
International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.9, September 2013

13

Fast and Efficient Hashing for Sequence Similarity Search
using Substring Extraction in DNA Sequence Databases

Robinson Silvester .A

National Bureau of Agriculturally
Important Insects, Bangalore,

Karnataka, India.

J. Cruz Antony
National Bureau of Agriculturally

Important Insects, Bangalore,
Karnataka, India.

 M. Pratheepa, PhD
National Bureau of Agriculturally

Important Insects, Bangalore,
Karnataka, India.

ABSTRACT
Emergent interest in genomic research has resulted in the

creation of huge biological sequence databases, however search

and retrieval of relevant information from these databases takes

a lot of processing time, when performed conventionally as size

of databases containing DNA sequences is huge. Hence,

providing an efficient searching mechanism is mandatory. In

this paper we present an efficient search mechanism using

Hashing techniques. Initially, the data is hashed and indexed

according to different window sizes. During this process, we

eliminate redundancies and only record patterns with distinct

elements and provide them with corresponding hash values.

During the search phase, the search string is checked for the size

of the window and if it exceeds the maximum limit of 4, then it

is divided. The first part is considered as the search string and

the search is made. After the confirmation of the index, the

strings that follow the current indexed string are matched with

the search string and finally the confirmation is made. The

simulation results show that the current methodology provides

faster results, while occupying lesser memory.

Keywords
Hashing; Sequence Similarity by Hashing; Substring Extraction;

DNA Sequence

1. INTRODUCTION
Deoxyribonucleic Acid (DNA) contains genetic information

specifying the biological development of all cellular forms of

life. This information is encoded in sequences of nucleotides

within the DNA molecules. DNA contains four types of

nucleobases, viz., Adenine (A), Cytosine (C), Guanine (G) and

Thymine (T) [1]. Each of DNA sequence in organisms is formed

by thousands or millions of these bases arranged in random

order. In recent years, the importance of storing this information

has been realized and currently there are two standard formats

for storing these information into database, which includes the

FASTA and GenBank flat file format. Conventional search and

retrieval of data from these databases takes a lot of time as the

size of these databases are huge. Sometimes, a similarity search

may require several hours or days to complete. Hence, it is very

important to develop an efficient search mechanism.

Many algorithms have been developed for sequence matching,

the most fundamental one being Naïve String Matching

algorithm [2], which is the simplest and least efficient way of

searching a string inside another string. Another string matching

algorithm is the Boyer-Moore algorithm, like the string

matching with finite automation [2] which does preprocessing of

the pattern to allow the faster searching. Based on these, Kalsi et

al. [3] performed an experimental comparison of the most

efficient algorithms for searching biological sequences. In

addition in [4], [5] Faro and Lecroq presented an extensive

evaluation of (almost) all existing exact string matching

algorithms under various conditions, including alphabet of four

characters and DNA sequences. Navarro and Raffinot presented

a comparison [6] of all matching algorithms on biological

sequences, including multiple pattern matching algorithms.

More recently, Faro and Lecroq conducted another experiment

on fast searching in biological sequences using multiple hash

functions [7] and also D.Nassimi and M.Joshi developed a hash

based scalable technique for parallel bidirectional search [8]

taking into account the most recent solutions. Though both the

algorithms provides an efficient way of hashing, the drawback is

that the time taken for indexing and searching when the strings

of longer sequences are used.

Basically a string matching algorithm uses a window to scan the

text [9]. The size of this window is equal to the minimal length

of a pattern in the set of patterns. It first aligns the left end of the

window and the text, thereafter it checks if any pattern in the set

occurs in the window (this specific work is called an attempt)

and then shifts the window to the right [10]. It repeats the same

procedure until the right end of the window goes beyond the

right end of the text. The best algorithms for searching DNA

sequences are based on filtering methods. Specifically, instead

of checking at each position [10] of the text if each pattern in the

set occurs, it seems to be more efficient to filter text positions

and check only if the contents of the window looks like any

pattern in the set.

When a resemblance has been detected a naive check [11] of the

occurrence is performed. In order to detect the resemblance

between the pattern and the text window, efficient algorithms

use bit-parallelism or character comparisons [12]. Both

techniques can be improved by using condensed alphabets and

hashing.

The rest of this paper is organized as follows. Section 2 provides

overall system architecture, Section 3 describes the hashing

technique in detail, Section 4 provides the results and

discussions, and Section 5 provides the conclusion of the current

work.

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.9, September 2013

14

2. METHODOLOGY

2.1 System Architecture

The technique of substring extraction is subdivided into two

phases. The first phase deals with reading the actual data D and

preparing the indices I. The index table helps in finding the

substring [7] for the user. The indexing mechanism is carried out

in three parts using different window sizes each time. For each

window size w, the substring S from D is considered. S is

eliminated of all redundancies and the value [13] of the final

pattern is recorded.

Figure 1: System Architecture for Indexing and

Searching of DNA sequences

The second phase deals with searching for a given string (Sub)

in the data. The length of Sub is checked and if it is found to be

greater than 4, then the string is divided into pre and post. These

represent the initial and the final portions of Sub. Pre and post

values are used as the search strings to find the index value of

Sub. Figure 1 represents the entire system architecture of the

indexing and searching mechanism.

