Intuitionist Fuzzy almost Generalized Semi-pre Closed Mappings

D. Jayanthi Department of Mathematics NGM College, Pollachi Tamilnadu, India

ABSTRACT

In this paper we introduce intuitionistic fuzzy almost generalized semi-pre closed mappings and intuitionistic fuzzy almost generalized semi-pre open mappings. We investigate some of their properties. Also we provide the relation between intuitionistic fuzzy almost generalized semi-pre closed mappings and other intuitionistic fuzzy closed mappings.

Keywords

Intuitionistic fuzzy topology, intuitionistic fuzzy generalized semi-pre $T_{1/2}$ space, intuitionistic fuzzy almost generalized semi-pre closed mappings.

1. INTRODUCTION

After the introduction of fuzzy sets by Zadeh [13], there have been a number of generalizations of this fundamental concept. The notion of intuitionistic fuzzy sets introduced by Atanassov [1] is one among them. Using the notion of intuitionistic fuzzy sets, Coker [3] introduced the notion of intuitionistic fuzzy topological spaces. R. Santhi and D. Jayanthi [6] introduced the notion of intuitionistic fuzzy generalized semi-pre closed mappings and intuitionistic fuzzy generalized semi-pre open mappings. In this paper we introduce intuitionistic fuzzy almost generalized semi-pre closed mappings. We investigate some of its properties. Also we provide the relation between an intuitionistic fuzzy almost generalized semi-pre closed mapping and other intuitionistic fuzzy closed mappings.

2. PRELIMINARIES

Definition 2.1:[1] An *intuitionistic fuzzy set* (IFS in short) A in X is an object having the form

 $\begin{array}{l} A = \{ \langle x, \ \mu_A(x), \ \nu_A(x) \ \rangle / \ x \in X \} \text{where the functions } \mu_A : X \\ \rightarrow [0,1] \text{ and } \nu_A : X \rightarrow [0,1] \text{ denote the degree of membership} \\ (namely \ \mu_A(x)) \text{ and the degree of non -membership (namely } \nu_A(x)) \text{ of each element } x \in X \text{ to the set } A, \text{ respectively, and } 0 \\ \leq \mu_A(x) + \nu_A(x) \leq 1 \text{ for each } x \in X. \end{array}$

Denote by IFS (X), the set of all intuitionistic fuzzy sets in X.

Definition 2.2: [1] Let A and B be IFSs of the form A = { $\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X$ } and B = { $\langle x, \mu_B(x), \nu_B(x) \rangle / x \in X$ }.Then

(a)A \sqsubseteqB if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$

(b)A = B if and only if A \subseteq B and B \subseteq A

(c) $A^c = \{ \langle x, \nu_A(x), \mu_A(x) \rangle / x \in X \}$

 $(d)A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle / x \in X \}$

 $(e)A \cup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle / x \in X \}$

For the sake of simplicity, we shall use the notation $A = \langle x, \mu_A, \nu_A \rangle$ instead of $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle / x \in X \}.$

The intuitionistic fuzzy sets $0 = \{ \langle x, 0, 1 \rangle / x \in X \}$ and $1 = \{ \langle x, 1, 0 \rangle / x \in X \}$ are respectively the empty set and the whole set of X.

Definition 2.3: [11] The IFS $c(\alpha, \beta) = \langle x, c_{\alpha}, c_{1,\beta} \rangle$ where $\alpha \in (0, 1], \beta \in [0, 1)$ and $\alpha + \beta \leq 1$ is called an intuitionistic fuzzy point(IFP for short) in X.

Note that an IFP $c(\alpha, \beta)$ is said to belong to an IFS $A = \langle x, \mu_A, \nu_A \rangle$ of X denoted by $c(\alpha, \beta) \in A$ if $\alpha \leq \mu_A$ and $\beta \geq \nu_A$.

