display the total expenditure.

End If

5.5: End Function ResourceMgr ().

4.2 Algorithm for creating the Hybrid

Cloud Infrastructure
Step 1: Create the Private Cloud with 1 VM

1.1: Initialize the CloudSim package.

1.2: Initialize the CloudSim library.

1.3: Create a Datacenter. Datacenters are the resource

providers in CloudSim.

1.4: Create a Datacenter Broker.

1.5: Create one virtual machine, define the properties and then

add it to the vm list.

1.6: Submit vm list to the broker.

1.7: Create one Cloudlet, define its properties and then add it

to the cloudlet list.

1.8: Submit cloudlet list to the broker.

1.9: Start the simulation.

1.10: Print results when simulation is over also with the debt

of each user to each datacenter.

Step 2: Create the Private Cloud with 2 VMs in the same way

as above following Steps 1.1 through 1.10.

Step 3: Create the Public Cloud with required amount of VMs

in the same way as above following Steps 1.1 through 1.10.

Step 4: Write a function to return the number of VMs created

in private cloud.

Step 5: Write a function to return the total debt for the hybrid

cloud.

Step 6: Create a Power Data Center for Private Cloud.

6.1: Create a list to store the machine.

6.2: Create PEs (Processing Elements) and add these into a

list.

6.3: Create Host with its id and list of PEs and add them to the

list of machines.

6.4: Create an object of the DatacenterCharacteristics class

that stores the properties of a data center: architecture, OS, list

of Machines, allocation policy: time- or space-shared, time

zone and its price (G$/Pe time unit).

6.5: Finally, create a PowerDatacenter object.

Step 7: Create a Power Data Center for Public Cloud and

make required changes to the DatacenterCharacteristics

object.

Step 8: Write the function to create a broker.

Step 9: Write the function to print the Cloudlet objects.

Note: In this algorithm the space of the Private Cloud is

restricted to 2 VMs. It can be increased according to the

user’s implementation.

The above algorithms need to be converted to their Java

counterpart following the guidelines of Cloudsim 3.0 [4].

5. TOOLS USED
Cloudsim 3.0 [6], [7] is used and integrated within Eclipse

(Indigo) in Windows 7 environment. Cloudsim helps to

effectively simulate a real cloud infrastructure with options of

flexible scalability in a single computing node and test the

model repeatedly [3].

The Cloudsim toolkit is downloaded and installed following

some steps [5]. Eclipse Indigo [8], a Java editor to write and

run the Java codes is downloaded and installed. Windows 7 is

the operating system.

6. RESULTS PRODUCED
Run the Java program for the Resource Manager algorithm

with the following cases.

Case 1: When number of VMs = 1

Enter the number of virtual machines you want to create:- 1

Initialising...

Starting CloudSim version 3.0

Datacenter_0 is starting...

Broker is starting...

Entities started.

0.0: Broker: Cloud Resource List received with 1 resource(s)

0.0: Broker: Trying to Create VM #0 in Datacenter_0

0.1: Broker: VM #0 has been created in Datacenter #2, Host#0

0.1: Broker: Sending cloudlet 0 to VM #0

400.1: Broker: Cloudlet 0 received

400.1: Broker: All Cloudlets executed. Finishing...

400.1: Broker: Destroying VM #0

Broker is shutting down...

Simulation: No more future events

CloudInformationService: Notify all CloudSim entities for

shutting down.

Datacenter_0 is shutting down...

Broker is shutting down...

Simulation completed.

Simulation completed.

The Output is:-

Cloudlet ID STATUS Data center ID VM ID Time

Start Time Finish Time

 0 SUCCESS 2 0 400 0.1 400.1

*****Datacenter: Datacenter_0*****

User id Debt

3 35.6

Finished Creating 1 VM

Case 2: When number of VMs = 2

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 12, October 2013

44

Enter the number of virtual machines you want to create:- 2

Initialising...

Starting CloudSim version 3.0

Datacenter_0 is starting...

Broker is starting...

Entities started.

0.0: Broker: Cloud Resource List received with 1 resource(s)

0.0: Broker: Trying to Create VM #0 in Datacenter_0

0.0: Broker: Trying to Create VM #1 in Datacenter_0

0.1: Broker: VM #0 has been created in Datacenter #2, Host#0

0.1: Broker: VM #1 has been created in Datacenter #2, Host#0

0.1: Broker: Sending cloudlet 0 to VM #0

0.1: Broker: Sending cloudlet 1 to VM #1

4000.1: Broker: Cloudlet 0 received

4000.1: Broker: Cloudlet 1 received

4000.1: Broker: All Cloudlets executed. Finishing...

4000.1: Broker: Destroying VM #0

4000.1: Broker: Destroying VM #1

Broker is shutting down...

Simulation: No more future events

CloudInformationService: Notify all CloudSim entities for

shutting down.

Datacenter_0 is shutting down...

Broker is shutting down...

Simulation completed.

Simulation completed.

The Output is:-

Cloudlet ID STATUS Data center ID VM ID Time

Start Time Finish Time

 0 SUCCESS 2 0 4000 0.1

4000.1

 1 SUCCESS 2 1 4000 0.1

4000.1

*****Datacenter: Datacenter_0*****

User id Debt

3 71.2

Finished Creating 2 VMs

Case 3: When number of VMs = 3

Enter the number of virtual machines you want to create:- 3

Initialising...

