
International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.6, September 2013

44

Achieving Fairness and Efficiency in Cloud based
Environment using new 3-Level Architecture

Aswin V

Student Third year
SSN college of engineering

Chennai, Tamil Nadu.

Karthik M
Student Third year

SSN college of engineering
Chennai, Tamil Nadu.

Balaji C
Student Third year

SSN college of engineering
Chennai, Tamil Nadu.

ABSTRACT

Cloud computing has become an integral part in evaluation of

jobs over various domains present in different servers. In that

case scheduling is very necessary so as to carry out the

process. This paper would focus on suggesting an algorithm

that would enhance the efficiency and quality of service over

the applications in cloud centers. The 3-tier framework is

applied over application layer (level-1, level-2) and Network

layer (level-3).Thus 3-tier architecture is classified into three

stages where in stage 1, every process is segregated and

consolidated into separate units based on cost-time factor. In

the second level the quantum value is decided according to

which the process is executed in circular queues. The third

stage aims at balancing the load based on the energy spent at

VMdisk which is created using Paas. Hence on applying this

framework we are able to achieve fairness, improvement in

efficiency in case of deadlock and load balance respectively.

Keywords
Cloud computing, scheduling, cost-time factor, queuing and

Energy.

1. INTRODUCTION
Cloud computing brings about connectivity in running

applications that utilizes data and sources which are located in

various domains. In other words, it’s a nebulous assemblage

of computers and servers accessed via the internet where

source and user need not stay on a same platform. So cloud

computing as in whole encompasses multiple jobs, clients and

servers. For developers the accessibility over the cloud is

vivid. The constraints and limitations are brought by

providing unique license to the clients. Thus there are various

types of cloud say private, public and community clouds.

When the scope of the user is not limited and in case any

client can use the resource in cloud then the kind of cloud that

is suitable for this scenario is public cloud. There are cases

where there are many levels of restrictions in usage; they are

known to be private cloud. The cloud platform in which all

the requirements and needs are met within an institutional

boundary they are known as ‘community’ clouds.

Cloud as well as offers various services but pertinent to the

paper's novelty we consider only Daas, Saas and Paas.

*Daas-Data as a service, the most basic need of any

application is data. These data are hosted via the clouds. Thus

there is a need of this service to be used so as to execute any

process.

*Saas-software as a service, the scheduling algorithms are

converted into codes that are kept at servers using Saas. Since

the processes in level 2 are executed based on proposed

Programs paradigms, there exist an essential need for Saas.

*Paas-Platform as a service, the third level that supports load

balancing process is carried out over cross platform. Hence

the process that is held in multiple servers must be united to

shed down into many layers which can only be done using the

Pass architecture.

2. NEED FOR 3-TIER ARCHITECTURE

This algorithm involves a three level approach in scheduling

the process. The factors that are considered are time, cost,

performance in case of deadlock and Energy. The community

cloud nowadays prioritizes the products of its own provider or

enhances the priority of any other third party in favor of cloud

service provider's choice. This results in users being

misguided towards the availability and execution of the

products in cloud. Hence this paper formulates an architecture

that results in a fair equity. It also helps to improve the

Quality and performance of the overall process.

3. STUDY OF EXISTING ALGORITHMS

The literature review of existing cloud scheduling algorithm is

thoroughly mentioned so as to prove the uniqueness of the

algorithm that is suggested. The existing cloud algorithms are

as follows [10]:

3.1. A Compromised-Time Cost Scheduling

Algorithm

Methods - Batch mode

Parameters - Cost and time

Factors - An array of workflow instances

Environment - Cloud Computing

Tools - SwinDEW

Functions - minimize the cost under certain user

designated deadlines because the corresponding algorithm for

minimizing the execution time under certain user designated

cost is similar.

The algorithm provides a just-in-time graph of the time-

cost relationship during workflow execution in the user

interface for users to choose an acceptable compromise before

the next round of scheduling begins if they wish. If no user

input is detected at the time of the next round of scheduling,

the default scheduling strategy will be automatically applied

so no delay will be caused.