Definition 2.4:[3] An intuitionistic fuzzy topology(IFT for short) on X is a family τ of IFSs in X satisfying the following axioms.

(i) 0~, 1~ $\in \tau$

(ii) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$

 $(iii) \cup Gi \in \tau \text{ for any family } \{ \text{ Gi}/\text{ } i \in J \} \underline{\subset} \tau.$

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space(IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X. The complement A^c of an IFOS A in IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS in short) in X.

Definition 2.5:[3] Let (X, τ) be an IFTS and $A = \langle x, \mu_A, \nu_A \rangle$ be an IFS in X. Then the intuitionistic fuzzy interior and intuitionistic fuzzy closure are defined by

int (A) = \cup { G / G is an IFOS in X and G \subseteq A }

 $cl (A) = \cap \{ K / K \text{ is an IFCS in } X \text{ and } A \subseteq K \}$

Note that for any IFS A in (X, τ) , we have $cl(A^c) = [int(A)]^c$ and $int(A^c) = [cl(A)]^c[11]$.

Definition 2.6:[5] An IFS $A = \langle x, \mu_A, \nu_A \rangle$ in an IFTS (X, τ) is said to be an

(i)intuitionistic fuzzy semi closed set(IFSCS in short) if $int(cl(A)) \subseteq A$

(ii)intuitionistic fuzzy pre closed set(IFPCS in short) if $cl(int(A)) \subseteq A$

(iii)intuitionistic fuzzy aclosed set(IFaCS in short) if $cl(int(cl(A)) \subseteq A$.

The respective complements of the above IFCSs are called their respective IFOSs. The family of all IFSCSs, IFPCSs, and IF α CSs (respectively IFSOSs, IFPOSs and IF α OSs) of an IFTS (X, τ) are respectively denoted by IFSC(X), IFPC(X) and IF α C(X) (respectively IFSO(X), IFPO(X) and IF α O(X)).

Definition 2.7:[11] An IFS A = $\langle x, \mu_A, \nu_A \rangle$ in an IFTS (X, τ) is said to be an

(i) intuitionistic fuzzy semi-pre closed set (IFSPCS for short) if there exists an IFPCS B such that $int(B) \subseteq A \subseteq B$.

(ii) intuitionistic fuzzy semi-pre open set (IFSPOS for short) if there exists an intuitionistic fuzzy pre open set (IFPOS for short) B such that $B \subseteq A \subseteq cl(B)$.

The family of all IFSPCSs (respectively IFSPOSs) of an IFTS (X,τ) is denoted by IFSPC(X) (respectively IFSPO(X)).

Every IFSCS (respectively IFSOS) and every IFPCS (respectively IFPOS) is an IFSPCS (respectively IFSPOS). But the separate converses need not be true in general [11].

Note that an IFS A is an IFSPCS if and only if $int(cl(int(A))) \subseteq A$ and an IFSPOS if and only if A $\subseteq cl(int(cl(A)))$ [7].

Definition 2.8:[7]Let A be an IFS in an IFTS (X, τ) . Then the semi-pre interior and the semi- pre closure of A are defined by

spint (A) = \cup { G / G is an IFSPOS in X and G \subseteq A }.

spcl (A) = \cap { K / K is an IFSPCS in X and A \subseteq K }.

Note that for any IFS A in (X, τ) , we have $spcl(A^c) = [spint(A)]^c$ and $spint(A^c) = [spcl(A)]^c[7]$.

Definition 2.9:[10] An IFS A is an

(i) intuitionistic fuzzy regular closed set(IFRCS for short) if A = cl(int(A)).

(ii) intuitionistic fuzzy generalized closed set(IFGCS for short) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS.

The family of all IFRCSs and IFGCSs (respectively IFROSs and IFGOSs) of an IFTSb (X,τ) are respectively denoted by IFRC(X) and IFGC(X) (respectively IFRO(X) and IFGO(X)).