2.2 Fast and Efficient Hashing for

Sequence Similarity Search using Substring

Extraction in DNA sequence databases

As described earlier, DNA sequences are formed of four

nucleobases, A, C, G and T. Hence, our database is restricted to

these four characters, which occur repeatedly and in random

orders. Indexing of these data is performed prior to the

extraction process. The indexed table serves as the base for the

second phase, i.e. the substring extraction phase.

Figure 2: Indexing of DNA Patterns

Each base in the DNA sequence is assigned a numerical value,

which helps to recognize the pattern. Here, we assign the values

0, 1, 2 and 3 to A, C, G and T respectively.

The indexing phase begins by initially setting the window size

w. The window sizes that are considered are w= {2,3,4}.

Considering the window value to be 1 is the same as searching

the entire database D1, hence 1 is eliminated. Since we use only

four bases for representing DNA sequences, considering a value

greater than 4 will apparently lead to redundancies. Our basic

processing involves removal of redundancies; we consider only

three windows for our processing. The initial window size is set

and the data D is scanned. The set of strings that come under the

window sub are taken and checked for redundancies. If

redundancies have been detected, then, the current sub is

ignored and the window is moved to the next sub. If the pattern

is found to be distinct, then, its corresponding numerical values

are added (weight) and are recorded along with the index I. The

window is then moved to the next base for redundancy check

and weight calculation. This process is repeated for all the

window sizes and the index database is prepared. The indexing

phase is represented in Figure 2.

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.9, September 2013

15

Figure 3: Substring Division and Search

The search phase can further be sub divided into two phases,

namely, searching and division. The length of the substring

(sub) is examined. If it is found to be greater than 4, then the

division phase is initiated. Else sub passes through the usual

search process. In the division phase, sub is divided into two

parts. The initial part called the pre contains the first 4

characters of the substring. The remaining string is divided into

string of 4 characters and is stored in the post array [8]. Pre is

then passed to the search process for further processing. In the

search phase, the presented string is checked for redundancies. If

the redundancies occur at the beginning or at the end of the

string, then it is removed and the new string without

redundancies is obtained. The location of redundancies and the

character that is redundant is recorded. The non-redundant string

is searched for, in its corresponding window depending on the

current length. If the pattern is found, redundancies are verified

by checking the previous and the next index values in the same

window and the resultant index (RI) value is returned. If sub has

been divided into pre and post, then the post values are verified

by checking the preceding index values of RI in the current

window. A special case occurrence is the redundancy of all the

characters in sub (Eg. AAAA, CCCC). This usually returns only

one character after the redundancy check. This search is

performed in the window of the actual size of sub. RI is found

by examining the consecutive records that have an index gap

equal to the length of the string – 1, i.e.(length(sub)-1) prior to

the removal of redundancies. Figure 3 shows a flowchart

representation of substring division and search.

3. RESULTS AND DISCUSSION

The simulation was carried out in an Intel Core i7 system

running Windows 7, with 2 GHz CPUs. The programming was

written in C#.NET, and was run in Visual Studio 2008. SQL

Server 2005 was used as the backend. The simulation results

[14] showed faster retrieval rates and lesser memory

consumption. Removal of redundancies while performing the

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.9, September 2013

16

indexing process helps is lesser memory consumption. This

leads to lesser number of entries in the indexing table, which in

turn helps in faster processing.

Figure 4: Time taken for indexing

Figure 4 shows the time taken for indexing when strings of

various sizes are used. The legends show the number of database

entries created. Here we can see that the average time taken for

creating a database of size 675 rows is 589.4545ms, 1229 rows

are 1123.2727ms and 1883 rows are 1451.09091ms.

During the process of searching, we can see some unusual high

and low times, this is due to the usage of CPU by other services

in the system. These spikes and lows are considered as noise and

are leveled, and the average time taken is considered for

analysis.

Figure 5: Time taken for search with a substring of 2

characters

Figure 5 shows the time taken for searching in databases of

various sizes when considering a search string of 2 characters.

The average time taken for searching a string of two characters

in a database of 675 rows is 9.375ms, 1229 rows is 25.5ms and

1883 rows is 37.81818ms.

Figure 6: Time taken for search with a substring of 3

characters

Figure 6 shows the time taken for searching in databases of

various sizes when considering a search string of 3 characters.

The average time taken for searching a string of two characters

in a database of 675 rows is 3.125ms, 1229 rows is 8.2ms and

1883 rows is 17.3333ms.

Figure 7: Time taken for search with a substring of 4

characters

Figure 7 shows the time taken for searching in databases of

various sizes when considering a search string of 4 characters.

The average time taken for searching a string of two characters

in a database of 675 rows is 6.2ms, 1229 rows is 2ms and 1883

rows is 3.6ms.