This algorithm considers sharing, conflicting and

competition of services caused by multiple concurrent

instances running on the highly dynamic cloud computing

platform.
3.2. A Particle Swarm Optimization based

Heuristic for Scheduling

Methods - Dependency mode

Parameters - Resource Utilization and time

Factors - Group of Tasks

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.6, September 2013

45

Environment - Cloud Computing

Tools - Amazon EC2

Functions - A scheduling heuristic is based on Particle

Swarm Optimization (PSO). The heuristic is used to minimize

the total cost of execution of scientific application work flows

on Cloud computing environments. The communication cost

is varied between resources; the execution cost of compute

resources and compared the results against “Best Resource

Selection” (BRS) heuristic. PSO based task-resource mapping

can achieve at least three times cost savings as compared to

BRS based mapping. PSO balances the load on compute

resources by distributing the tasks the available resources.

3.3. Improved Cost-Based Algorithm for

Task Scheduling

Methods - Batch mode

Parameters - Cost Performance

Factors - An array of workflow instances

Environment - Cloud Computing

Tools - Cloud Sim

Functions - This algorithm is used for making efficient

mapping of tasks to available resources in cloud. The

improvisation of traditional activity based costing is proposed

by new task scheduling strategy for cloud environment where

there may be no relation between the overhead application

base and the way that different tasks cause overhead cost of

resources in cloud. The algorithm divides all user tasks

depending on priority of each task into three different lists.

This scheduling algorithm measures both resource cost and

computation performance, it also Improves the computation /

communication ratio.

3.4. RASA Workflow Scheduling

Methods - Batch mode

Parameters - Make span

Factors - Grouped Tasks

Environment - Grid Computing

Tools - GridSim

Functions - The algorithm builds a matrix C where Cij

represents the completion time of the task Ti on the resource

Rj. If the number of available resources is odd, the Min-min

strategy is applied to assign the first task, otherwise the Max-

min strategy is applied. The remaining tasks are assigned to

their appropriate resources by one of the two strategies,

alternatively.

3.5. Innovative Transaction Intensive Cost

Constraint Scheduling Algorithm

Methods - Batch mode

Parameters - Execution Cost and Time

Factors - Work Flow with large number of instances

Environment - Cloud Computing

Tools - SwinDeW-C

Functions: The primary purpose of the algorithm is to

minimize the cost under certain use designated deadlines. The

algorithm always enables the compromises of execution cost

and time.

This algorithm takes cost and time as the main with user input

on the fly and incorporates the characteristics of cloud

computing.

3.6. SHEFT Workflow Scheduling (Scalable-

Heterogeneous-Earliest-Finish-Time

algorithm)
Methods - Dependency mode

Parameters - Execution Time and Scalability

Factors - Group of Tasks

Environment - Cloud Computing

Tools - CloudSim

Functions - SHEFT is an improvised version for HEFT

algorithm. The algorithm is applied for mapping a workflow

application to a bounded number of processors. At the

beginning of the scheduling, any of the resources can be

assigned to a task but the task with the highest priority is

taken from a list where the priority of the tasks is maintained.

For each resource the earliest start time and the earliest finish

time is made note.

3.7. Multiple QoS Constrained Scheduling

Strategy of Multi Workflows
Methods - Batch mode \ Dependency mode

Parameters - Scheduling success rate, make span, cost

 And time

Factors - Multiple workflows

Environment - Cloud Computing

Tools - CloudSim

Functions Workflow is done dynamically and the system has

three major components such as the pre-processor, scheduler

and the executer. The preprocessor has attributes related to

cost and time. The preprocessor computes the time and cost

surplus the workflow. The ready tasks are then sent to the

queue of scheduler which re attributes and re tasks the queue.

Finally The Executor selects the best service to sequential

execute the tasks in the queue. When a task finishes, the

Executor notifies the Pre-processor which the task belongs to

of the completion status.