Definition 2.10:[7]An IFS A in an IFTS (X,τ) is said to be an intuitionistic fuzzy generalized semi-pre closed set(IFGSPCS for short) if spcl(A) \subseteq U whenever A \subseteq U and U is an IFOS in (X, τ) .

Every IFCS, IFGCS, IFSCS, IFPCS, IFRCS, IF α CS and IFSPCS is an IFGSPCS but the separate converses may not be true in general [7]. The family of all IFGSPCSs of an IFTS (X, τ) is denoted by IFGSPC(X).

Definition 2.11:[6]Let A be an IFS in an IFTS (X, τ). Then the generalized semi-pre interior and the generalized semi- pre closure of A are defined by

 $\text{gspint}\ (A) = \cup \{ \ G \ / \ G \ \text{is an IFGSPOS in } X \ \text{and} \ G \ \underline{\subset} A \ \}.$

 $\text{gspcl}\ (A)=\cap\{\ K\,/\,K \text{ is an IFGSPCS in }X \text{ and }A\underline{\sqsubset}K\ \}.$

Note that for any IFS A in (X, τ), we have gspcl(A^c) = [gspint(A)]^c and gspint(A^c) = [gspcl(A)]^c

Remark 2.12:If an IFS A in an IFTS (X, τ) is an IFGSPCS in X, then gspcl(A) = A. But the converse may not be true in general, since intersection does not exist in IFGSPCSs[7]

Remark 2.13: If an IFS A in an IFTS (X, τ) is an IFGSPOS in X, then gspint(A) = A. But the converse may not be true in general, since union does not exist in IFGSPOSs[7].

Definition 2.14:[7] The complement A^c of an IFGSPCS A in an IFTS (X,τ) is called an intuitionistic fuzzy generalized semi-pre open set (IFGSPOS for short) in X.

Every IFOS, IFGOS, IFSOS, IFPOS, IFROS, IF α OS and IFSPOS is an IFGSPOS but the separate converses may not be true in general [7].The family of all IFGSPOSs of an IFTS (X, τ) is denoted by IFGSPO(X).

Definition 2.15:[9] Let $c(\alpha, \beta)$ be an IFP of an IFTS (X, τ) . An IFS A of X is called an intuitionistic fuzzy neighborhood (IFN for short) of $c(\alpha, \beta)$ if there exists an IFOS B in X such that $c(\alpha,\beta) \in B \subseteq A$.

Definition 2.16:[8]If every IFGSPCS in (X, τ) is an IFSPCS in (X, τ) , then the space can be called as an intuitionistic fuzzy semi- pre T_{1/2}space(IFSPT_{1/2} space for short).

Definition 2.17: [5] A map f: $X \rightarrow Y$ is called an intuitionistic fuzzy closed mapping (IFCM for short) if f(A) is an IFCS in Y for each IFCS A in X.

Definition 2.18:[5] A map f: $X \rightarrow Y$ is called an

(i) intuitionistic fuzzy semi open mapping(IFSOM for short) if f(A) is an IFSOS in Y for each IFOS A in X.

(ii)intuitionistic fuzzy α open mapping(IF α OM for short) if f(A) is an IF α OS in Y for each IFOS A in X.

(iii)intuitionistic fuzzy preopen mapping(IFPOM for short) if f(A) is an IFPOS in Y for each IFOS A in X.

Definition 2.19: The intuitionistic fuzzy semi closure and the intuitionistic fuzzy α closure of an IFS A in an IFTS (X, τ) are defined by

 $scl(A) = \bigcap \{ K / K \text{ is an IFSCS in } X \text{ and } A \subseteq K \}.$

 $\alpha cl(A) = \bigcap \{ K / K \text{ is an IF} \alpha CS \text{ in } X \text{ and } A \subseteq K \}.$

Definition 2.20:[6] Let $c(\alpha,\beta)$ be an IFP in (X, τ) . An IFS A of X is called an intuitionistic fuzzy semi neighborhood(IFSN for short) of $c(\alpha, \beta)$ if there is an IFSPOS B in X such that $c(\alpha, \beta) \in B \subseteq A$.

