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ABSTRACT
In this paper, a sliding mode control system with a predic-
tive proportional-integral-derivative (PPID-SMC) sliding surface
is proposed. A robust sliding mode controller is suggested to
track the desired trajectory despite uncertainty, set point varia-
tions, and external disturbances. The proposed sliding mode con-
troller is chosen to ensure the stability of overall dynamics dur-
ing the reaching phase and sliding phase. The chattering prob-
lem is overcome using a hyperbolic tangent function for the slid-
ing surface. Simulation example is given to illustrate the use
of the proposed structure for better performance in terms of
time domain specifications over some existing design methods.
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1. INTRODUCTION
It is well known that physical systems are non-linear in na-
ture. Model uncertainty as well as time varying has been a se-
rious challenge to the control community [1]. Conventional con-
trollers, such as PID, lead-lag or Smith predictors, are sometimes
not sufficiently versatile to compensate for these effects. Thus, a
SMC could be designed to control nonlinear systems with the
assumption that the robustness of the controller will compensate
for modeling errors arising from the linearization of the nonlin-
ear model of the process.
Sliding mode control (SMC), first proposed in the early 1950s,
has been proved to be able to tackle system uncertainties and ex-
ternal disturbances with good robustness [2, 3, 4]. The dynamic
performance of the system under the SMC method can be shaped
according to the system specification by an appropriate choice of
switching function [5]. Robustness is the best advantage of a slid-
ing mode control and systematic design procedures for sliding
mode controllers are well known and available in the literature
[2, 5, 6, 7, 8]. In SMC, the dynamic behavior of the system may
be tailored by the particular choice of switching functions and
the closed-loop response becomes totally insensitive to a partic-
ular class of uncertainty [9].
In this paper, a sliding mode controller is designed using a Pre-
dictive PID sliding surface. In order to validate the proposed
approach, a numerical example is considered. The performance
comparison between the proposed structure and the existing
control structures is carried out by simulation using MATLAB
SIMULINK. The results obtained are compared with the Predic-
tive PID control and Generalized predictive control.

2. BASIC CONCEPT
2.1 Generalized Predictive Control
Generalized predictive control (GPC) is one of the most popular
predictive control algorithms developed by Clarke [10]. For sat-
isfying the control objectives, it makes the use of a controlled
auto regressive and integrated moving average (CARIMA)
model is used to obtain good output predictions and optimize a
sequence of future control signals to minimize a multistage cost
function defined over a prediction horizon. The inclusion of dis-
turbance is necessary to deduce the correct controller structure.

A(z−1)y(t) = B(z−1)u(t− 1) + C(z−1)
e(t)

∆
(1)

where A, B, and C are the polynomials in the backward shift
operator z−1 and y, and u are the predicted output and control
input respectively. The derivation of optimal prediction can be
obtained by recursion of Diophantine equation [11],

C = EjA∆ + z−jFj (2)

EjB = CG̃j + z−jḠj (3)

In GPC, the predictions are posed in terms of increments in con-
trol (∆u(j); j ≥ t). These assumptions are the cornerstone of
the GPC approach [12].
The best prediction of y(t+ j) is,

ŷ(t+ j|t) = Gj(z
−1)∆u(t+ j − 1) + Fj(z

−1)y(t) (4)

The prediction in vector can be written as,

y = Gu+ f (5)

where f is the free response of output. The predicted output de-
pends on previous values of output and previous and future val-
ues of the control signal. The control signals are used to achieve
the objective in GPC by minimizing the cost function given as,

J(N1, N2, Nu) =

N2∑
j=N1

δ(j)[ŷ(t+ j|t)− r(t+ j)]2

+

Nu∑
j=1

λ(j)[∆u(t+ j − 1)]2 (6)

where N1, N2 and Nu are the minimum costing horizon, maxi-
mum costing horizon and control horizon respectively. ŷ(t+j|t)
is the optimum j-step ahead prediction of system output, r(t+j)
is the future reference trajectory, λ(j) and δ(j) are the weighting
sequences. For no constraints, the future control for minimiza-
tion of cost is,

u = (GTG+ λI)−1GT (r − f) (7)
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The first element of the control signal u is,

∆u = K(r − f) (8)

where K is the first row of matrix (GTG+ λI)−1GT . The cur-
rent control is,

u(t) = u(t− 1) +K(r − f) (9)

For r − f = 0, there is no control move.

