(i,j) - r^g Closed Sets in Bitopological Spaces

¹C. Janaki

L.R.G. Govt Arts College (W), Tirupur.

²D. Savithiri,

Sree Narayana Guru College, Coimbatore.

ABSTRACT

The aim of this paper is to introduce a new class of sets called (i,j) - $r^{\alpha}g$ closed sets and a new class of maps called $D^{\alpha}(i,j)$ continuous maps and $D^{\alpha}(i,j)$ - irresolute maps in bitopological spaces. Also we introduce some new spaces called (i,j) – $T^{\alpha}_{1/2}$, (i,j) - $T^{\alpha}_{1/2}$, $T^{\alpha}_{1/2}$, $T^{\alpha}_{1/2}$, and T^{α}_{rg} and obtain their basic properties.

Mathematics Subject Classification: 54A10 Keywords

(i,j) - r^g closed sets, (i,j) - r^g open sets, (i,j)- $T^{\Lambda}_{1/2}$, (i,j) - $T^{\Lambda}_{1/2}$, (i,j) - $T^{\Lambda}_{1/2}$, (i,j) - $T^{\Lambda}_{1/2}$, (i,j) - $T^{\Lambda}_{1/2}$, $T^{\Lambda}_{1/2}$, $T^{\Lambda}_{1/2}$, $T^{\Lambda}_{1/2}$, spaces, $T^{\Lambda}_{1/2}$, continuity.

1. INTRODUCTION

A triplet (X,τ_1,τ_2) , where X is a non-empty set and τ_1 , τ_2 are topologies on X, is called a bitopological space and Kelly [5] has initiated the study of such spaces. In 1985, Fututake [3] introduced the concepts of g - closed sets in bitopological spaces. Extensive research on the generalization of various concepts of topology by considering bitopological spaces was done by several authors. Later on N.Palaniappan [9] has investigated the concept of regular generalized closed sets in topological spaces. The purpose of this paper is to introduce the concepts of r^g closed sets , $T^{\wedge}_{1/2}$ spaces, $T^{\wedge}_{1/2}$ spaces and r^g continuity for bitopological spaces and investigate some of their properties.

2. PRELIMINARIES

If A is a subset of X with a topology τ , then the closure of A is denoted by $\tau\text{-cl}(A)$ or cl(A), the interior of A is denoted by $\tau\text{-int}(A)$ or int(A) and the complement of A in X is denoted by A^c .

DEFINITIONS 2.1:

Definition 2.1.1: A subset A of a space (X, τ) is called an

- (1) (i,j)-preopen[7] set if $A \subseteq \tau j\text{-int}(\tau i\text{- }cl(A))$ and (i,j)-preclosed[7]set if $\tau j\text{- }cl(\tau i\text{-int}(A)) \subseteq A$.
- (2) (i,j) semi-open[6] set if $A \subseteq \tau j\text{-cl}(\tau i\text{-int}(A))$ and (i,j) semi-closed[6]set if τj -int($\tau i\text{-cl}(A)$) $\subseteq A$.
- (3) (i,j) α -open set[10] if $A \subseteq \tau j$ -int(τi -cl(τj -int(A))) and (i,j) α -closed[10] set if τj -cl(τi -int(τj -cl(A))) $\subseteq A$.

The semi-closure (resp. α -closure, semi pre-closure) of a subset A of (X, τ) is denoted by τj -scl(A) (resp. τj - α cl(A) and τj -spcl(A)) and is the intersection of all semi-closed (resp. τj - α -closed and τj semi-preclosed) sets containing A.

Definition 2.1.2: The intersection of all g-closed sets containing A is called the g-closure of A and it is denoted by τ -gcl (A) or gcl (A).

Throughout this paper X and Y always represent nonempty bitopological spaces $(X,\tau 1,\tau 2)$ and $(Y,\sigma 1,\sigma 2)$ on which no separation assumed unless explicitly mentioned and the integers i, j, k $\in \{1,2\}$. For a subset A of X, τi -cl(A) (resp. τi -

int(A), τi -gcl(A)) denote the closure(resp. interior, g-closure) of A with respect to the topology τi . The family of all regular open sets of X with respect to the topology τi is represented by $RO(X,\tau i)$ and the family of all τj - closed sets by Fj. The pair of topologies is denoted by $(\tau i,\tau j)$.

Definition 2.1.3: A subset A of a topological space (X, τ_1, τ_2) is said to be

- (i) $(i,j)\text{-g-closed [2] if }\tau_j\text{-cl}(A)\subseteq U \text{ whenever }A\subseteq U$ and $U\in\tau_i.$
- (ii) (i,j)-g*-closed [10] if τ_j -cl(A) \subseteq U whenever A \subseteq U and U is g-open τ_i .
- (iii) (i,j)-rg-closed[9] if τ_j -cl(A) \subseteq U whenever A \subseteq U and U is regular open in τ_i .
- $\label{eq:constraint} \begin{array}{ll} \text{(i,j)-gpr-closed[4] if } \tau_{j}\text{-pcl}(A) \subseteq U \text{ whenever } A \subseteq U \\ \text{ and } U \text{ is regular open in } \tau_{i}. \end{array}$
- $\begin{array}{ll} \text{(v)} & \text{(i,j)-wg closed [3] if } \tau_{j^{*}}\text{-}cl(\tau_{i^{*}}\text{-}int(A)) \subseteq U \text{ whenever} \\ A \subseteq U \text{ and } U \in \tau_{i^{*}}. \end{array}$

The family of all (i,j) – g-closed (resp. (i,j) – rg closed,(i,j)-gpr – closed and (i,j)-wg-closed) subsets of a bitopological space (X, τ_1 , τ_2) is denoted by D (i,j) (resp. D_r (i,j), ς (i,j) and W(i,j).