4. CONCEPT OF 3-LEVEL SCHEDULING

AND POLICIES

The way of execution of processes that are present in different

servers is the main focus of this paper. Initially all the

processes are pooled into a single unit by the process

scheduler. The allocation and de allocation of the process are

handled by the process scheduler. The first level of scheduling

brings about sorting of the process according to the cost or

time factor which is decided by the user. The actually

execution is dealt in the second phase where every single

transition is maintained in the Vm update manager. The load

balancing is done in the third level having threshold energy as

the major criterion to enable layering. Consider the process

P1, P2, P3, P4, P5 each individual is maintained in a unique

cloudlet of its own. The local processor will use the random

access memory in serving the requests. The impact over

energy is mainly based on the efficiency rate at which every

process is processed. The cost value is decided by the service

provider.

Table 1.

PROCESS COST TIME ENERGY DISK(RAM)

P1 100 30 15 128

P2 300 60 28 256

P3 500 75 39 512

P4 450 69 34 1024

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.6, September 2013

46

t(s)

t(s+1)
t(d)

yes t(s+2)-t(d) +t(s’+3)

t(s’+2)

NO

t(s+3)-t(s’+3)+t(s’+4)

P5 600 85 53 2048

5. SCHEDULING AT LEVEL-1

Every single process that is to be scheduled is fed into the

process scheduler. Now in order to allow the virtual machine

to access the network so that all the process can be unified

into a single unit we require Virtual ports. The Every single

process in the system can be identified by the unique port

hence there is a possibility that there can be many number of

ports so they should be constituted into a unit called virtual

machine port group. In order to create this Vsphere client is

connected to the ESX Host. Thus the processes from various

domains are viewed as a one single entity that are randomly

connected as shown in the fig.

Fig 1.

Process connected randomly over common ESXi host

From the table it is evident that the process has its own cost

and time values. At this level the choice of scheduling is left

to the concern user.[4] The user can select between the cost

and time according to which the order of execution is decided.

This particular level aims at users being evaded to the choice

of the cloud provider rather the system can be cost efficient or

time efficient scheduling on the accord of the user. The order

of execution:

P1->P2->P4->P3->P5

6. QUEUING AT LEVEL-2

In this level a queue [1],[2] is constructed that follows the

same order of execution as that of the order that is

recommended in level-1.Thus VM update manager controls

the provisioning of the process. The execution of the process

is carried out in circular chain. Initially the quantum of

execution of every process is decided based on the measure of

burst time of all the process. The quantum will be directly

determined from the amount of time taken in execution of

lowest time process. Thus accordingly the execution is carried

out as shown in the fig below.

When there is a deadlock on execution of process the

difference of existing time is calculated as nqt which is added

to the quantum time on execution of the next process as

shown in the algorithm. At some point of time when dead lock

is re leaved then control shifts to that process and remaining

part is executed totally. The difference time and actual

quantum time are separately stored in VM update manager.

This level brings about performance improvement on auto

scalable application that would tend to spend time on

deadlock which in turn affects the performance. The focus is

targeted at the process that uses sources connected with other

cloud environment. Fig 2.Process execution

6.1. Time Calculation

Every single process present in the cloudlet consumes its own

time period for execution. The maximum time that is spent on

deadlock is calculated. The deadlock time cannot be practically

calculated at the same instant of execution of other event but

based on statistical approach the average time that is required

can be calculated. In order to generalize all possibilities of a

system we assume that the execution time of P5 is less than

that of the time calculated based on the algorithm.

t(s),t(s+1),t(s+2),t(s+3) = The time taken for execution of

process P1 , P2, P4, P3, P5.

t(d) = deadlock time

t(s’) = pending time required to execute

t(s’) = t(s)-time spent on execution

When there exist a deadlock on process P4, the time spent

when the process is in deadlock is determined such that the

next process in the queue will be executed based on the

relative time as shown in the fig. The process quantum time is

dynamic that depends upon the waiting state of previous

process. The process is iterated when there exists pending

modules in previous process that are to be executed.