2.2 GPC with steady state weighting
A terminal matching condition, defined as the weighted square of
the steady state error, is included in the GPC cost function (equa-
tion (6)), to derive GPC with steady state weighting (denoted
herein as GPCssw) [13, 14]. The following quadratic function
to be minimized to achieve the control objective is,

J = γy

N2∑
j=N1

[ŷ(t+ j|t)− r(t+ j)]2 + λ

Nu∑
j=1

[∆u(t+ j − 1)]2

+ γ

Nu∑
j=N1

[ŷ(s|t+ j − 1)− r(s)]2 (10)

where γy , γ, and s are the finite prediction weight, steady state
weight, and the steady state value respectively. The first two
terms on the right-hand side form the standard generalized pre-
dictive control (GPC) objective. The last term corresponds to the
additional terms penalizing the squares of errors at the predicted
steady state.

2.3 The Predictive PID control law
The PID control law is,

u(t) = KP e(t) +KI

t∑
i=0

e(i) +KD[e(t)− e(t− 1)] (11)

where KP , KI , and KD are the proportional, integral and
derivative control gain respectively.
The incremental control law is determined by applying the dif-
ferencing operator to the control output as,

∆u(t) = [(KP +KI +KD)

+ (−KP − 2KD)z−1 + (KD)z−2]e(t) (12)

where e(t)=r(t) − y(t) is the tracking error between the refer-
ence and the output.
The Predictive PID control law can be expressed as,

∆u(t) = KIr(t)− [(KP +KI +KD)

+ (−KP − 2KD)z−1 + (KD)z−2]y(t) (13)

2.4 Sliding Mode Control
The robustness to the uncertainties becomes an important aspect
in designing any control system. Sliding mode control (SMC),
originally studied by Utkin [2], is a robust and simple procedure
for the control of linear and nonlinear processes based on prin-
ciples of variable structure control (VSC). It is proved to be an
appealing technique for controlling nonlinear systems with un-
certainties. Figure 1 shows the graphical representation of SMC
using phase-plane, which is made up of the error (e(t)) and its
derivative (ė(t)). It can be seen that starting from any initial con-
dition, the state trajectory reaches the surface in a finite time
(reaching mode), and then slides along the surface towards the
target (sliding mode).
The first step of the SMC design requires the design of a custom-
made surface. On the sliding surface, the plants dynamics is re-
stricted to the equations of the surface and is robust to match

Fig. 1. Graphical interpretation of SMC.

plant uncertainties and external disturbances [15]. At the second
step, a feedback control law is required to be designed to provide
convergence of a systems trajectory to the sliding surface; thus,
the sliding surface should be reached in a finite time. The sys-
tems motion on the sliding surface is called the sliding mode.
The sliding surface, S(t) [1, 16] depends on the tracking error,
e(t) and derivatives of the tracking error is,

S(t) =

(
λ+

d

dt

)n−1

e(t), (14)

where n is the system order, and λ is a positive scalar, which
helps to shape S(t). λ is selected by the designer, and it deter-
mines the performance of the system on the sliding surface [17].
For the second order process (n = 2), the first time derivative of
the sliding surface (equation (14)) is,

Ṡ(t) = λė(t) + ë(t), (15)

Filippov’s construction [18] of the equivalent dynamics is the
method normally used to generate the equivalent SMC law. The
control objective is to ensure that the controlled variable is driven
to its reference value, i.e, in the stationary state, e(t) and its
derivatives must be zero. This condition is achieved by,

dS(t)

dt
= Ṡ(t) = 0, (16)

and substituting it into the system dynamic equations; the con-
trol law is thereby obtained.
Once the sliding surface has been selected, a control law is de-
signed so that it drives the controlled variable to its reference
value and satisfies equation (16).
The SMC control law (USMC(t)), usually results in a fast mo-
tion to bring the state onto the sliding surface, and a slower mo-
tion to proceed until a desired state is reached.
The SMC control law consists of two additive parts; a continuous
part, Uc(t), and a discontinuous part, Ud(t),

USMC(t) = Uc(t) + Ud(t). (17)

In the proposed work, the sliding surface in SMC is designed
with the predictive PID control. The design procedure of the pro-
posed work is given in the section below.

