
International Journal of Computer Applications (0975 8887)
Volume 78 - No. 4, September 2013

Multi-Agent System Design for Synchronizing Software
Components Communication : Application on
Orchestration in Complex SOA Architecture

Smail Tigani
RITM Laboratory, High School of Technology

National and High School of Electricity and Mechanics
sma.tigani@gmail.com
Casablanca, Morocco

Mouhamed Ouzzif
RITM Laboratory, High School of Technology

National and High School of Electricity and Mechanics
ouzzif@gmail.com

Casablanca, Morocco

ABSTRACT
This paper proposes a new optimal method for synchronizing flux
orchestration services. By orchestration, we mean the process of
communicating different applications in a collaborating context,
generally in a complex SOA Architecture. Current way for resolv-
ing this problem is done manually by developers them selves, witch
increases economical cost and programming complexity. Tradi-
tional method consumes physical resources and makes the software
maintenance harder than ever because functional and non func-
tional aspects are not separated. The proposed method is a multi-
agent system composed by a set of slave agents and a master agent.
A slave agent is an event’s listener and an alert sender to the master
agent. This one makes adequate reaction based on a primary simple
configuration.

Keywords:
Multi-Agent System, Synchronization, Orchestration, SOA Archi-
tecture, Web Services, Aspect Oriented Programming ”AOP”.

1. INTRODUCTION
With the expansion of information technologies and the develop-
ment of communication protocols, companies needs more than one
application for their departments management. Those applications
have to exchange information between them, let’s give an example
: When a human resources manager allows an employee to get a
holiday during a given period, the Human Resources Software must
send a message to the Project Management Software to make it
update and do not consider the employee present during this period.

Service Oriented Architecture is a set of applications inter-
acting between them, and each one offers services to others.
Developers have to spend time and effort by adding manually some
Web Service calls to communicate with other components, this
decreases the application performance and make it’s maintenance
harder due to coding complexity.

This paper proposes an architecture of a new system allow-
ing developers to communicate remote software components easily
by using just java annotations. This solution optimizes also some

performances aspects of the information system.

This paper is organized as follows : the next section presents
the global context by introducing some definitions, while seconde
section defines the problem and underlines motivations to think
about a new solution. Architecture is reported in the third section.
Section 4 introduces some mathematical aspects to demonstrate
the proposed approach value-added. Finally, conclusion and some
perspectives are presented in the last section.

2. SOLUTION CONTEXT
2.1 WEB SERVICES
According to [1], a web service is an interface that offers a list of
operations witch are accessible using a network. Web services de-
scription is done by a formal XML standard, named WSDL ”Web
Service Description Language”. It contains all necessary informa-
tion to interact with the service and other informations like message
formats, transport protocols and location... The interface hides the
implementation details of the service and that make it independent
of the hardware or software platform on which it is implemented
and also independent of the programming language and technol-
ogy in which it is based. This allows applications based on web
Services to cooperate and that increases distributed applications in-
teroperability.

2.2 ABOUT SOA
By reading [2], SOA is some principles, patterns and best practices
that used in software components developing. SOA means ”Ser-
vice Oriented Architecture” and speaks about services and only ab-
stract interfaces are outside accessible. Implementation details are
hidden and consumers are unaware of them, additionally, there are
others either indifferent however interfaces are neutral [1] of pro-
gramming languages and various technologies and platforms.

2.3 WHAT IS SOAP ?
SOAP is a protocol used to assure interoperability between organi-
zations and business applications needing interaction. It is an HTTP
POST request with an XML structure wrapped in HTTP Playload

17



International Journal of Computer Applications (0975 8887)
Volume 78 - No. 4, September 2013

field, some web services types are based on SOAP protocol. Pro-
grams behaving like a web navigator can send and receive SOAP
packets[3].

2.4 SOA AND WEB SERVICES
Time has proven that web services technology is an efficient way
to implement service oriented architectures [4] interconnecting dis-
tributed software components and construct by this a collaborative
context. Web service’s platforms and technologies independence
makes them a viable technology to attain SOA since they are based
on industry standards like WSDL, SOAP and XML.

2.5 AGENT TECHNOLOGY
An agent is a autonomous entity supervising its environment with
its sensors, it can behaves with its effectors to attain an objective or
the list of objectives designed for. Different agents have different
influence level in the sense that they have influence on specific parts
of the environment[5].

