
International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.4, September 2013

6

Optimization of Multiprocessor Scheduling using

Genetic Algorithm

Poonam Panwar
Assistant Professor

Ambala College of Engineering & Applied
Research, Ambala-133101

Shreya Chauhan
M.Tech Student

Ambala College of Engineering & Applied
Research, Ambala-133101

ABSTRACT
Multiprocessor architectures are becoming more attractive for

embedded systems, primarily because major processor

manufacturers like Intel and AMD are designing cost effective

processors even for personal computers and laptops. This

makes such architectures very desirable for embedded system

applications with high computational workloads, where

additional, cost-effective processing capacity is often needed.

This increased usage of multiprocessor attracted the

researchers for multiprocessor scheduling problems.

Multiprocessor scheduling is a NP hard problem. In this paper

a Genetic Algorithm (GA) based multiprocessor scheduling

algorithm is proposed whose implementation is simple and the

obtained results are optimal for the studied set of problems.

Keywords
Multiprocessor Architecture, Multiprocessor Scheduling, NP

Hard, Genetic Algorithm.

1. INTRODUCTION
Real-time multiprocessor systems are now very commonly

used for a number of applications in our life. There are a

number of designs available for multiprocessor architectures

like single-chip architectures, multiprocessor with a modest

number of processors and large-scale signal-processing

systems such as synthetic-aperture radar systems etc. In a

single processor system the problem of ensuring that deadline

constraints are met has been widely studied and the effective

scheduling algorithms that take into account the many

complexities that arise in real systems like synchronization

costs, system overheads, etc. are well understood. In contrast

to single processor systems researchers are just beginning to

understand the trade-offs that exist in multiprocessor systems.

Scheduling approaches for Multiprocessor systems can be

classified into two categories: global scheduling and

partitioning. In global scheduling, all eligible tasks are stored

in a single priority-ordered queue then the global scheduler

selects for execution the highest priority tasks from this

queue. Unfortunately, using this approach with optimal single

processor scheduling algorithms, such as the rate-monotonic

(RM) and earliest-deadline-first (EDF) algorithms may result

in arbitrarily low processor utilization in multiprocessor

systems [1-2]. However, recent research on proportionate fair

(Pfair) scheduling has shown considerable promise in that and

it has produced the only known optimal method for

scheduling periodic tasks on multiprocessors [3-4].

In partitioning, each task is assigned to a single processor, on

which each of its jobs will execute, and processors are

scheduled independently. The main advantage of partitioning

approaches is that they reduce a multiprocessor scheduling

problem to a set of single processor or uniprocessor ones.

Unfortunately, partitioning has two negative consequences.

First, finding an optimal assignment of tasks to processors is a

bin-packing problem, which is NP-hard in the strong sense.

Thus, tasks are usually partitioned using non-optimal

heuristics. Second task systems exist that are schedulable if

and only if tasks are not partitioned. Still, partitioning

approaches are widely used by system designers [5-8].

In addition to the above approaches the approach considered

in proposed work is a new “middle” level approach in which

each job is assigned to a single processor, while a task is

allowed to migrate. In other words, inter-processor task

migration is permitted only at job boundaries. It is believed

that migration is eschewed in the design of multiprocessor

real-time systems because its true cost in terms of the final

system produced is not well understood. As a step towards

understanding this cost, a new taxonomy that ranks

scheduling schemes is the complexity of priority schemes.

According to this dimension the scheduling disciplines are

categorized according to the task priorities. The task priorities

can be static, dynamic but fixed within a job or fully dynamic.

Common examples of each type include RM, EDF and least-

laxity-first (LLF) [9-12] scheduling algorithms.

2. PROPOSED APPROACH
The classical multiprocessor scheduling techniques are having

number of pitfalls like they takes more execution time, the

basic solution obtained without swarm intelligence is not

efficient in terms of the turnaround time and optimal results.

Due to this there is a requirement of optimization of

multiprocessor scheduling. Genetic algorithm (GA) is a

technique that is applied to a number of optimization

problems to obtained optimal solutions. So in proposed a GA

based approach is proposed for optimization of multiprocessor

scheduling. A Genetic Algorithm (GA) is a search heuristic

that mimics the process of natural evolution. This heuristic is

routinely used to generate useful solutions to optimization and

search problems. Genetic algorithms belong to the larger class

of evolutionary algorithms (EA), which generate solutions to

optimization problems using techniques inspired by natural

evolution, such as inheritance, mutation, selection, and

crossover [13]. In a genetic algorithm, a population of strings

(called chromosomes or the genotype of the genome), which

encode candidate solutions (called individuals, creatures, or

phenotypes) to an optimization problem, evolves toward

better solutions. Traditionally, solutions are represented in

binary as strings of 0s and 1s, but other encodings are also

possible. The evolution usually starts from a population of

randomly generated individuals and happens in generations.