3. PROPOSED METHOD
3.1 SMC with Predictive PID sliding surface
Let the tracking error between the reference and the output is
e(t) = r(t) − y(t), then a sliding surface in the space of error
can be defined using the coefficients obtained for control law
(12), called Predictive PID control law of as,

S(t) = KP e(t) +KI

∫ t

0

e(t)dt+KD
de(t)

dt
(18)
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If the initial error at time t = 0 is e(0) = 0, then the tracking
problem can be considered as the error remaining on the slid-
ing surface S(t) = 0 for all t ≥ 0. If the system trajectory has
reached the sliding surface S(t) = 0, it remains on it while slid-
ing into the origin e(t) = 0, ė(t) = 0 as shown in figure 1.
The purpose of sliding mode control law is to force error e(t) to
approach the sliding surface and then move along the sliding sur-
face to the origin. Therefore it is required that the sliding surface
is stable, which means

lim
t→∞

e(t) = 0 (19)

This implies that the system dynamics will track the desired tra-
jectory [1].
The control objective is to determine a control u(t) such that the
closed-loop system will follow the desired trajectory, that is, the
tracking error e(t) should converge to zero. The process of slid-
ing mode control can be divided into two phases, that is, the slid-
ing phase with S(t) = 0, Ṡ(t) = 0, and the reaching phase with
S(t) 6= 0. Corresponding to two phases, two types of control law
can be derived separately [1, 19]. In sliding mode the equivalent
control is described when the trajectory is near S(t) = 0, while
the hitting control is determined in the case of S(t) 6= 0 [2].
The derivative of the sliding surface defined by equation (18) can
be given as,

Ṡ(t) = KP ė(t) +KIe(t) +KD ë(t) (20)

A necessary condition for the output trajectory to remain on the
sliding surface S(t), is Ṡ(0) = 0 [1, 20, 21],

KP ė(t) +KIe(t) +KD ë(t) = 0 (21)

If the control gains KP , KI , and KD are properly obtained by
proper selection of the prediction horizon, control horizon and
weights such that the characteristic polynomial in equation (21)
is strictly Hurwitz, that is, a polynomial whose roots lie strictly
in the open left half of the complex plane, it implies that,

lim
t→∞

e(t) = 0 (22)

When equation (22) satisfies, it indicates that the closed-loop
system is stable [22].
The error, e(t) = r(t)−y(t) can be defined in terms of physical
plant parameters, where r(t) is the command signal and y(t) is
the measured output signal. The second derivative of the error
e(t) is,

ë(t) = r̈(t)− ÿ(t) (23)

The equivalent control Uc(t) [2], is obtained as the solution of
the problem Ṡ(t) = 0 which leads to,

Uc(t) = [KP ė+KIe(t) +KD r̈(t) +KD ẏ(t) +KDy(t)]
(24)

In regulatory control, the reference values are constants or step
changes. At the moment of transition the derivative control goes
to infinite and hence an undesirable ‘kick’ appears in the con-
troller output hence it should be eliminated (i.e the term r̈(t) =
0). The equivalent control or continuous part of the SMC control
law becomes,

Uc(t) = [KP ė+KIe(t) +KD ẏ(t) +KDy(t)] (25)

The controller must drive the output trajectory to the sliding
modes S(t) = 0 in presence of disturbances. For this purpose,
the Lyapunov function can be chosen as,

V (t) =
1

2
S2(t) (26)

with V (0) = 0 and V (t) > 0 for S(t) 6= 0.
A sufficient condition to guarantee that the trajectory of the error

will translate from reaching phase to sliding phase is to select the
control strategy, also known as the reaching condition [1],

V̇ (t) = S(t)Ṡ(t) < 0, S(t) 6= 0 (27)

