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ABSTRACT 
Graphical user interface packages in Matlab are getting very 

popular with the geo-scientific researchers. Matlab GUI 

(graphical user interface) is a graphical display containing 

controls which helps in computing and graphically 

representing the results. In this paper a simple graphical user 

interface (GUI) viewer is developed in MATLAB that 

computes the thermal lithospheric structure along with its 

error bounds. The m-file in the package is integrated through 

a GUI and the controlling thermal parameters such as crustal 

thickness, radiogenic heat production, characteristic depth, 

surface temperature, surface heat flow and thermal 

conductivity are all given on the screen.  The thermal 

conductivity is considered to be Gaussian random variable 

with a known coefficient of variability and a correlation 

length scale. The output is in the form of temperature, depth 

and its standard deviation. The lithospheric thickness along 

with the error bounds for the region is then inferred from 

these graphs. The developed GUI is applied to quantify the 

lithospheric thickness along with its error structure for any 

given region where conductive heat transfer is dominant. 
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1.   INTRODUCTION 
The subsurface thermal structure of the Earth’s crust is 

influenced by its geothermal parameters such as thermal 

conductivity, radiogenic heat sources and initial and boundary 

conditions. Basically two approaches of modeling are 

commonly used for the estimation of the subsurface 

temperature field. These are: (1) deterministic approach and 

(2) the stochastic approach. In the deterministic approach the 

subsurface temperature field is obtained assuming that the 

controlling thermal parameters are known with certainty. 

However, due to inhomogeneous nature of the Earth’s interior 

some amount of uncertainty in the estimation of the 

geothermal parameters are bound to exist. Uncertainties in 

these parameters may arise from the inaccuracy of 

measurements or lack of information about the parameters 

themselves. Such uncertainties in parameters are incorporated 

in the stochastic approach and an average picture of the 

thermal field along with its associated error bounds is 

determined. The mean value gives the average subsurface 

thermal picture and the variance or the standard deviation is 

the variability indicator which gives the errors associated with 

the thermal structure due to errors in the input controlling 

parameters.  

The uncertainty in the heat flow using a least squares 

inversion technique incorporating uncertainties in the 

temperature and thermal conductivities is studied in [1-2]. 

Later, [3] studied the effect of variation in heat source on the 

surface heat flow and [4] studied the stochasticity in the 

thermal models. The small perturbation method is used in [5] 

to solve the stochastic heat conduction equation with 

uncertainties in the heat sources to obtain the mean 

temperature field along with its error bounds. Several 

researchers have been using the numerical method, the 

random simulation method to model the error structure in the 

thermal field incorporating uncertainties in the controlling 

thermal parameters [6-9]. Stochastic analytical solutions to 

diffusion problem have been obtained by several researchers. 

The analytical solution to error bounds on the subsurface 

temperature depth distribution is obtained by solving the heat 

conduction equation incorporating Gaussian uncertainties in 

the thermal conductivity. This analytical solution is coded in 

Matlab to get numerical solution to the given problem and a 

GUI has been developed. 

Using Matlab programming one can create a GUI which 

contains controls such as menus, toolbars, buttons and sliders. 

This can perform any type of computation and display data as 

plots or as tables. Many Matlab products, such as Curve 

Fitting Toolbox, Signal Processing Toolbox, and control 

system Toolbox, include applications with custom user 

interface [10-11].  

A sequence of matlab m files and two graphical user 

interfaces to display raw or processed geophysical data to 

produce the final graphics is developed in [12]. A Matlab 

based GUI to compute the subsurface thermal structure up to 

the base of the crust is developed in [13]. Yet another Matlab 

based GUI is developed in [14] and applied it to understand 

the hydroseismicity of the Koyna – Warna Region, India.  

The analytical expressions for mean and variance in 

temperature depth distribution have been extended below the 

crust and closed form solutions obtained. In this paper a 

simple Matlab GUI (graphical user interface) is developed and 

the subsurface temperatures computed by giving directly the 

numerical values of the controlling thermal parameters and 

the results/plot are displayed instantaneously. The plot of the 

subsurface thermal field along with its error bounds is 

computed till we get 1300 C  mantle adiabat. The depth at 

which this temperature is reached gives the lithospheric 

thickness. The study has been applied to Latur earthquake 

region of India. 
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2. MATHEMATICAL FORMULATION 
The stochastic heat conduction equation with random thermal 

conductivity is expressed in [15].  
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 where T is the temperature
)( C

 , A(z) is the radiogenic heat 

source
)/( 3mW

, L is the crustal thickness, D is the 

characteristic depth, K(z) is the thermal conductivity 

)/( CmW 

 which is expressed as a sum of a deterministic 

component and a random component where  K is the mean 

value and )z(K '

 is the random component with mean zero 

and a Gaussian colored noise correlation structure represented 

by  
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where 
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K  is the variance in thermal conductivity,   is the 

correlation decay parameter (or 1/ is the correlation length 

scale)   and z1 and z2 are the depths.  

Boundary Conditions are  

     Constant surface temperature  
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In [16] the analytical expressions for mean temperatures in the 

crust is obtained as 
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The variance in the temperature is obtained as   
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The terms Term1,Term2,Term3 and Term4 are the closed 

form solution to the double intergrals which are obtained in 

[16]. 

 

 

For temperatures below the crust  z ≥ L the mean temperature 

is obtained as  

                            (8)  

Analytical expression for variance in temperature is derived. 