Definition 2.21:[6] A mapping $f : X \rightarrow Y$ is said to be an intuitionistic fuzzy generalized semi-pre closed mapping (IFGSPCM, for short) if f(A) is an IFGSPCS in Y for every IFCS A in X.

Definition 2.22:[6] A mapping $f : X \rightarrow Y$ is said to be an intuitionistic fuzzy M-generalized semi-pre closed mapping(IFMGSPCM, for short) if f(A) is an IFGSPCS in Y for every IFGSPCS A in X.

Definition 2.23:[6] A mapping $f : X \rightarrow Y$ is said to be an intuitionistic fuzzy almost generalized semi-pre continuous mapping(IFaGSP continuous mapping, for short) if $f^{-1}(A)$ is an IFGSPCS in X for every IFRCS A in Y.

Definition 2.24: An IFS A is said to be an intuitionistic fuzzy dense(IFD for short) in another IFS B in an IFTS (X, τ), if cl(A) = B.

3. INTUITIONISTIC FUZZY ALMOST GENERALIZED SEMI-PRE CLOSED MAPPINGS AND INTUTITIONISTIC FUZZY ALMOST GENERALIZED SEMI-PRE OPEN MAPPINGS

In this section we introduce intuitionistic fuzzy almost generalized semi-pre closed mappings and intuitionistic fuzzy almost generalized semi-pre open mappings. We study some of their properties.

Definition 3.1:A map f: $X \rightarrow Y$ is called an intuitionistic fuzzy almost generalized semi-pre closed mapping (IFaGSPCM for short) if f(A) is an IFGSPCS in Y for each IFRCS A in X.

Example 3.2:Let X = { a, b }, Y = { u, v } and G₁= $\langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$, G₂= $\langle y, (0.2_u, 0.3_v), (0.8_u, 0.7_v) \rangle$. Then $\tau = \{0_{-}, G_1, 1_{-}\}$ and $\sigma = \{0_{-}, G_2, 1_{-}\}$ are IFTs on X and Y respectively.. Define a mapping f : (X, τ) \rightarrow (Y, σ) by f(a) = u and f(b) = v. Then f is an IFaGSPCM.

Theorem 3.3:Every IFCM is an IFaGSPCM but not conversely.

Proof:Let $f: X \to Y$ be an IFCM. Let A be an IFRCS in X. Since every IFRCS is an IFCS, A is an IFCS in X. Then f(A) is an IFCS in Y. Since every IFCS is an IFGSPCS , f(A) is an IFGSPCS in Y. Hence f is an IFaGSPCM.

Example 3.4:In Example 3.2 f is an IFGSPCM but not an IFCM, since $G_1^c = \langle x, (0.5a, 0.6_b), (0.5_a, 0.4_b) \rangle$ is an IFCS in X but $f(G_1^c) = \langle y, (0.5_u, 0.6_v), (0.5_u, 0.4_v) \rangle$ is not an IFCS in Y, since $cl(f(G_1^c)) = G_2^c \neq f(G_1^c)$.

Theorem 3.5:Every IFSCM is an IFaGSPCM but not conversely.

Proof:Let f: $X \rightarrow Y$ be an IFSCM. Let A be an IFRCS in X. Since every IFRCS is an IFCS, A is an IFCS in X. Then f(A) is an IFSCS in Y. Since every IFSCS is an IFGSPCS , f(A) is an IFGSPCS in Y. Hence f is an IFaGSPCM.