Definition 2.1.4: A bitopological space (X, τ_1, τ_2) is said to be

- (i) an (i,j)- $T_{1/2}$ space if every (i,j)-g-closed set is τ_i -closed.
- (ii) a strongly pairwise $\,T_{1/2}$ space if it is both (1,2)- $T_{1/2}$ and (2,1)- $T_{1/2}$.
- (iii) an (i,j)-T $_{b}$ space if every (i,j)-gs-closed set is $\,\tau_{j}$ closed.
- (iv) an (i,j) $T\ast_{1/2}$ space if every (i,j) $g\ast$ closed set is τ_j -closed.

Definition 2.1.5: A map $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called

- (ii) $\begin{array}{llll} D(i,j) & & \sigma_k \text{ continuous (resp. } D_r(i,j) & \sigma_k \\ & \text{ continuous, } & \varsigma(i,j) & \sigma_k \text{ continuous, } & W(i,j) & \sigma_k \\ & \text{ continuous) if the inverse image of every } & \sigma_k \\ & \text{ closed set is } & (i,j) & \text{ g-closed (resp. } & (i,j) & \text{ rg closed, } \\ & & (i,j) & \text{ gpr-closed , } & (i,j) & \text{ wg-closed) set in } & (X & , \tau_1 & , \tau_2). \end{array}$

3. (i,j)-r^g closed sets

In this section we introduce the concept of $(i,j) - r^g$ closed sets in bitopological spaces.

Definition 3.1: A subset A of a topological space (X,τ_1,τ_2) is said to be an (i,j)-r^g closed set if τ_j -gcl(A) \subseteq U, whenever $A \subseteq U$ and $U \in RO(X,\tau_i)$.

We denote the family of all (i,j)-r^g closed sets of (X,τ_1,τ_2) by $D^{(i,j)}$.

Remark 3.2: By setting $\tau_1 = \tau_2$ in definition 3.1, (i,j)-r^g-closed set is an r^g closed set.

Theorem 3.3:

- (i) Every τ_i -closed set is (i,j)-r^g closed.
- (ii) Every (i,j)-g-closed set is (i,j)-r^g closed.
- (iii) Every (i,j)-rg-closed set is (i,j)-r^g closed.
- (iv) Every (i,j)-g*-closed set is (i,j)-r^g closed.

Proof: Straight Forward.

Remark 3.4:

The converse of the above theorem is not true as seen from the following examples.

Example 3.5:

Let $X = \{a,b,c\}$, $\tau_1 = \{X,\phi,\{a\},\{b\},\{a,b\}\}$, $\tau_2 = \{X,\phi,\{a\},\{c\},\{a,b\},\{a,c\}\}$. Then the subset $\{a,c\}$ is (1,2)-r^g closed but not τ_2 -closed in (X,τ_1,τ_2) .

Example 3.6:

Let $X = \{a,b,c,d\}$, $\tau_1 = \{X,\phi,\{a\},\{b,c\},\{a,b,c\}\}$, $\tau_2 = \{X,\phi,\{a,b\},\{d\},\{a,b,d\}\}$. Then the subset $\{b\}$ is (1,2)-r^g closed but it is not (1,2)-g-closed , (1,2)-rg closed. The subset $\{a,b\}$ is (1,2)-r^g closed but it is not (1,2)-g*-closed.

Theorem 3.7:

Every (i,j)-gpr closed , (i,j)- ω closed , τ_{j^-} g-closed set is (i,j)-r^g closed.

Proof: Straight Forward.

Remark 3.8:

The following example shows that the converse of the above theorem need not be true.

Example 3.9: Let $X = \{a,b,c,d\}, \tau_1 = \{X,\phi,\{a\},\{c\},\{a,c\},\{c,d\},\{a,c,d\}\}, \tau_2 = \{X,\phi,\{a\},\{c\},\{a,c\},\{a,b,c\}\}$

- 1. Let $A = \{c\}$, then A is (1,2)-r^g closed but it is not (1,2)-gpr closed set in (X,τ_1,τ_2) .
- 2. Let $B=\{b\}$, then B is (1,2)-r^g closed but it is not (1,2)- ω closed in (X,τ_1,τ_2) .
- 3. The subset {a,b} is (1,2)-r^g closed but it is not $\tau_2\text{-}g\text{-}closed.$

Remark 3.10:

(i,j)-r^g closed sets and (i,j)-wg closed sets are independent.

Example 3.11:

Let $X = \{a,b,c,d\}$, $\tau_1 = \{X,\phi,\{a\},\{c,d\},\{a,c,d\}\}$, $\tau_2 = \{X,\phi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}$. Let $A = \{c,d\}$, then A is (1,2)-r^g closed but it is not (1,2)-wg closed.