In each generation, the fitness of every individual in the

population is evaluated, multiple individuals are stochastically

selected from the current population (based on their fitness),

and modified (recombined and possibly randomly mutated) to

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.4, September 2013

7

form a new population. The new population is then used in the

next iteration of algorithm. Commonly, the algorithm

terminates when either a maximum number of generations has

been produced, or a satisfactory fitness level has been reached

for the population. If the algorithm has terminated due to a

maximum number of generations, a satisfactory solution may

or may not have been reached [14-19]. In proposed study the

drawbacks and shortcomings in the classical multiprocessor

scheduling are investigated and a novel technique for the

simulation of genetic algorithm based multiprocessor

scheduling is proposed to optimize execution time. Matlab

GA Tool is used for proposed approach with following GA

parameters:

 Initial Population size: popSize=10

 Maximum number of iterations: maxGen=1000

 Crossover probability=0.8

 Mutation probability=0.8

 Terminating condition: 100 generations with same

fitness.

 Total number of trials= 10 for each problem.

The algorithm to get optimal execution time includes

following steps:

1. Design computation cost matrix ccm where is

the total number of tasks and n is the

number of processors (i.e. . Each entry in

matrix denotes the execution time on specified processor.

2. Design communication matrix where each

entry denotes the weight of node from parent to child.

The computation cost is equal to 0 if child is executed on

the same processor on which parent has executed.

3. Assign priorities to tasks i.e. static, dynamic but fixed or

fully dynamic.

4. Calculate (Earlist Start Time) and (Earliest

Finish Time) as specified below:

 Set and =0 for task 1 on each processor, set

process avail time for processors

 Assign that processor to task1 on which execution

time is minimum and set the value of

corresponding processor as:

5. For to repeat following:

6. Fitness function = for chromosome 1 to

where k is the total number of chromosomes in a

generation.

7. Calculate total execution time of as .

3. IMPLEMENTATION OF PROPOSED

ALGORITHM
A problem from existing literature [14] is selected from the

literature. The application consists of 10 tasks. It starts

execution from first task and end at the execution of last task.

The architecture of the problem is shown in figure1. We have

implemented the multiprocessor scheduling with and without

genetic algorithm on different cases of inputs. The

corresponding task graphs and Gantt charts has been

generated to analyze the tasks.

CASE – I

Fig 1: Directed acyclic graph of case1.

T1

0-6

T2

6-18

T5

6-16

T6

16-28

T7

28-42

T8

42-50

T3

6-26

T4

26-46

T9

46-56

T10

56-64

Fig 2: Gantt Chart before applying proposed algorithm on

case I (Total Execution time= 64).

T1

0-6

T4

6-26

T5

26-36

T9

36-46

T10

46-54

 T3

6-26

T7

26-40

T2

6-19

T6

19-31

T8

31-39

Fig 3: Gantt Chart after applying genetic algorithm on

case I (Total execution time= 54)

CASE II:

P1

P2

P3

P1

P2

P3

P1

P2

P3

P1

P2

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.4, September 2013

8

Fig 4: Directed acyclic graph of case2.

T1

0-8

T2

8-23

T5

8-17

T6

17-30

T7

30-46

T8

46-52

T3

8-26

T4

26-47

T9

47-56

T10

56-62

Fig 5: Gantt Chart before applying proposed algorithm on

case II (Total Execution time= 62).

T1

0-8

T4

8-29

T5

29-38

T9

38-47

T10

47-53

T3

8-26

T7

26-42

T2

8-23

T6

23-36

T8

36-42

 Fig 6: Gantt Chart after applying genetic algorithm on

case II (Total execution time= 53)

CASE III

Fig 7: Directed acyclic graph of case3.

T1

0-7

T2

7-18

 T5

7-20

T6

20-32

T7

32-45

T8

45-51

 T3

7-28

T4

28-46

T9

46-57

T10

57-63

Fig 8: Gantt Chart before applying proposed algorithm on

case III (Total Execution time= 63).

T1

0-7

T4

7-25

T5

25-38

T9

38-49

T10

49-55

 T3

7-28

T7

28-41

 T2

7-18

T6

18-30

T8

30-36

Fig. 9: Gantt Chart after applying genetic algorithm on

case III (Total execution time= 55)

As shown in Fig 2 to Fig 9 it can be concluded that the

proposed approach is generating efficient results in terms of

the optimal solution when executed using genetic algorithm.

The proposed technique is efficient also in terms of the

P1 P1

P2

P3

P1

P2

P1 P1

P2

P3

P1

P2 P2

P1

P2

P1

P2

P3

P1

P2

P1

P2

P1

P2

P3

P1

P2

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.4, September 2013

9

execution and turnaround time despite of the number of

iterations. But it also has the limitation that it further needs

enhancement using assorted meta-heuristics and the approach

may give better results by combining simulated annealing

with the proposed operators.