Example 3.6:Let X = { a, b }, Y = { u, v } and G₁= $\langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$, G₂= $\langle y, (0.5_u, 0.4_v), (0.2_u, 0.3_v) \rangle$. Then $\tau = \{0_{-}, G_1, 1_{-}\}$ and $\sigma = \{0_{-}, G_2, 1_{-}\}$ are IFTs on X and Y respectively. Define a mapping f : $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IFaGSPCM but not an IFSCM, since G₁^c = $\langle x, (0.5a, 0.6_b), (0.5_a, 0.4_b) \rangle$ is an IFCS in X but f(G₁^c) = $\langle y, (0.5_u, 0.6_v), (0.5_u, 0.4_v) \rangle$ is not an IFSCS in Y, since int(cl(f(G₁^c))) = 1_c=f(G₁^c).

Theorem 3.7: Every IF α CM is an IFaGSPCM but not conversely.

Proof:Let f: $X \rightarrow Y$ be an IF α CM. Let A be an IFRCS in X. Since every IFRCS is an IFCS, A is an IFCS in X. Then f(A) is an IF α CS in Y. Since every IF α CS is an IFGSPCS , f(A) is an IFGSPCS in Y. Hence f is an IF α SPCM.

Example 3.8:In Example 3.6 f is an IFaGSPCM but not an IF α CM, since $G_1^c = \langle x, (0.5a, 0.6_b), (0.5_a, 0.4_b) \rangle$ is an IFCS in X but $f(G_1^c) = \langle y, (0.5_u, 0.6_v), (0.5_u, 0.4_v) \rangle$ is not an IF α CS in Y, since $cl(int(cl(f(G_1^c)))) = 1_\subseteq f(G_1^c)$.

Theorem 3.9:Every IFPCM is an IFaGSPCM but not conversely.

Proof:Let $f: X \to Y$ be an IFPCM. Let A be an IFRCS in X. Since every IFRCS is an IFCS, A is an IFCS in X Then f(A)

is an IFPCS in Y. Since every IFPCS is an IFGSPCS, f(A) is an IFGSPCS in Y. Hence f is an IFaGSPCM.

Example 3.10: In Example 3.2 f is an IFaGSPCM but not an IFPCM, since $G_1^c = \langle x, (0.5a, 0.6_b), (0.5_a, 0.4_b) \rangle$ is an IFCS in X but $f(G_1^c) = \langle y, (0.5_u, 0.6_v), (0.5_u, 0.4_v) \rangle$ is not an IFPCS in Y, since $cl(int(f(G_1^c))) = G_2^c \subseteq f(G_1^c)$.

Theorem 3.11:Every IFGSPCM is an IFaGSPCM but not conversely.

Proof:Let f: $X \rightarrow Y$ be an IFGSPCM. Let A be an IFRCS in X. Since every IFRCS is an IFCS, A is an IFCS in X Then f(A) is an IFGSPCS in Y. Hence f is an IFaGSPCM.

Example 3.12:Let X = { a, b }, Y = { u, v } and $G_1 = \langle x, (0.2_a, 0.2_b), (0.4_a, 0.4_b) \rangle$, $G_2 = \langle x, (0.2_a, 0_b), (0.5_a, 0.4_b) \rangle$, $G_3 = \langle y, (0.5_u, 0.6_v), (0.2_u, 0_v) \rangle$ and $G_4 = \langle y, (0.4_u, 0.1_v), (0.2_u, 0.1_v) \rangle$. Then $\tau = \{0_-, G_1, G_2, 1_-\}$ and $\sigma = \{0_-, G_3, G_4, 1_-\}$ are IFTs on X and Y respectively. Define a mapping f : $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IFaGSPM but not an IFGSPCM, since $G_2^{c} = \langle x, (0.5_u, 0.4_v), (0.2_u, 0_v) \rangle$ is not an IFGSPCS in X but f $(G_2^{c}) = \langle y, (0.5_u, 0.4_v), (0.2_u, 0_v) \rangle$ is not an IFGSPCS in Y, since f $(G_7^{c}) \subset G_3$ but spcl(f $(G_2^{c}) = 1_- \subset G_3$.