Starting CloudSim version 3.0

Datacenter_0 is starting...

Broker is starting...

Entities started.

0.0: Broker: Cloud Resource List received with 1 resource(s)

0.0: Broker: Trying to Create VM #0 in Datacenter_0

0.0: Broker: Trying to Create VM #1 in Datacenter_0

0.1: Broker: VM #0 has been created in Datacenter #2, Host#0

0.1: Broker: VM #1 has been created in Datacenter #2, Host#0

0.1: Broker: Sending cloudlet 0 to VM #0

0.1: Broker: Sending cloudlet 1 to VM #1

4000.1: Broker: Cloudlet 0 received

4000.1: Broker: Cloudlet 1 received

4000.1: Broker: All Cloudlets executed. Finishing...

4000.1: Broker: Destroying VM #0

4000.1: Broker: Destroying VM #1

Broker is shutting down...

Simulation: No more future events

CloudInformationService: Notify all CloudSim entities for

shutting down.

Datacenter_0 is shutting down...

Broker is shutting down...

Simulation completed.

Simulation completed.

The Output is:-

Cloudlet ID STATUS Data center ID VM ID Time

Start Time Finish Time

 0 SUCCESS 2 0 4000 0.1

4000.1

 1 SUCCESS 2 1 4000 0.1

4000.1

*****Datacenter: Datacenter_0*****

User id Debt

3 71.2

Finished Creating 2 VMs

Number of VMs created in Private Cloud Server = 2

No space in Private Cloud Server. Hence redirecting to

Public Cloud Server

Initialising...

Starting CloudSim version 3.0

Datacenter_0 is starting...

Broker is starting...

Entities started.

0.0: Broker: Cloud Resource List received with 1 resource(s)

0.0: Broker: Trying to Create VM #0 in Datacenter_0

0.1: Broker: VM #0 has been created in Datacenter #2, Host#0

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No 12, October 2013

45

0.1: Broker: Sending cloudlet 0 to VM #0

4000.1: Broker: Cloudlet 0 received

4000.1: Broker: All Cloudlets executed. Finishing...

4000.1: Broker: Destroying VM #0

Broker is shutting down...

Simulation: No more future events

CloudInformationService: Notify all CloudSim entities for

shutting down.

Datacenter_0 is shutting down...

Broker is shutting down...

Simulation completed.

Simulation completed.

The Output is:-

Cloudlet ID STATUS Data center ID VM ID Time

Start Time Finish Time

 0 SUCCESS 2 0 4000 0.1

4000.1

*****Datacenter: Datacenter_0*****

User id Debt

3 15.12

Finished Creating 1 VM in the Public Cloud

The total no. of VMs created is 3

The total debt is:- 86.32

As it can be noted from the above output that, if all three VMs

were taken from the private cloud server then the total debt

would have been 106.8 which has been reduced to 86.32.

Note: The above Java programs should be created in a

package and should reside in the Cloudsim project folder.

7. CONCLUSION
In this work a resource management technique is proposed for

a Hybrid Cloud model which produces satisfactory results in

decreasing the overall expenditure of the organization. This

proves highly beneficial for a particular organization

consuming cloud based services and also for the Cloud

Service Providers to provide cloud services in a more

effective and cheaper way. In the current scenario, just

decreasing the IT expenditure is not enough for an

organization to mark a niche in the market. It has to be

responsible in cutting down the ever increasing energy

requirements by employing suitable greener technologies. In

this context, the future work can be to devise such a strategy

of dynamic resource allocation which will reduce the overall

energy consumption rate of the data centers in the Cloud and

to strive in making a greener Cloud Infrastructure. Such a

strategy may involve in careful inspection of the CPU

utilization, adjusting the system voltage and migrating the

tasks in heavily loaded servers to the idle server resources. In

this way total resource utilization is possible and energy can

be saved.

8. REFERENCES
[1] Kaustav Choudhury, Argha Roy, Diptam Dutta.

Visualizing a Cloud using Eucalyptus and Xen.

International Journal of Advanced Research in Computer

Science and Software Engineering. Volume 3, Issue 3,

March 2013, pp.482-487.

[2] Rajkamal Kaur Grewal, Pushpendra Kumar Pateriya. A

Rule-Based Approach for Effective Resource

Provisioning in Hybrid Cloud Environment. International

Journal of Computer Science and Informatics. Volume 1,

Issue 4, 2012, pp.101-106.

[3] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov,

César A. F. De Rose and Rajkumar Buyya. CloudSim - A

Toolkit for Modeling and Simulation of Cloud

Computing Environments and Evaluation of Resource

Provisioning Algorithms. SOFTWARE - PRACTICE

AND EXPERIENCE 2011, Wiley Online Library, 24

August 2010, pp.23–50.

[4] Cloudsim Toolkit Example packages.

[5] “HOW TO INSTALL CLOUDSIM 3.0 AT ECLIPSE”,

http://ajithphd.blogspot.in/2012/02/how-to-install-

cloudsim-30-at-eclipse.html

[6] “CloudSim: A Framework For Modeling And Simulation

Of Cloud Computing Infrastructures And Services”,

https://code.google.com/p/cloudsim/

[7] “Cloudsim Download Page”,

http://code.google.com/p/cloudsim/downloads/.

[8] “Eclipse Indigo Download Page”,

http://www.eclipse.org/downloads/packages/release/indi

go/sr2.

IJCATM : www.ijcaonline.org