Example 3.12:

Let $X = \{a,b,c,d\}$, $\tau_1 = \{X,\phi,\{a\},\{c,d\},\{c,d\}\}$, $\tau_2 = \{X,\phi,\{a\},\{c\},\{a,c\},\{c,d\}\}$. Let $A = \{c\}$, then A is (1,2)-wg closed set but it is not (1,2)- r^g closed.

Remark 3.13:

The concepts of (i,j)-preclosed sets and (i,j)-r^g closed sets are independent as seen in the following example.

Example 3.14:

In example 3.11, the subset {a} of (X,τ_1,τ_2) is (1,2) - r^q g closed but it is not an (1,2)-preclosed, the subset {c} is (1,2)-preclosed but it is not an (1,2)- r^q g closed set.

Remark 3.15: The concepts of (i,j)-gp closed sets and (i,j)-r^og closed sets are independent as seen in the following example.

Example 3.16:

Let $X = \{a,b,c\}$, $\tau_1 = \{X,\phi,\{a\},\{b\},\{a,b\},\{b,c\}\}$, $\tau_2 = \{X,\phi,\{a\},\{c\},\{a,c\}$. Let $A = \{c\}$, then A is (1,2)- r^g closed but it is not (1,2)- gp closed. Let $B = \{c\}$, then B is (1,2) gp closed but not (1,2) - r^g closed.

Remark 3.17:

The concepts of (i,j)-gs closed sets and (i,j)-r^g closed sets are independent as seen in the following example.

Example 3.18:

- Let $X = \{a,b,c,d\}$, $\tau_1 = \{X,\phi,\{a\},\{b\},\{a,b\},\{b,c\}\}$, $\tau_2 = \{X,\phi,\{a\},\{c\},\{a,c\},\{c,d\},\{a,c,d\}\}$. The subset $\{a\}$ is (1,2) gs closed but it is not $(1,2) r^g$ closed.
- Let $X = \{a,b,c\}$, $\tau_1 = \{X,\phi,\{a\},\{b\},\{a,b\}\}$, $\tau_2 = \{X,\phi,\{a\},\{b,c\}\}$, the subset $\{a,b\}$ is (1,2)- r^g closed but it is not (1,2) gs closed.

Remark 3.19:

(i,j) - sg closed sets and (i,j)-r^g closed sets are independent as seen in the following example.

Example 3.20:

- Let $X = \{a,b,c,d\}$, $\tau_1 = \{X,\phi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}$, $\tau_2 = \{X,\phi,\{c\},\{d\},\{b,d\},\{c,d\},\{a,c,d\},\{b,c,d\}\}$. In the space (X,τ_1,τ_2) , the subset $\{d\}$ is (1,2) r^g closed but not (1,2) g closed.
- Let $X = \{a,b,c,d\}$, $\tau_1 = \{X,\phi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}$, $\tau_2 = \{X,\phi,\{a\},\{c\},\{d\},\{a,c\},\{c,d\}\}$. Let $A = \{a\}$. Then A is (1,2) sg closed but it is not (1,2) r^g closed.

The above discussions are summarized in the following diagram 3.1.

Fig 3.1

where A ______ B represents A implies B but not conversely, and A B represents A and B are independent.

Theorem 3.21:

If $A, B \in D^{(i,j)}$, then $A \cup B \in D^{(i,j)}$.

Remark 3.22:

The intersection of two (i,j)-r^g closed sets need not be (i,j)-r^g closed as seen in the following example.

Example 3.23:

Let $X = \{a,b,c,d\}$, $\tau_1 = \{X,\phi,\{a\},\{a,b\},\{c,d\},\{a,c,d\}\}$, $\tau_2 = \{X,\phi,\{b\},\{a,b\},\{c,d\},\{b,c,d\}\}$. Let $A = \{a,c\}$, $B = \{b,c\}$, then A and B are (1,2)-r^g closed sets. But $A \cap B = \{c\}$ is not (1,2)-r^g closed set.

Remark 3.24:

 $D^{\wedge}(1,2)$ is generally not equal to $D^{\wedge}(2,1)$.

Example 3.25:

In example 3.10., $D^{(1,2)} \neq D^{(2,1)}$

Theorem 3.26:

If $\tau_1 \subseteq \tau_2$ in (X, τ_1, τ_2) , then $D^{\wedge}(2,1) \subseteq D^{\wedge}(1,2)$.

Proof: Straight Forward.

The converse of the above theorem is not true as seen in the following example.

Example 3.27:

Let $X = \{a,b,c\}, \tau_1 = \{X,\phi,\{b\},\{c\},\{a,c\},\{b,c\}\}, \ \tau_2 = \{X,\phi,\{a\},\{b,c\}\}.$ Then $D^{\wedge}(2,1) \subseteq D^{\wedge}(1,2)$ but τ_1 is not contained in τ_2 .

Theorem 3.28:

For each element x of (X,τ_1,τ_2) , $\{x\}$ is either τ_i - regular closed or $\{x\}^c$ is (i,j)-r^g closed.

Proof:

If $\{x\}$ is not τ_i -regular closed, then the only τ_i -regular open set containing $\{x\}^c$ is X. Thus $\{x\}^c$ is (i,j)-r^g closed.

◆ Theorem 3.29:

If A is (i,j)-r^g closed , then τ_j -gcl(A) – A contains no nonempty τ_i - regular closed set.