6.2. Birth and death Markov Model
Let the probability of the process to request execution in its

own cloudlet be λdt(s). The probability that the request is

satisfied be µdt. We assume that every single process uses a

separate channel for execution. The deadlock probability [3]

be P(d). The transition from Pi to Pj for the above process

satisfies: λdt(s) Pi-1 = µdt Pi.

λt(s)P1 = µt(s+1)P2

λt(s+1)P2 = µ(t(s+2) – t(d) + t(s' + 3))P3

Since the process P4 is in waiting state due to deadlock.

λ(t(s+2) – t(d) + t(s' + 3)P3 = µ(t(s+3) – t(s'+3) + t(s'+4))P5

λ(t(s+3) – t(s' + 3) + t(s' + 4))P5 = µt(s)P1

We know that sum of all probabilities of any event.

n

i

i=0

P = 1∑

Such that we need to solve the process state’s individual

probabilities to obtain the general equation.

P1 =
2µt(s +1)P

λt(s)

 P2 =
3µ(t(s + 2) - t(d) + t(s' + 3))P

λt(s +1)

P4

P3

P1
P5

P2

P1 P4 P2

Dead lock

P3
Dead

lock P5

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.6, September 2013

47

 P3 =
5µ(t(s + 3) - t'(s + 3) + t(s' + 4))P

λ(t(s + 2) - t(d) + t(s' + 3))

 P5 =

1µt(s)P

λ(t(s + 3) - t'(s + 3) + t(s' + 4))

By basis of probability, for the system considered will satisfy:

 P1 + P2 + P3 + P4 + P5 = 1

The probability of the event in deadlock,

 P4 = 1 – (P1 + P2 + P3 + P5)

Assume the time factors,

 K =
time taken in the process

time taken in previous process

 K' =
algorithmic time calculation

time taken by previous process

 K" =
algorithmic time taken by process

algorithmic time taken by previous process

 P4 = 1 – (KP2 + K'P3 + K"P5 +
1P

K')

Hence the general equation will be,

Pd = 1 – (sum of probabilities of other process in terms of

algorithmic time factor)

On various case studies, it is evident that the time period taken

by process that do not enter waiting will only consume less

processor time when compared to deadlock process[7].

They moving that sum of probabilities to be less than one,

hence the probability that the event will occur holds true in

this algorithm.

7. LOAD SHARING AT LEVEL-3

The major factor that constitutes the energy consumption of

the process is bandwidth allocated to the process. The average

bandwidth determines the number of bits per second that will

be allowed through a port.[6] The usage of resources results in

transfer of bits which is directly proportional to the energy

consumed by that particular process. This leads to over

trafficking in execution of one single process that tend to use

too many sources from multiple servers. In order to prevent

over work load on one particular VM disk in a vcentre the

process is split into tree architecture as shown in the fig 3 below:

E(P) = ∑
j=n

ij

i=q

e

q → denotes the process id

n → denotes the sub layer

Thus the logical tree consists of various layers that are

decided upon the usability of resource by a process. Not that

every process enters the level 3 but the process that consumes

energy more than the V-threshold is fed into this level. The

V-threshold is defined as the maximum energy that a Vm disk

can uphold in executing a process. Thus according to the

above example P11, P12 occupies layer-1 which has common

switching path and P13, P14, P15, P16 has got switching path

of its own. The criteria in deciding the layer is based on the

requirement analysis of the process. Such that, where q

denotes the process id and n denotes the sub process id. In the

example considered overall energy:

E(p1) = e11+e12+e13+e14+e15+e16

8. ALGORITHM

Define cost, time, Energy

Create system tray for every process in host

Input the process states into cloud scheduler

Assign n with number of process

 if(cost factor is considered)

 for i=1 to n

 mincost=cost[i]

 if(cost[i+1]<mincost)

 mincost=cost[i+1]

 end if

 end for

 Deploy process corresponding to mincost into queue

 end if

 if(time factor is considered)

 for i=1 to n

 mintime=time[i]

 if(time[i+1]<mintime)

 mintime=time[i+1]

 end if

 end for

 Deploy process corresponding to mintime into queue

 end if

Define quantum time q for execution of the process

select the process in queue based on fcfs

for i=1 to n

 Execute queue[current] for q time period

 count ET //execution time of current process

 if(deadlock arises)

 nqt=q-ET

 Execute queue[next] for (q+nqt) time period

 end if

 if(deadlock of previous state is re leaved)