4. CONCLUSION AND FUTURE WORK
The existing problems in the multiprocessor scheduling [20-

22] have been removed using genetic algorithm and optimal

results has been obtained. The further work in this area can be

improved by using the other meta-heuristics including ant

colony optimization, simulated annealing, honeybee

algorithm. These algorithms are very prominent in terms of

solving the combinatorial optimization problems. The

multiprocessor scheduling algorithm can be passed with

assorted swarm intelligence techniques to get the multiple

results and from which the optimal result should be obtained.

5. REFERENCES
[1] Anderson J. and Srinivasan A. June 2001. Mixed Pfair/

ERfair scheduling of asynchronous periodic tasks in

proceedings of the 13th Euromicro Conference on Real-

time Systems, 76–85.

[2] Moir M. and Ramamurthy S. 1999. Pfair scheduling of

fixed and migrating periodic tasks on multiple resources

in proceedings of the 20th IEEE Real-time Systems

Symposium, 294–303.

[3] Srinivasan A., Holman P., Anderson J., and Baruah S.

2003. The case for fair multiprocessor scheduling in

proceedings of the 11th International Workshop on

Parallel and Distributed Real-time Systems.

[4] Baruah S., Cohen N., Plaxton C.G., and Varvel. D. 1996.

Proportionate progress: A notion of fairness in resource

allocation. In Algorithmica, 15:600–625.

[5] Andersson B., Baruah S., and Jansson J. 2001. Static-

priority scheduling on multiprocessors in proceedings of

the 22nd IEEE Real-time Systems Symposium, 193–202.

[6] Srinivasan A. and Baruah S. 2002. Deadline-based

scheduling of periodic task systems on multiprocessors

in Information Processing Letters, 84(2):93–98.

[7] Topcuoglu H., Hariri S. 2002. Performance Effective and

Low Complexity Task Scheduling for Heterogenous

Computing in IEEE Transactions on Parallel and

Distributed Systems, Vol-13 No.3.

[8] Anderson J. and Srinivasan A. 2000. Early-release fair

scheduling in Proc. of the 12th Euromicro Conference on

Real-Time Systems, 35–43.

[9] Mitchell M. 1995. Genetic Algorithms: An Overview in

An Introduction to Genetic Algorithms, Chapter 1. MIT

Press.

[10] Konfrst Z. 2004. Parallel Genetic Algorithms: Advances,

Computing Trends, Applications and Perspectives in18th

International Parallel and Distributed Processing.

[11] Baskiyar S. and SaiRanga P.C. 2003. Scheduling

Directed A-cyclic Task Graphs on Heterogeneous

Network of Workstations to Minimize Schedule Length

in Proceedings of the IEEE International Conference on

Parallel Processing Works ops (ICPPW‟03).

[12] Blythe J., Jain S., Deelman E., Gil Y., Vahi K, Mandal

A, and Kennedy K. 2005. Task scheduling strategies for

workflow based applications in grids in CCGRID, 759-

767.

[13] Gen M, Cheng R. 2000. Genetic algorithm and

engineering optimization. NewYork:Wiley.

[14] ESH, Ansari N, Hong R. 1994. A genetic algorithm for

multiprocessor scheduling in IEEE Transactions on

Parallel and Distributed Systems; 5(2):113–20.

[15] Hwang R, Gen M. 2004. Multiprocessor scheduling

using genetic algorithm with priority-based coding in

Proceedings of IEEJ conference on electronics,

information and systems.

[16] Reakook H., Mitsuo G. and Hiroshi K.. 2008. A

comparison of multiprocessor task scheduling algorithms

with communication costs in Computers and Operations

Research; 35, 976-993.

[17] Ilavarasan E., Thambidurai P. and Mahilmannan. 2005.

Performance Effective Task Scheduling Algorithm for

Heterogeneous Computing System in proceedings of the

4th International Symposium on Parallel and Distributed

Computing.

[18] Kwok Y.K. and Ahmad I. 1999. Static Scheduling

algorithms for allocating directed task graphs to

multiprocessors in ACM Comput. Surv. 31(4), 406-471.

[19] EI-Rewini H., Lewis T.G., and Ali H.H. 1994. Task

Scheduling in parallel and distributed Systems in

Prentice Hall, Englewood Cliffs.

[20] Topcuoglu H., Hariri S. and Min-You Wu. 2002.

Performance-Effective and Low-Complexity Task

Scheduling for Heterogenous Computing in IEEE

transactions on Parallel and Distributed Systems, Vol.

13, no. 3.

[21] Tsujimura Y, Gen M. 1995. Genetic algorithms for

solving multiprocessor scheduling problems. In:

Simulated evolution and learning. Heidelberg: Springer;

106–15.

[22] Yang J. XiaochuanMa, Chaohuan Hou and Zheng Yao.

2008. A Static Multiprocessor Scheduling Algorithm for

Arbitrary Directed Task Graphs in Uncertain

Environments in Springer-Verlag Berlin Heidelberg.

IJCATM : www.ijcaonline.org