Proof:

Let A be an (i,j)-r^g closed set and F be a τ_i - regular closed set such that $F \subseteq \tau_j$ -gcl(A)-A i.e., $F \subseteq \tau_j$ -gcl(A). Since $A \in D^{\wedge}(i,j)$, we have τ_j -gcl(A) $\subseteq F^c$, this implies $F \subseteq [\tau_j$ -gcl(A)]^c. Thus $F \subseteq \tau_j$ -gcl(A) $\cap [\tau_j$ -gcl(A)]^c = ϕ . Therefore τ_j -gcl(A) -A contains no non-empty τ_i -regular closed set.

Corollary 3.30:

If A is (i,j)-r^g closed then A is $\tau_j\text{-g-closed}$ iff $\tau_j\text{-gcl}(A)-A$ is τ_i regular closed.

Proof:

Necessity: If A is τ_{j} -g-closed, then τ_{j} -gcl(A) = A i.e., τ_{j} -gcl(A) - A = ϕ and hence τ_{i} -gcl(A) - A is τ_{i} -regular closed.

Sufficiency: If $\tau_{j^-}gcl(A)-A$ is τ_{i^-} regular closed then by theorem 3.22, $\tau_{j^-}gcl(A)-A=\phi$ i.e., $\tau_{j^-}gcl(A)=A$. Hence A is $\tau_{i^-}g\text{-closed}$.

Theorem 3.31:

If A is (i,j)-r^g closed set such that $A\subseteq B\subseteq \tau_{j}\text{-gcl}(A)$ then B is also (i,j)-r^g closed set.

Proof:

Let U be τ_i -regular open set such that $B\subseteq U$. Since A is (i,j)- r^g closed, τ_j -gcl $(A)\subseteq U$. Now $B\subseteq \tau_j$ -gcl(A) implies τ_j -gcl $(B)\subseteq \tau_j$ -gcl $(\tau_j$ -gcl $(A))=\tau_j$ -gcl $(A)\subseteq U$ implies τ_j -gcl $(B)\subseteq U$. Hence B is also (i,j)- r^g closed set.

Theorem 3.32:

If A is an τ_i -regular open and (i,j)-r^g closed set of (X, τ_1 , τ_2), then A is τ_i -g-closed.

Proof

Let A be τ_i -regular open and (i,j)-r^g closed. Since A is (i,j)-r^g closed, we have τ_j -gcl(A) \subseteq U whenever A \subseteq U and U is τ_i -regular open . This implies τ_j -gcl(A) = A. Hence A is τ_j -gclosed.

Theorem 3.33:

In a bitopological space (X,τ_1,τ_2) , $RO(X,\tau_i) \subseteq GC(X,\tau_j)$ iff every subset of X is an (i,j)-r^og closed set.

Proof:

Suppose that $RO(X,\tau_i) \subseteq GC(X,\tau_j)$. Let A be a subset of X such that $A \subseteq U$ where $U \in RO(X,\tau_i)$. Then $\tau_{j^-}gcl(A) \subseteq \tau_{j^-}gcl(U) = U$ and hence A is (i,j)-r^g closed.

Conversely, suppose that every subset of X is (i,j)-r^g closed set. Let $U \in RO(X,\tau_i)$. Since U is (i,j)-r^g closed, we have τ_j -gcl(U) $\subseteq U$. Therefore $U \in GC(X,\tau_j)$ and hence $RO(X,\tau_i) \subseteq GC(X,\tau_i)$.

4. $(i,j) - r^g$ open sets:

Definition 4.1:

A subset A of a bitopological space (X, τ_1, τ_2) is called $(i,j) - r^{A}g$ open if A^c is $(i,j) - r^{A}g$ closed.

Theorem 4.2:

In a bitopological space (X, τ_1, τ_2) ,

- (i) Every τ_i open set is (i,j)-r^g open but not conversely.
- (ii) Every (i,j) g-open and $(i,j) g^*$ -open sets are $(i,j) r^*g$ open.

Proof: Obvious.

Theorem 4.3:

If A and B are (i,j) - r^g open sets then $A \cap B$ is also an (i,j) - r^g open set in (X,τ_1,τ_2) .

Proof:

Let A and B be two (i,j) - r^g open sets. Then Ac and Bc are (i,j) - r^g closed sets. By theorem 3.14, $Ac \cup Bc = (A \cap B)c$ is (i,j) - r^g closed .Therefore $A \cap B$ is (i,j) - r^g open in $(X,\tau 1,\tau 2)$.

Theorem 4.4:

If (i,j) - gint $A \subset B \subset A$ and if A is (i,j) - r^g open then B is (i,j) -r^g open.

Proof: Given (i,j) - gintA \subset B \subset A, then $X - A \subset X - B$ \subset (i,j) - gcl(X - A). Since A is (i,j) - r^g open, X - A is (i,j) - r^g closed. This implies X - B is (i,j) - r^g closed. Hence B is (i,j) -r^g open.

5. (i,j) – $T^{\Lambda}_{1/2}$ spaces:

In this section we introduce four new spaces in bitopological spaces.