To satisfy the above reaching condition, the SMC control law
(17) needs to be determined.
The discontinuous part of SMC, (Ud(t)), generally incorporates
a nonlinear element that includes the switching element of the
control law. This part of the controller is discontinuous across
the sliding surface, which is designed on the basis of a relay-like
function, because it allows for changes between the structures
with a hypothetical infinitely fast speed.
In practice, however, it is impossible to achieve the high switch-
ing control because of the presence of finite time delays for con-
trol computations or limitations of the physical actuators, thus
causing chattering around of the sliding surface [1, 2].
Chattering is a high frequency oscillation around the desired
equilibrium point. It is undesirable in practice, because it in-
volves high control activity and can excite high frequency dy-
namics ignored in the modeling of the system [1]. The aggres-
siveness for reaching the sliding surface depends on the control
gain, but if the controller is too aggressive it can collaborate with
the chattering.
To reduce the chattering, different approaches can be used to re-
place the relay-like function. The system robustness is a function
of the width of the boundary layer. A thin boundary layer can be
introduced around the sliding surface for the hitting control or
the discontinuous part of the SMC control law [1, 19] to be,

Ud = Kdsat

(
S

φ

)
, (28)

where Kd is the positive constants, and φ is positive constant,
defines the thickness of the boundary layer parameter to reduce
chattering. The saturation factor is defined as,

sat

(
S

φ

)
=

(
S

φ

)
if |S

φ
| ≤ 1

= sgn

(
S

φ

)
if |S

φ
| > 1 (29)

This controller is actually a continuous approximation of the
ideal relay control [24, 25]. In the proposed work, a hyperbolic
tangent function is used instead of a saturation function, to im-
prove the hitting control effort and it is given as [8, 25],

Ud = Kdtanh

(
S

φ

)
, (30)

where Kd is the tuning parameter responsible for the speed with
which the sliding surface is reached.
Therefore the proposed control law becomes,

USMC(t) = [KP ė+KIe(t) +KD r̈(t) +KD ẏ(t) +KDy(t)]

+ Kdtanh

(
S

φ

)
. (31)

4. SIMULATION RESULT
To illustrate the performance of the proposed controller, follow-
ing second order unstable plant is considered.

Gp =
−0.015

1− 1.9z−1 + 0.935z−2
(32)

The different controllers were tested for set point and distur-
bances changes, applied to the process. The performance of the
proposed controller is compared against a predictive PID con-
troller structure [13] and Generalized predicative controller.
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Figures 2-4 shows the performance comparisons of the proposed
method to Predictive-PID and GPCssw.
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Fig. 2. Output response to step signal

Figures 2 and 3 shows the improvement of the system in terms
of settling time and overshoot.
In Figure 4, a step disturbance of 0.1 is applied/removed at the
100 and 200 sampling instants, respectively. It shows that the
proposed control law is robust to set point variations and pres-
ence of disturbances. Figure 5 shows the corresponding control
signal.
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Fig. 3. Output response to set point variations
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Fig. 4. Output response to 10 % disturbance

Figure 6 shows the comparison of output response of the pro-
posed method to Predictive PID controller for 20% model pa-
rameter uncertainty. It proves that the proposed method is robust
to model parameter uncertainty.
Table 1 indicates the performance analysis using indices like the
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Fig. 5. Control Signal
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Fig. 6. Output response to 20% model uncertainty

integral of absolute error (IAE), the integral of time weighted
absolute error (ITAE) and the integral of squared error (ISE).

Table 1. Performance analysis
Controller IAE ITAE ISE
Proposed 2.537 26.15 0.4023
PPID 4.742 45.87 1.5570
GPCssw 5.671 41.57 3.8260

5. CONCLUSION
In this study, a sliding mode control with Predictive PID sliding
surface has been proposed. An unstable plant is used for the per-
formance analysis. Simulation was carried out using MATLAB
to test the effectiveness of the proposed method. In the proposed
method, a hyperbolic tangent function has been used in order
to avoid the chattering phenomena. The proposed controller en-
sures the invariance property against parameter uncertainties, set
point variations, and disturbances compared with Predictive PID
controller and Generalized predictive controller.
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