Algorithm used in [7] provides an efficient way of hashing, but

additional bit operations are used on the strings, hence might

become time consuming when strings of long sequences are

used. Further, [8] considers repeated values for the processing,

which will lead to longer strings. In our process, since

redundancies are reduced, the maximum size of strings available

will be 4 (since only 4 characters are used for representing DNA

sequences). Hence the size of substrings is reduced. Further, we

perform the searching operation by eliminating the substrings,

hence we perform searching for the first part and verifying it

with the successive sequences. This process reduces the need for

searching longer string sequences. This reduces the time of

processing and reduced database size, which is not possible in

[7] and [8].

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.9, September 2013

17

4. CONCLUSION

Searching for substrings in a DNA sequence is a tedious job,

where the system searches in a large number of entries for the

current sequence. This consumes a lot of time and CPU cycles.

Reduction of this search even to a small extent will yield faster

results when implemented in a large-scale environment. In our

process, we can see that even though the search time increases

with the size of the database, the relative increase is

considerable. I.e. The order of increase is low when compared to

the increase in size of the database. From the Figure 5, 6 and 7

we can see that the time taken for searching reduces as the size

of the search string increases. As the size of the search string

increases, the search time in all the three databases comes to an

almost constant state. Eliminating the spikes and lows (caused

due to the intermission of other services) as noise, we can show

that the current process provides faster searching capabilities.

5. ACKNOWLEDGEMENT

We express sincere thanks to The Director, NBAII and

Dr.S.K.Jalali, CCPI, (NAIP-NABG) and all members of NAIP-

NABG project for their reviews on early drafts of this

manuscript. Deepest gratitude to Madhusmita Panda and Sharath

Pattar for their knowledgeable assistance and the greatest

support. Special thanks to Malathy V.M who was abundantly

helpful and offered invaluable assistance and guidance towards

development of this work. The work has been initiated and

supported by World bank funded National Agricultural

Innovative Project on National Agricultural Bioinformatics

Grid-Insect Domain is gratefully acknowledged.

6. REFERENCES

[1] Peter Snustard, Michael J. Simmons. GENETICS, Wiley

6th edition, www.wiley.com/go/global/snustad.

[2] Jones, Neil C. and Pevzner, Pavel A. (2004) “An

Introduction to Bioinformatics Algorithms.” Cambridge:

The MIT Press. 148-226 and 311-337.

[3] Petri Kalsi, Hannu Peltola, and Jorma Tarhio,

“Comparison of exact string matching algorithms for

biological sequences”, BIRD, 417–426, 2008.

[4] Simone Faro and Thierry Lecroq, “The exact string

matching problem: a comprehensive experimental

evaluation”, CoRR, abs/1012.2547, 2010.

[5] Simone Faro and Thierry Lecroq “The exact online string

matching problem: a review of the most recent results”,

ACM Computing Surveys, 45(2): to appear, 2013.

[6] Gonzalo Navarro and Mathieu Raffinot, “Flexible pattern

matching in strings - practical on-line search algorithms

for texts and biological sequences”, Cambridge University

Press, 2002.

[7] Simone Faro, Thierry Lecroq, “Fast Searching in

Biological Sequences Using Multiple Hash Functions”,

Proceedings of the 2012 IEEE 12th International

Conference on Bioinformatics & Bioengineering (BIBE),

Larnaca, Cyprus, 11-13 November 2012

[8] David Nassimi, Milind Joshi, Andrew Sohn,”H-PBS: A

Hash-Based Scalable Technique for Parallel Bidirectional

Search”, 1063-6374/95 1995 IEEE

[9] Zhou Bai Stefan C. Kremer, “Sequence Learning:

Analysis and Solutions for Sparse Data in High

Dimensional Spaces”, 978-1-4673-1191-5/12/$31.00

©2012 IEEE

[10] David Dittman, Taghi Khoshgoftaar, Randall Wald, and

Amri Napolitano, “Similarity Analysis of Feature Ranking

Techniques on Imbalanced DNA Microarray Datasets”,

2012 IEEE International Conference on Bioinformatics

and Biomedicine

[11] V.Hari Prasad, Dr.P.Y.Kumar, Dr. D. Vasumathi,

“Adaptive segmentation of DNA sequences using SBC

Tehcnique:A novel Algorithm”, ICCCNT'12, July 2012,

Coimbatore, India

[12] Gonzalo Navarro , Mathieu Raffinot , “Practical and

flexible pattern matching over Ziv–Lempel compressed

text”, Journal of Discrete Algorithms 2 (2004) 347–371

[13] Nur’Aini Binti Abdul Rashid, Rana Ghadban, Hazrina

Yusof Hamdani,Atheer A-Abdulrazaq, “Enhanced CAFÉ

Indexing Algorithm Using Hashing Function”, 978-1-

4244-6716-7/10/$26.00, 2010 IEEE

[14] Maryam Nuser, Izzat Alsmadi, “Evaluating Graphical and

Statistical Techniques for Measuring Similarity in DNA

Sequences”, 978-1-4673-1550-0/12/$31.00 ©2012 IEEE

IJCATM : www.ijcaonline.org

http://www.wiley.com/go/global/snustad