Definition 5.1:

A bitopological space (X,τ_1,τ_2) is said to be

- (a) an $(i,j) T^{\Lambda}_{1/2}$ space if every (i,j) $r^{\Lambda}g$ closed set is τ_i -g-closed.
- (b) a strongly pairwise (1,2) $T^{A}_{1/2}$ space if it is both (1,2) $T^{A}_{1/2}$ and (2,1) $T^{A}_{1/2}$.
- (c) an (i,j) ^T_{1/2} space if every (i,j) r^g closed set is (i,j) - g-closed.
- (d) a strongly pairwise (1,2) $^{\Lambda}T_{1/2}$ if it is both (1,2) $^{\Lambda}T_{1/2}$ and (2,1) $^{\Lambda}T_{1/2}$ spaces.
- (e) an (i,j) *T^1/2 space if every (i,j) r^g closed set is $\tau_i g^*$ -closed.

- (f) a strongly pairwise (1,2) $*T^{\wedge}_{1/2}$ if it is both (1,2) $*T^{\wedge}_{1/2}$ and (2,1) $*T^{\wedge}_{1/2}$ spaces.
- (g) an (i,j) $^{T*}_{1/2}$ space if every (i,j) r^g closed set is (i,j) g^* closed.
- (h) a strongly pairwise (1,2) $^{T*}_{1/2}$ if it is both (1,2) $^{T*}_{1/2}$ and (2,1) $^{*}T^{*}_{1/2}$ spaces.
- (i) an (i,j) [^]T_{rg} space if every (i,j) r[^]g closed is (i,j) rg closed.
- (j) a strongly pairwise (1,2) $^{\Lambda}T_{rg}$ space if it is both (1,2) $^{\Lambda}T_{rg}$ and (2,1) $^{\Lambda}T_{rg}$.

Example 5.2:

Let $X = \{a,b,c\}$, $\tau_1 = \{X,\phi,\{a\},\{b,c\}\}$, $\tau_2 = \{X,\phi,\{b\},\{c\},\{a,c\},\{b,c\}\}$. Then (X,τ_1,τ_2) is both (1,2) - $T^{\land}_{1/2}$ space and (2,1) - $T^{\land}_{1/2}$ space hence strongly pairwise $-T^{\land}_{1/2}$ space.

Example 5.3:

Let $X = \{a,b,c\}$, $\tau_1 = \{X,\phi,\{a\},\{b,c\}\}$, $\tau_2 = \{X,\phi,\{a\},\{b\},\{a,b\}\}$. Then (X,τ_1,τ_2) is (1,2) - $^T_{1/2}$ space.

Example 5.4:

Let $X = \{a,b,c\}$, $\tau_1 = \{X,\phi,\{a\},\{c\},\{a,b\},\{a,c\}\}$, $\tau_2 = \{X,\phi,\{a\},\{b\},\{a,b\}\}$. Then (X,τ_1,τ_2) is both (1,2) - $^T_{1/2}$ and (2,1) - $^T_{1/2}$ spaces. Hence it is strongly pair wise (1,2) - $^T_{1/2}$ space.

Example 5.5:

Let $X = \{a,b,c\}, \tau_1 = \{X,\phi,\{a\},\{c\},\{a,c\},\{a,b\}\}, \tau_2 = \{X,\phi,\{a\},\{b\},\{a,b\}\}$. Then (X,τ_1,τ_2) is an (i,j) - *T^1/2 space.

Theorem 5.6:

A bitopological space (X,τ_1,τ_2) is an $(i,j)-T^{\land}_{1/2}$ space iff $\{x\}$ is τ_i -g-open or τ_i -regular closed for each $x\in X$.

Proof: Suppose that $\{x\}$ is not τ_i -regular closed, then by preposition 3.21, it is trivially $\{x\}^c$ is $(i,j) - r^a$ closed set. Since X is $(i,j) - T^a_{1/2}$ space, $\{x\}^c$ is $\tau_j - g$ -closed and thus $\{x\}$ is $\tau_j - g$ -open.

Conversely, let $A\subseteq X$ be $(i,j)-r^g$ closed. Let $x\in \tau_{j^-}gcl(A)$. To show $x\in A$.

Case (i): Suppose $\{x\}$ is τ_{j} -g-open, since $x \in \tau_{j}$ -gcl(A), then $\{x\} \cap A \neq \emptyset$ implies $x \in A$.

Case (ii): Suppose $\{x\}$ is τ_i -regular closed. If $x \notin A$, then $A \subseteq X-\{x\}$. Since A is $(i,j)-r^g$ closed and $X-\{x\}$ is regular open, τ_j -gcl $(A) \subseteq X-\{x\}$. Hence $x \notin \tau_j$ -gcl(A) which is a contradiction. Therefore $x \in A$.

Thus in both the cases, $A = \tau_{j}$ -gcl (A) or equivalently A is τ_{j} -g-closed. Hence (X,τ_{1},τ_{2}) is an (i,j)- $T^{\Lambda}_{1/2}$ space.

Remark 5.7:

 (X,τ_1) space is not generally $T^{\wedge}_{1/2}$ space even if (X,τ_1,τ_2) is $(i,j)-T^{\wedge}_{1/2}$ space as seen in the following example.

Example 5.8:

Let $X = \{a,b,c\}$, $\tau_1 = \{X,\phi,\{a\},\{b,c\}\}$, $\tau_2 = \{X,\phi,\{b\},\{c\},\{a,c\},\{b,c\}\}$. Then (X,τ_1,τ_2) is $T^{\land}_{1/2}$ space but (X,τ_1) is not $T^{\land}_{1/2}$ space.