Theorem 3.13 :Every IFMGSPCM is an IFaGSPCM but not conversely.

Proof:Let f: $X \rightarrow Y$ be an IFMGSPCM. Let A be an IFRCS in X. Then A is an IFGSPCS in X. By hypothesis f (A) is an IFGSPCS in Y. Therefore f is an IFGSPCM.

Example 3.14: In Example 3.12 f is an IFaGSPCM but not an IFMGSPCM, since $A = \langle x, (0.4_a, 0.2_b), (0.2_a, 0_b) \rangle$ is an IFGSPCS in X but $f(A) = \langle y, (0.4_u, 0.2_v), (0.2_u, 0_v) \rangle$ is not an IFGSPCS in Y, since $f(A) \subseteq G3$ but spcl $(f(A)) = 1_{\sim} \subseteq G_3$.

The relation between various types of intuitionistic fuzzy closedness is given in the following diagram.

The reverse implications are not true in general in the above diagram.

Definition 3.15:A map f: $X \rightarrow Y$ is called an intuitionistic fuzzy almost generalized semi-pre open mapping (IFaGSPOM for short) if f(A) is an IFGSPOS in Y for each IFROS A in X.

Theorem 3.16:Let f: $X \rightarrow Y$ be a mapping. Then the following are equivalent.

(i)f is an IFaGSPOM

(ii)f is an IFaGSPCM

Proof:Straightforward.

Theorem 3.17:Let $c(\alpha, \beta)$ be an IFP in X. A mapping f: X \rightarrow Y is an IFaGSPCM if for every IFOS A in X with $f^1(c(\alpha, \beta)) \in A$, there exists an IFOS B in Y with $c(\alpha, \beta) \in B$ such that f (A) is IFD in B.

Proof:Let A be an IFROS in X. Then A is an IFOS in X. Let $f^{1}(c(\alpha, \beta)) \in A$, then there exists an IFOS B in Y such that

 $c(\alpha, \beta) \in B$ and cl(f(A)) = B. Since B is an IFOS, cl(f(A)) = B is also an IFOS in Y. Therefore int(cl(f(A))) = cl(f(A)). Now

 $f(A) \subseteq cl(f(A)) = int(cl(f(A))) \subseteq cl(int(cl(f(A))))$. This implies f(A) is an IFSPOS in Y and hence an IFGSPOS in Y. Thus f is an IFaGSPCM.

Theorem 3.18:Let f: $X \rightarrow Y$ be a mapping where Y is an IFSPT1/2space. Then the following are equivalent:

(i)f is an IFaGSPCM.

(ii)spcl(f (A)) \subseteq f (cl(A)) for every IFSPOS A in X

(iii)spcl(f (A)) \subseteq f (cl(A)) for every IFSOS A in X

(iv) $f(A) \subseteq spint(f(int(cl(A))))$ for every IFPOS A in X.

Proof:(i) \Rightarrow (ii)Let A be an IFSPOS in X. Then cl(A) is an IFRCS in X. By hypothesis f(A) is an IFGSPCS in Y and hence is an IFSPCS in Y, since Y is an IFSPT1/2 space. This implies spcl(f(cl(A))) = f (cl(A)). Now spcl(f(A)) \subseteq spcl(f(cl(A))) = f(cl(A)). Thus spcl(f(A)) \subseteq f(cl(A)).

(ii) \Rightarrow (iii) Since every IFSOS is an IFSPOS, the proof directly follows.

(iii) \Rightarrow (i)Let A be an IFRCS in X. Then A = cl(int(A)). Therefore A is an IFSOS in X. By hypothesis, spcl(f(A)) \subseteq f(cl(A)) = f(A) \subseteq spcl(f(A)). Hence f(A) is an IFSPCS and hence is an IFGSPCS in Y. Thus f is an IFaGSPCM.