 Execute the process for nqt time period

 else

 if(deadlock arises in next)

 Repeat the same steps of level-2 with new nqt

 end if

 end if

 if(process Energy>threshold)

 Construct minimum spanning tree for the process

 end if

 Select every individual sub process in tree

 Define Vm provisioning for sub each process

 Calculate sum which is total of energy of sub process

 if(Process Energy==sum)

 Execute sub process using the level-2

 else

 Assign Vm disks for the sub process remaining

 such that Energy=sum

 end if

end for

9. OVER ALL WORKING
The working of this frame work requires a private cloud that

links the sorted process from the level1 to the queue

architecture and Vm provisioning. Since the process can be

P1

P 11 P 12

P 14 P 13 P 16 P 15

layer 1

layer 2

provided from any remote server virtualization is helpful in

unifying the overall working. [8] The access control is

1. Every local system consists of process that is to be

executed thoroughly according to the needs.

2. Every single process from various servers is fed into a

process scheduler.

3. The process is sorted according to the cost or time factor

and then virtualization takes place.

4. On virtualization every single process is provided a

virtual memory and are taken to a private cloud.

5. Now from the cloud the execution of level

where quantum and nqt are fixed.

6. When process energy consumption exceeds that of the

threshold then they are fed into distributed resource

scheduler where in level-3 execution takes place.

10. GRAPHICAL REPRESENTATION
On layering the process in third level, the process can be

executed by more than one Vm drive. The efficiency in

execution is directly proportional to the number of layers.

Thus the graph is plotted between the rate of execution and

process bundles. [11]When every single Vm disk is provided

with a RAM of 128 Mb, a single process will be executed by

two Vm disks at first level and four in second levels. Layering

process results assignment of Vm in geometric progression

but when the same process is executed by the local processor

only a Single RAM will execute the entire process. It is

evident that there is a clear indication of improvement in the

slope of Vm curve across the local disk curve proving that

efficiency is higher in the case of cloud scheduling. The

reason for gradual improvement in the slope is mainly

because of the larger number of Vm allocation in successive

upcoming layers to the process. Rate of execution Vs process

fig 5

Process

scheduler

Host service

provider

International Journal of Computer Applications (0975

Volume 7

provided from any remote server virtualization is helpful in

working. [8] The access control is

imposed over the data stored in the private cloud. The steps

involved in the process:

Every local system consists of process that is to be

executed thoroughly according to the needs.

servers is fed into a

The process is sorted according to the cost or time factor

On virtualization every single process is provided a

virtual memory and are taken to a private cloud.

Now from the cloud the execution of level-2 takes place

When process energy consumption exceeds that of the

threshold then they are fed into distributed resource

3 execution takes place.

AL REPRESENTATION
On layering the process in third level, the process can be

executed by more than one Vm drive. The efficiency in

execution is directly proportional to the number of layers.

Thus the graph is plotted between the rate of execution and

ess bundles. [11]When every single Vm disk is provided

with a RAM of 128 Mb, a single process will be executed by

two Vm disks at first level and four in second levels. Layering

process results assignment of Vm in geometric progression

ocess is executed by the local processor

only a Single RAM will execute the entire process. It is

evident that there is a clear indication of improvement in the

slope of Vm curve across the local disk curve proving that

cloud scheduling. The

reason for gradual improvement in the slope is mainly

because of the larger number of Vm allocation in successive

upcoming layers to the process. Rate of execution Vs process

11. ACKNOWLEDGEMENT
We extend our gratitude and th

institution SSN COLLEGE OF ENGINEERING for imparting

knowledge with innovation and creativity.

12. CONCLUSION

The main focus of the paper is to achieve fairness in the

services that are offered to the users. The performance of the

system is the backbone of any technology. So the paper

provides ideologies in improving the working in case of

deadlock with load balancing mechanisms being followed.