Theorem 5.9:

If (X, τ_1, τ_2) is strongly pair wise $T^{\wedge}_{1/2}$ space then it is strongly pair wise $T_{1/2}$ space but not conversely.

Proof: Straight Forward

The converse of the above theorem is not true as seen in the following example.

Example 5.10:

Let $X = \{a,b,c\}$, $\tau_1 = \{X,\phi,\{a\},\{b\},\{a,b\},\{b,c\}\}$, $\tau_2 = \{X,\phi,\{a\},\{b\},\{a,b\}\}$. Then (X,τ_1,τ_2) is strongly pair wise $T_{1/2}$ space but it is not strongly pair wise $T^{\Lambda}_{1/2}$ space.

Theorem 5.11:

If A bitopological space (X,τ_1,τ_2) is both (i,j) - $^T_{1/2}$ space and (i,j) - $T_{1/2}$ space then it is (i,j)- $T^{\wedge}_{1/2}$ space.

Proof:

Let $A \subseteq X$ be an $(i,j) - r^{\circ}g$ closed set. Since X is $(i,j) - {^{\circ}}T_{1/2}$ space , A is (i,j) - g-closed.

This implies that A is τ_{j^-} closed, since X is $(i,j)-T_{1/2}$ space. Every τ_{j^-} closed set is τ_j-g -closed. Hence (X,τ_1,τ_2) is $T^{\wedge}_{1/2}$ space.

Theorem 5.12:

- (i) Every (i,j) $T^{\land}_{1/2}$ space is (i,j) $*T^{\land}_{1/2}$ space.
- (ii) Every (i,j) $^{T}_{1/2}$ space is (i,j) $^{T}_{1/2}$ space.
- (iii) Every (i,j) $^{T}_{1/2}$ space is (i,j) $^{T}_{rg}$ space.
- (iv) Every (i,j) $^T*_{1/2}$ space is (i,j) $^T_{rg}$ space.

Proof: Straight forward.

Theorem 5.13:

If a bitopological space (X,τ_1,τ_2) is both (i,j)- $^{\Lambda}T_{1/2}$ and (i,j)- $^{\Lambda}T_{1/2}$ then it is (i,j)- $^{\Lambda}T^*_{1/2}$ space.

Proof:

Let (X,τ_1,τ_2) be both (i,j)- $^T_{1/2}$ and (i,j)- $^T_{1/2}$ space . Let A be an (i,j) – $r^\circ g$ closed set in X. By hypothesis A is (i,j) – g-

closed, since X is (i,j)- $T^{\wedge}_{1/2}$. This implies that A is $\tau_{j^{+}}$ g-closed, since it is (i,j)- $T_{1/2}$. Every $\tau_{j^{-}}$ closed set is (i,j) – g^{*-} closed. Hence (X,τ_{1},τ_{2}) is (i,j)- $^{\Lambda}T^{*}_{1/2}$ space.

Example 5.14:

1. Let $X = \{a,b,c\}$, $\tau_1 = \{X,\phi,\{a\},\{b\},\{a,b\}\}$, $\tau_2 = \{X,\phi,\{a\},\{b,c\}\}$. Then (X,τ_1,τ_2) is $(1,2) - T^*_{1/2}$ space but it is not an (1,2) - $^T_{1/2}$ space

2. Let = {a,b,c}, τ_1 = {X, ϕ ,{a},{c},{a,b},{a,c}}, τ_2 = {X, ϕ ,{a},{b},{a,b}}. The space (X, τ_1 , τ_2) is (2,1) -^T*_{1/2} space but it is not an (2,1) - T^_{1/2} space.

Theorem 5.15:

A bitopological space (X,τ_1,τ_2) is both (i,j) - ${}^{\wedge}T_{1/2}$ space and $T^*_{1/2}$ space then it is $T^{\wedge}_{1/2}$ space.

Proof:

Let X be both (i,j) - $^{\Lambda}T^*_{1/2}$ and $T^*_{1/2}$ spaces. Let $A \subseteq X$ be an (i,j) - $r^{\Lambda}g$ closed set. Since X is (i,j) - $^{\Lambda}T^*_{1/2}$ space, A is (i,j) - g^* closed. By hypothesis, A is τ_{j^-} closed. Every τ_{j^-} closed set is τ_{i} - g-closed. Hence (X,τ_{1},τ_{2}) is $T^{\Lambda}_{1/2}$ space.

Remark 5.16:

(i,j) - $^{\Lambda}T_{rg}$ spaces and (i,j)- $^{*}T^{\Lambda}_{1/2}$ spaces are independent to each other as seen in the following example.

Example 5.17:

- Let $X = \{a,b,c\}$, $\tau_1 = \{X,\phi,\{a\},\{c\},\{a,b\},\{a,c\}\}$, $\tau_2 = \{X,\phi,\{a,c\}\}$. Then (X,τ_1,τ_2) is (1,2)-* $T^{\Lambda}_{1/2}$ space but it is not (1,2)- T_{rg} space.
- Let $X = \{a,b,c\}$, $\tau_1 = \{X,\phi\{a\},\{b\},\{a,b\},\{b,c\}\}$, $\tau_2 = \{X,\phi,\{a\},\{c\},\{a,c\}\}$. Then (X,τ_1,τ_2) is (1,2) $^T_{rg}$ space but it is not (1,2) $^T_{1/2}$ space.