(i) \Rightarrow (iv)Let A be an IFPOS in X. Then A \subseteq int(cl(A)). Since int(cl(A)) is an IFROS in X, by hypothesis, f(int(cl(A))) is an IFGSPOS in Y. Since Y is an IFSPT1/2space, f(int(cl(A))) is an IFSPOS in Y. Therefore f(A) \subseteq f(int(cl(A))) \subseteq spint(f(int(cl(A)))).

(iv) \Rightarrow (i) Let A be an IFROS in X. Then A is an IFPOS in X. By hypothesis, $f(A) _$ spint(f(int(cl(A)))) =spint($f(A)) _$ f(A). This implies f(A) is an IFSPOS in Y and hence is an IFGSPOS in Y. Therefore f is an IFaGSPCM.

Theorem 3.19:Let f: $X \rightarrow Y$ be a mapping. Then f is an IFaGSPCM if for each IFP $c(\alpha, \beta) \in Y$ and for each IFSPOS B in X such that f-1($c(\alpha, \beta)$) \in B, spcl(f(B)) is an IFSN of $c(\alpha, \beta) \in Y$.

Proof:Let $c(\alpha, \beta) \in Y$ and let A be an IFROS in X. Then A is an IFSPOS in X. By hypothesis $f^{-1}(c(\alpha, \beta)) \in A$, that is $c(\alpha, \beta) \in f(A)$ in Y and spcl((f(A)) is an IFSN of $c(\alpha, \beta)$ in Y. Therefore there exists an IFSPOS B in Y such that $c(\alpha, \beta)$) $\in B \subseteq spcl(f(A))$. We have $c(\alpha, \beta) \in f(A) \subseteq spcl(f(A))$. Now B $= \cup \{ c(\alpha, \beta) / c(\alpha, \beta) \in B \} = f(A)$. Therefore f(A) is an IFSPOS in Y and hence an IFGSPOS in Y. Thus f is an IFaGSPOM. Hence by Theorem 3.16 f is an IFaGSPCM.

Theorem 3.20: Let f: $X \rightarrow Y$ be a mapping. If f is an IFaGSPCM, then gspcl(f(A) \subseteq f(cl(A)) for every IFSPOS A in X.

Proof:Let A be an IFSPOS in X. Then cl(A) is an IFRCS in X. By hypothesis f(cl(A)) is an IFGSPCS in Y. Then gspcl(f(cl(A)) = f(cl(A)). Now $gspcl(f(A)) \subseteq gspcl(f(cl(A)))$ f(cl(A)). That is $gspcl(f(A) \subseteq f(cl(A))$.

Corollary 3.21:Let f: $X \rightarrow Y$ be a mapping. If f is an IFaGSPCM, then gspcl(f(A) \subseteq f(cl(A)) for every IFSOS A in X.

Proof:Since every IFSOS is an IFSPOS, the proof directly follows from the Theorem 3.20.

Corollary 3.22:Let f: $X \rightarrow Y$ be a mapping. If f is an IFaGSPCM, then gspcl(f(A) \subseteq f cl(A)) for every IFPOS A in X.

Proof:Since every IFPOS is an IFSPOS, the proof directly follows from the Theorem 3.20.

Theorem 3.23:Let f: $X \rightarrow Y$ be a mapping. If f is an IFaGSPCM, then gspcl(f(A)) \subseteq

f(cl(spint(A))) for every IFSPOS A in X.

Proof:Let A be an IFSPOS in X. Then cl(A) is an IFRCS in X. By hypothesis, f(cl(A)) is an IFGSPCS in Y. Then $gspcl(f(A)) \subseteq gspcl(f(cl(A))) = f(cl(A)) \subseteq f(cl(spint(A)))$, since spint(A) = A.

Corollary 3.24:Let f: $X \rightarrow Y$ be a mapping. If f is an IFaGSPCM, then gspcl(f(A)) \subseteq f(cl(spint(A))) for every IFSOS A in X.

Proof:Since every IFSOS is an IFSPOS, the proof directly follows from the Theorem 3.23.