These expressions have been used to compute the subsurface 

thermal structure along with its error bounds both in the crust 

and below it.  A Matlab based GUI is developed to compute 

and plot the temperature depth distribution along with its error 

bounds. The controlling thermal parameters such as the 

crustal thickness, radiogenic heat production, characteristic 

depth, surface temperature, basal heat flow, thermal 

conductivity, coefficient of variability in thermal conductivity 

and correlation length scale are all given on the screen. The 

graphical representation of the results is displayed on the 

screen which will be useful to the geo-scientific community 

dealing with subsurface thermal structure. 

3. NUMERICAL  EXAMPLES AND 

DISCUSSION   
In understanding the thermal structure of the Earth there are 

several questions which need clear answers. Many of the 

controlling parameters that define the Earth’s processes are 

not known with certainty. In such situations these controlling 

parameters can be defined in a stochastic framework and an 

average picture of the system behavior together with its error 

bounds can be quantified. In this study the radiogenic heat 

production , basal heat flow and mean thermal conductivity 

are considered to be a deterministic values whereas the 

thermal conductivity is assumed to be random parameter with 

a constant mean and a Gaussian correlation structure. 

To demonstrate the use of the analytical solutions numerical 

values of the controlling input thermal parameters for a 

realistic Earth model for the Latur Earthquake region are 

given in [2] as 

Surface temperature (T0) - 30 (0C) 

Basal heat flow (QB) - 14 (mW/m2) 

Radiogenic heat production (A) - 2.6 )/( 3mW   

Depth (L) - 37 (km) 

Mean thermal conductivity K - 3.0 )/( 2mmW   

Coefficient of variability Ck - 0.4 and 0.5 

Correlation length scale /1 - 10 km, 20 km 

The lithospheric thickness is obtained as the depth of the 

intersection of the geotherm with a 1300 C  mantle adiabat. 

The numerical values of the above controlling parameters are 

given in the boxes and temperature depth distribution 

computed and plotted. For the above set of controlling thermal 

parameters and for coefficient of variability Ck 0.4 (40% error 

in the thermal conductivity) and a correlation length scale 

/1  i.e., 20 km the lithospheric thickness is computed and is 

seen to be around 272 ± 11 km. Figure 1 shows the plot of the 

GUI for the above mentioned thermal parameters. The errors 

are seen to exponentially increase up to the base of the crust 

i.e., up to 37 km. Below the crust the errors are seen to 

increase linearly with depth.  At the base of the lithosphere the 

temperatures are around 1300 ±51 C .  
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Next with an increase in the coefficient of variability i.e 0.5 

around 50 % error in the thermal conductivity values and for a 

correlation length scale /1  i.e., 20 km the lithospheric 

thickness computed is seen to be around 272 ± 15 km (Figure 

2). From the plot it is seen that at the base of the lithosphere 

the error bound on the temperature is around 1300 ± 64 C .  

Hence with an increase in the coefficient of variability in 

thermal conductivity there is an increase in the error bounds 

on the temperatures which result in an increase in the errors 

on the lithospheric thickness. 

 

Figure 1:  Plot of mean temperature  S.D for coefficient 

of variability in  thermal conductivity 0.4 and a 

correlation length scale of 20 km 

Also to see the effect of a change in the correlation length 

scale on the errors the temperature depth distribution is 

computed with 40% error in the coefficient of variability in 

the thermal conductivity and for a  correlation length scale of 

10 km. The lithospheric thickness computed is seen to be 

around 272 ± 20 km. The results are plotted in Figure 3. From 

the plot it is seen that at the base of the lithosphere the error 

bound on the temperature is around 1300 ±87 C .   

 

Figure 2:  Plot of mean temperature  S.D for coefficient 

of variability in   thermal conductivity  0.5 and a 

correlation length scale of 20 km 

For the Precambrian continental lithospheric the lithospheric 

thickness ranges from 140 to 350 km [17]. Latur region of 

India is characteristic of a Precambrian continental region. 

The results on lithospheric thickness obtained for the Indian 

region show that it is around the same Global average values 

of 272 ± 20 km. 

 

Figure 3: Plot of mean temperature  S.D for coefficient of 

variability in   thermal conductivity  0.4 and a correlation 

length scale 10 km 

4. CONCLUSIONS 
Thermal modeling plays an important role in understanding 

the state of the lithosphere. For modeling the conductive heat 

transfer in the crust the important controlling parameters are 

the radiogenic heat production and the thermal conductivity. 

In case of a stabilized continental crust the conductive heat 

transfer in steady state condition is a reasonably good 

approximation. A package is developed to compute and plot 

the error bounds on the subsurface temperatures due to errors 

in the thermal conductivity for a 1-D steady state conductive 

earth model for surface temperature and basal heat flow as its 

boundary conditions.  A Graphical user interface has been  

developed in Matlab. Controlling input thermal parameters 

such as crustal thickness, radiogenic heat production, 

characteristic depth, surface temperature, surface heat flow, 

mean thermal conductivity, coefficient of variability in 

thermal conductivity and correlation length scale can be given 

directly on the screen and the plot of mean temperature along 

with its error bounds are displayed directly on the screen. 

Analytical expressions are derived below the crust also and  

when temperature reaches 1300 C  the the computations stop 

and the corresponding depth gives the lithospheric thickness. 

This developed package is  applied to Latur earthquake region 

in the India Shield and the lithospheric thickness along with 

the error bounds is quantified and is around 272 ± 20 km 

which matches well with the documented results for any 

Precambrian shield. 
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