The above discussions are summarized as shown in the following figure.

Fig 5.1

seents A implies R but not

where A — B represents A implies B but not conversely, and A B represents A and B are independent.

6. $D^{\wedge}(i,j)$ - continuous and $D^{\wedge}(i,j)$ - irresolute functions:

In this section we introduce $D^{\wedge}(i,j)$ continuous and $D^{\wedge}(i,j)$ irresolute functions in bitopological spaces.

6.1. D^(i,j) - Continuous functions: Definition **6.1.1**:

A map $f: (X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is called $D^{(i,j)} - \sigma_k$ continuous if the inverse image of every σ_k – closed set is an (i,j) - $r^{\circ}g$ closed in (X,τ_1,τ_2) .

Theorem 6.1.2:

If $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is (i) $\tau_{j^-}\sigma_k$ continuous (ii) $D(i,j)-\sigma_k$ continuous (iii) $D^*(i,j)-\sigma_k$ -continuous then it is $D^*(i,j)-\sigma_k$ -continuous.

Proof: Straight Forward.

The converse of the above theorem need not be true as seen in the following example.

Example 6.1.3:

Let $X = \{a,b,c\}, \ \tau_1 = \{X,\phi,\{a\},\{b\},\{a,b\}\}, \ \tau_2 = \{X,\phi,\{a,b\}\}.$ $Y = \{p,q\},\sigma_1 = \{Y,\phi,\{p\}\}, \ \sigma_2 = \{Y,\phi,\{q\}\}.$ Define $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ by $f(a) = f(b) = q, \ f(c) = p.$ Then f is $D^{\wedge}(1,2)$ - σ_k - continuous but it is not τ_2 - σ_1 continuous.

Example 6.1.4:

In the example 6.3, the map f is $D^{\Lambda}(1,2)-\sigma_1$ continuous but it is not $D(1,2)-\sigma_1$ continuous.

Example 6.1.5:

Let $X = Y = \{a,b,c\}, \ \tau_1 = \{X,\phi,\{a\},\{b\},\{a,b\}\}, \ \tau_2 = \{X,\phi,\{a,b\}\}, \ \sigma_1 = \{Y,\phi\{a\},\{b,c\}\}, \ \sigma_2 = \{Y,\phi,\{b\},\{c\},\{b,c\},\{a,c\}\}.$ Define a map $f: (X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ by $f(a) = c, \ f(b) = b, \ f(c) = a.$ Then f is $D^{\wedge}(1,2) - \sigma_1$ continuous but it is not $D^*(1,2) - \sigma_1$ continuous.

Theorem 6.1.6:

If $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is (i,j) – rwg - σ_k continuous, then it is $D^{\wedge}(i,j)$ - σ_k -continuous.

Proof: Follows from the definition.

The converse of the above theorem is not true as seen in the following example.

Example 6.1.7:

Let $X = \{a,b,c\} = Y$. $\tau_1 = \{X,\phi,\{a\},\{c\},\{a,b\},\{a,c\}\}, \ \tau_2 = \{X,\phi,\{a,c\}\}, \ \sigma_1 = \{Y,\phi,\{a\}\}, \ \sigma_2 = \{Y,\phi,\{c\}\}.$ Define $f: (X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$, the identity mapping, then f is $D^{\wedge}(1,2) - \sigma_2$ continuous but it is not an (1,2) – rwg- σ_2 continuous.

Remark 6.1.8:

 $D^{\wedge}(i,j)$ - σ_k - continuous maps are independent with (i) (i,j) - σ_k -wg continuous (ii) (i,j) - gs - σ_k continuous (iii) (i,j) - swg- σ_k continuous maps as seen in the following examples.

Example 6.1.9:

1. Let $X=Y=\{a,b,c,\}$. $\tau_1=\{X,\phi,\{a\},\{c\},\{a,b\},\{a,c\}\}$, $\tau_2=\{X,\phi,\{a,c\}\}$, $\sigma_1=\{Y,\phi,\{a,b\}\}$, $\sigma_2=\{Y,\phi,\{a,c\}\}$. Define $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$, the identity map, then f is $(1,2)-\sigma_1$ -wg continuous but it is not $D^{\wedge}(1,2)-\sigma_k$ continuous.

 $\begin{array}{c} 2. \ Let \ X=Y=\{a,b,c\}, \ \tau_1=\{X,\phi,\{a\},\{b\},\{a,b\},\{a,c\}\}, \\ \tau_2=\{X,\phi,\{a\},\{c\},\{a,c\}\}, \ \sigma_1=\{Y,\phi,\{c\}\}, \ \sigma_2=\{Y,\phi,\{a,c\}\}. \\ Then \ the \ identity \ map \ f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2) \ \ is \ \ D^{\land}(1,2)-\sigma_2. \\ continuous \ but \ it \ is \ not \ (1,2)-wg-\sigma_2 \ continuous. \end{array}$

Example 6.1.10:

1. Let $X = \{a,b,c,\} = Y$. $\tau_1 = \{X,\phi,\{a\},\{b\},\{a,b\}\}$, $\tau_2 = \{X,\phi,\{a\},\{b,c\}\}$, $\sigma_1 = \{Y,\phi,\{a,c\}\}$, $\sigma_2 = \{Y,\phi,\{b\}\}$. Define an identity map $f\colon (X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$. Then f is $D^{\wedge}(1,2)-\sigma_1-c$ ontinuous but it is not (1,2)-gs - σ_1 continuous.