2.6 MULTI AGENT SYSTEMS
An agent have to the ability to communicates with other agents, that
create an agents network and all the system is called Multi Agent
System ”MAS”. They are applied in different fields like software
engineering, mechanical systems ... According to [6], a distributed
watershed systems optimization is done using a system based on
agent technology.

3. SYSTEM DESIGN
3.1 PROBLEM DEFINITION
Web applications are generally developed using the MVC Design
Pattern, this one is a multi-layer architecture grouping the applica-
tion in tree main layers : Model, View and Controller. The Model
contains business model ”BM” which is the object relational
mapping, however, the View contains the human machine interface
”IHM” and the Controller contains business services ”BS”.

For more interaction with other applications, we can imagine
a web services sub-layer to communicate the software with other
remote components.

Developers must code manually the interaction part using
Web Services. First, this needs an intelligence level and time.
Seconde, web services instances needs memory space and the call
consumes time. The three previous points are considered the main
drawbacks of the traditional method.

3.2 SYSTEM ARCHITECTURE
The proposed solution is working with a multi-agent system to
avoid the three drawbacks. Slave agent will be an event listener,
an event can be before or after method running. When the slave
agent senses a given event, it sends a message containing required
parameters to the master agent who extracts, from its configuration
file, the adequate behavior : calling an other web service or a
business process...

The next diagram contains different components and inter-
connection links :

Fig. 1: Global system architecture

3.3 CONFIGURATION FILES
The agent needs some informations to make the right decision, it
can extract them from an XML file completed by the developer
with simple tags.

3.3.1 SLAVE AGENT XML FILE. Slave agent need next infor-
mations : event names list, Java method associated with the event
and the channel Web Service URI of the master agent. This one is
the UNIQUE Web Service created by the system and use it as a
transmission channel for all events during the session.

3.3.2 MASTER AGENT XML FILE. Master agent need to know
the associated operation for each received event.

3.4 HOW IT WORKS
Let’s call ”MA” the master agent and ”SA” the slave agent. The
following steps shows how the system works :

18



International Journal of Computer Applications (0975 8887)
Volume 78 - No. 4, September 2013

(1) A user send a request and that runs a method.
(2) The SA extracts events list.
(3) The SA detects the event.
(4) The SA extracts the method’s parameters.
(5) The SA gets the message destination.
(6) The SA sends the event and parameters.
(7) The MA receives the message.
(8) The MA gets behavior list and parameters.
(9) The MA calls the adequate operation.

4. SYSTEM MODELLING
4.1 INTRODUCTION
In the current section, we focus on the mathematical demonstration
of the efficiency of the proposed solution. First, we start by mak-
ing some definitions of different variables and suppositions. Sec-
ond, we will construct two models representing total storage size
taken by Java Web Services Objets due to JVM instances and the
response time. Finally, we will figure out the difference aspects be-
tween the proposed approach and current technology.

4.2 MAIN DEFINITIONS
Let’s have n queries made by users to an application. A query can
be the request of a list of products, or adding new informations
in a database... Technically, this query involves one process witch
is implemented by a Java Method or Function for example. Let’s
call pi the ieme process who needs to transmit information flux
to other applications. It’s not necessary that one process updates
all applications in the system, this is why we suppose the function
N(pi) as the number of applications concerned by the the update.

When a process calls a Web Service, the process have to in-
stantiate the interface of the called Web Service before use. This
operation, made by the JVM, means that the server memory will
decrease by the Web Service object size. Let’s call sij the size of
the jeme Web Service object called by the ieme process pi and tij
the elapsed time when the jeme Web Service call has been finished.

A process pi it self needs a memory space and a time of
running, let’s call the two parameters s(pi) for the size and t(pi)
for the time.

4.3 MEMORY SPACE MODEL
According to the suppositions in the previous section, we can
build some performance indicators witch can help us to show the
value-added of the proposed approach.