The future work would aim at the security aspects in

implementing this architecture.

13. REFERENCES

[1] J. Bennett and H. Zhang, Hierarchical Packet Fair

Queueing Algorithms, ACM/IEEE Trans. on

Networking, 5(5):675-689, Oct. 1997.

[2] L. Lenzini, E. Mingozzi, and G. Stea, Tradeoffs between

Low Complexity, Low Latency, and Fairness with Decit

Round-Robin Schedulers.? IEEE/ACM Trans. on

Networking, 12(4):681-693, April 2004.

[3] Text book: "operating systems" by stuart E. Madnick and

John j.Donovan ISBN:0-07

[4] "ZXTM for Cloud Hosting Providers,"

http://www.zeus.comlc1oud

[5] computinglfor_cloud---'providers

Low

cost/
low

time?

Circular Queue

PRIVATE

CLOUD

Virtualization

No

Yes

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.6, September 2013

48

imposed over the data stored in the private cloud. The steps

11. ACKNOWLEDGEMENT

We extend our gratitude and thanks to our esteemed

institution SSN COLLEGE OF ENGINEERING for imparting

knowledge with innovation and creativity.

The main focus of the paper is to achieve fairness in the

services that are offered to the users. The performance of the

tem is the backbone of any technology. So the paper

provides ideologies in improving the working in case of

deadlock with load balancing mechanisms being followed.

The future work would aim at the security aspects in

J. Bennett and H. Zhang, Hierarchical Packet Fair

Queueing Algorithms, ACM/IEEE Trans. on

689, Oct. 1997.

L. Lenzini, E. Mingozzi, and G. Stea, Tradeoffs between

Low Complexity, Low Latency, and Fairness with Decit

Schedulers.? IEEE/ACM Trans. on

693, April 2004.

Text book: "operating systems" by stuart E. Madnick and

07-039455-5

"ZXTM for Cloud Hosting Providers,"

http://www.zeus.comlc1oud

'providers.html, January 2010.

VM1

VM2

Distributed Resource

Scheduler

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.6, September 2013

49

[6] Achieving Operational Efficiency With Cloud Based

Services

[7] Karthik V Bellur, Krupal M, Praveen Jain, Dr.Prakash

Raghavendra The 6th International Conference on

Computer Science & Education (ICCSE 2011) August 3-

5, 2011. SuperStar Virgo, Singapore

[8] B. Speitkamp and M. Bichler, “A mathematical

programming approach for server consolidation

problems in virtualized data centers,” IEEE Transactions

on Services Computing, pp. 266–278, 2010.

[9] M. Cardosa, M. Korupolu, and A. Singh, “Shares and

utilities based power consolidation in virtualized server

environments,” in Proceedings of IFIP/IEEE Integrated

Network Management (IM), 2009.

[10] Sartaj Sahni, “Algorithms analysis and Design”, Published

by Galgotia Publications Pvt. Ltd., New Delhi, 1996.

[11] A Survey of Various Scheduling Algorithms in Cloud

Environment Sujit Tilak 1, Prof. Dipti Patil 2, International

Journal of Engineering Inventions, ISSN: 2278-7461,

www.ijeijournal.com Volume 1, Issue 2 (September 2012)

PP: 36-39.

[12] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and

simulation of scalable cloud computing environments

and the CloudSim toolkit: Challenges and opportunities,”

in Proceedings of the 7th High Performance Computing and

Simulation Conference (HPCS’09). IEEE Press, NY, USA, 2009.

[13] IEEE TPDS, MANY-TASK COMPUTING, NOVEMBER

2010 Performance Analysis of Cloud Computing

Services for Many-Tasks Scientific Computing.

[14] Alexandru Iosup, Member, IEEE, Simon Ostermann,

Nezih Yigitbasi, Member, IEEE, Radu Prodan, Member,

IEEE, Thomas Fahringer, Member, IEEE, and Dick

Epema, Member, IEEE

IJCATM : www.ijcaonline.org