2. Let $X = \{a,b,c\} = Y$, $\tau_1 = \{X,\phi,\{a\},\{c\},\{a,b\},\{a,c\}\}$, $\tau_2 = \{X,\phi,\{a\},\{b\},\{a,b\}\}$, $\sigma_1 = \{Y,\phi,\{b\}\}$, $\sigma_2 = \{Y,\phi,\{b,c\}\}$. Define $f: (X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ by f(a) = b, f(b) = a, f(c) = c,

then f is (1,2)- gs - σ_2 - continuous but it is not D^(1,2) - σ_2 - continuous.

Example 6.1.11:

1. Let $X=\{a,b,c\}=Y, \tau_1=\{X,\phi,\{a\},\{b\},\{a,b\},\{b,c\}\}, \tau_2=\{X,\phi,\{a\},\{c\},\{a,c\}\}, \sigma_1=\{Y,\phi,\{b,c\}\}, \sigma_2=Y,\phi,\{c\}\}.$ Define the identity map $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2).$ Then f is D^(1,2) - σ_1 continuous but it is not (1,2) - σ_1 continuous.

2. Let $X=Y=\{a,b,c\},\ \tau_1=\{X,\phi,\{a\},\{c\},\{a,c\},\{a,b\}\},\ \tau_2=\{X,\phi,\{a,c\}\},\ \sigma_1=\{Y,\phi,\{a,c\}\},\ \sigma_2=\{Y,\phi,\{a,b\}\}.$ Define $f:(X,\tau_1,\tau_2)\to(Y,\sigma_1,\sigma_2)$ by $f(a)=a,\ f(b)=c,\ f(c)=b.$ Then f is (1,2)—swg- σ_2 continuous but it is not $D^{\Lambda}(1,2)$ - σ_2 continuous.

6.2 D^(i,j) - irresolute functions: Definition 6.2.1:

A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is called $D^{\wedge}(i,j)$ – irresolute map if $f^1(V)$ is $(i,j)-r^{\wedge}g$ closed set of (X,τ_1,τ_2) for every $(i,j)-r^{\wedge}g$ closed set V of (Y,σ_1,σ_2) .

Theorem 6.2.2:

Every $D^{(i,j)}$ – irresolute map is $D^{(i,j)}$ - σ_k continuous.

Proof:

Let f be $D^{(i,j)}$ – irresolute. Let V be a σ_k - closed set. Then f $^1(V)$ is (i,j) – r^{g} closed, since f is $D^{(i,j)}$ – irresolute. Hence f is $D^{(i,j)}$ – σ_k continuous.

Remark 6.2.3:

The converse of the above theorem need not be true as seen in the following example.

Example 6.2.4:

Let $X = Y = \{a,b,c\}$. $\tau_1 = \{X,\phi,\{a\},\{b\},\{a,b\}\}$, $\tau_2 = \{X,\phi,\{a\},\{b,c\}\}$, $\sigma_1 = \{X,\phi,\{a\},\{b,c\}\}$, $\sigma_2 = \{X,\phi,\{a\},\{b\},\{a,b\}\}$. Define an identity map $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$. Then f is $D^{(1,2)}$ continuous but it is not an $D^{(1,2)}$ irresolute.

The above discussions are summarized as shown below.

Fig 6.1

REFERENCES:

- [1] Arockiarani, Studies on generalizations of generalized closed sets and maps in topological spaces, Ph.D., thesis, Bharathiar Univ., Coimbatore, 1997.
- [2] T. Fututake On generalized closed sets in bitopological spaces, Fukuka Univ. Ed. Part III 35(1985) 19-28.
- [3] T. Fututake, P. Sundaram and Sheik John, Bull. Fukuoka Univ. Ed. Part III 51 (2002), 1-9.
- [4] 4. Y. Gnanambal, On Generalized pre-regular closed sets in topological spaces, Indian J. Pure. App. Math, 28(1997), 351-360.
- [5] Kelly.J.C, Bitopological spaces, proceedings, London, Math.Soc., Vol.13, pp-71-89, 1983.
- [6] N. Levine, semi open sets and semi-continuity in topological spaces, Amer.Math.Monthly,70(1963),36-41.

- [7] N. Levine, Generalized closed sets in topology, Rend. Circ Mat. Palermo, 19(2)(1970), 89-96.
- [8] H. Maki, J.Umehara and T. Noiri, Every topological space is pre-T_{1/2} ,Mem.Fac. Sci. Kochi univ.Ser.A. Math.,17(1996),33-42.
- [9] N. Palaniappan & K.C.Rao, Regular generalized closed sets, KyungpookMath.3(2)(1993),211
- [10] M.Sheik John and P.Sundaram, g*-closed sets in bitopological Spaces, Indian Jour. Of Pure appl.Math.,35(1):71-80,January 2004.
- [11] M.Stone, Applications of the theory of Boolean rings to general topology, Trans.Amer. Math.Soc,41(1937),374-481.
- [12] M.K.R.S. Veera Kumar, Between closed sets and g closed sets, Mem. Fac. Sci Kochi Univ.(math) , 21(2000), 1-19.