Let start by modelling the existing way to make orchestra-
tion. The memory space for n processes is given by

∑n

i=1
s(pi)

and each one have N(pi) Web Service calls, so the total memory
including Web Services calls is represented by the following suit :

Sn =

n∑
i=1

N(pi)∑
j=1

sij + s(pi)

Let’s define the same parameters for our approach, the difference
is there is no Web Services calls. We have just a small size for
creating one instance of the agent java class, it’s a singleton, Let’s

call it SSA : ”Size of Slave Agent”. Finally, the total size is given
by the following suit :

S∗n = SSA +

n∑
i=1

s(pi)

Now let’s study the suit ∆S
n = Sn − S∗n witch give us the best

solution according to it’s convergence speed. The result is given by
the next equation :

∆S
n = −SSA +

n∑
i=1

N(pi)∑
j=1

sij

It’s evident that limn→∞∆S
n = ∞ because sij > 0. That means

that Sn → ∞ more quickly than S∗n. This result means that the
server memory will be saturated quickly if we use the traditional
method. Finally we conclude that our approach represented by S∗n
makes more economics in memory space.

4.4 RESPONSE TIME MODEL
By the same way, total elapsed time after n process running includ-
ing Web Services calls is given by the next suit :

Tn =

n∑
i=1

N(pi)∑
j=1

tij + t(pi)

We consider TSA the time to create the object and running the main
method, this time is small and this operation is done just one time.
The total elapsed time in this case is obtained by the next suit :

T ∗n = TSA +

n∑
i=1

t(pi)

Now let’s study the suit ∆T
n = Tn − T ∗n witch give us the best

solution according to it’s convergence speed. The result is given by
the following equation :

∆T
n = −TSA +

n∑
i=1

N(pi)∑
j=1

tij

We have limn→∞∆T
n = ∞, so we can conclude that the response

time of the application will be higher if we use the traditional
method. Finally we can say that our approach represented by T ∗n
optimises the performance of the application.

5. CONCLUSION
In this paper, we figure out some weaknesses of the traditional
method of developing orchestration services. On the one hand,
developers them selves have to make every thing manually, this
is complex to do and makes the software maintenance harder. On
the other hand, some performance aspects are not optimized us we
have seen before.

To make orchestration as simple as possible, this work pro-
poses a distributed system architecture composed of slave and
master agents to replace the manual human works. With this
approach, the application container have no need to create web ser-
vices instances and wait for the response. This is more economical

19



International Journal of Computer Applications (0975 8887)
Volume 78 - No. 4, September 2013

in space and time.

As a perspective, the implementation of this architecture will
be with Java Technology. The slave and master agent will be
developed with the EJB3.x API and consumes an XML file
containing the configuration, this will be with the JAXB API.
Follows message exchages class with JAX-WS API[7], and the
ApsectJ API[8] to detect after and before method running events.

6. REFERENCES
[1] H. Kreger, Web Services Conceptual Architecture, pp 6, 2001.
[2] C. A Binildas, Service Oriented Java Business Integration, pp

32, PACKT, 2008.
[3] P. Busby, A Simple Way of Importing from a REST Web Ser-

vice into SAS in Three Lines of Code, pp 1 & 2, 2012.
[4] C. A Binildas, Service Oriented Java Business Integration, pp

33, PACKT, 2008.
[5] S. MAALAL, M. ADDOU, A new approach of designing

Multi-Agent Systems, pp 148, International Journal of Ad-
vanced Computer Science and Applications, Vol. 2, No. 11,
2011.

[6] M. Giuliani, A. Castelletti, F. Amigoni, X. Cai Multi-Agent
Systems optimization for distributed watershed management,
pp 2, International Environmental Modelling and Software
Society, 2012.

[7] M. Kalin, Java Web Services : Up and Running, O’REILLY,
2008.

[8] R. LADDAD, AspectJ in action, MANNING.

20


	INTRODUCTION
	SOLUTION CONTEXT
	WEB SERVICES
	ABOUT SOA
	WHAT IS SOAP ?
	SOA AND WEB SERVICES
	AGENT TECHNOLOGY
	MULTI AGENT SYSTEMS

	SYSTEM DESIGN
	PROBLEM DEFINITION
	SYSTEM ARCHITECTURE
	CONFIGURATION FILES
	SLAVE AGENT XML FILE
	MASTER AGENT XML FILE

	HOW IT WORKS

	SYSTEM MODELLING
	INTRODUCTION
	MAIN DEFINITIONS
	MEMORY SPACE MODEL
	RESPONSE TIME MODEL

	CONCLUSION
	References