Corollary 3.25:Let f: $X \rightarrow Y$ be a mapping. If f is an IFaGSPCM, then gspcl(f(cl(A))) \subseteq f(cl(spint(A))) for every IFPOS A in X.

Proof:Since every IFPOS is an IFSPOS, the proof directly follows from the Theorem 3.23.

Theorem 3.26:Let f: X \rightarrow Y be a mapping. If f(spint(B)) \subseteq spint(f(B)) for every IFS B

in X, then f is an IFaGSPOM.

Proof:Let B \subseteq X be an IFROS. By hypothesis, f(spint(B)) \subseteq spint(f(B)). Since B is an IFROS, it is an IFSPOS in X. Therefore spint(B) = B. Hence f(B) = f(spint(B)) \subseteq spint(f(B)) \subseteq f(B). This implies f(B) is an IFSPOS and hence an IFGSPOS in Y. Thus f is an IFaGSPOM.

Theorem 3.27:Let f: $X \rightarrow Y$ be a mapping. If $spcl(f(B)) \subseteq f(spcl(B))$ for every IFS B in X, then f is an IFaGSPCM.

Proof:Let B \subseteq X be an IFRCS. By hypothesis, spcl(f(B)) \subseteq f(spcl(B)). Since B is an IFRCS, it is an IFSPCS in X. Therefore spcl(B) = B. Hence f(B) = f(spcl(B)) \supseteq spcl(f(B)) \supseteq f(B). This implies f(B) is an IFSPCS and hence an IFGSPCS in Y. Thus f is an IFaGSPCM.

Theorem 3.28:Let f: $X \rightarrow Y$ be a mapping where Y is an IFSPT_{1/2}space. Then the following are equivalent.

(i)f is an IFaGSPOM

(ii)for each IFP $c(\alpha, \beta)$ in Y and each IFROS B in X such that $f^{1}(c(\alpha, \beta)) \in B$, cl(f(cl(B))) is an IFSN of $c(\alpha, \beta)$ in Y.

Proof:(i) \Rightarrow (ii) Let $c(\alpha, \beta) \in Y$ and let B be an IFROS in X such that $f^1(c(\alpha, \beta)) \in B$. That is $c(\alpha, \beta) \in f(B)$. By hypothesis, f(B) is an IFGSPOS in Y. Since Y is an IFSPT_{1/2} space, f(B) is an IFSPOS in Y. Now $c(\alpha, \beta) \in f(B) \subseteq f(cl(B))$ $\subseteq cl(f(cl(B)))$. Hence cl(f(cl(B))) is an IFSN of $c(\alpha, \beta)$ in Y.

(ii) \Rightarrow (i)Let B be an IFROS in X. Then $f^1(c(\alpha, \beta)) \in B$. This implies $c(\alpha, \beta) \in f(B)$. By hypothesis, cl(f(cl(B))) is an IFSN of $c(\alpha, \beta)$. Therefore there exists an IFSPOS A in Y such that $c(\alpha, \beta) \in A \subseteq cl(f(cl(B)))$. Now $A = \cup \{ c(\alpha, \beta) / c(\alpha, \beta) \in A \} = f(B)$. Thereforef(B) is an IFSPOS and hence an IFGSPOS in Y. Thus f is an IFaGSPOM.

Volume 78 – No.2, September 2013

Theorem 3.29:The following are equivalent for a mapping f: $X \rightarrow Y$ where Y is an IFSPT_{1/2}space.

(i)f is an IFaGSPCM

(ii)spcl(f(A)) \subseteq f(α cl(A)) for every IFSPOS A in X

(iii)spcl(f(A)) \subseteq f(α cl(A)) for every IFSOS A in X

 $(iv)f(A) \subseteq spint(f(scl(A)))$ for every IFPOS A in X.

Proof:(i) \Rightarrow (ii) Let A be an IFSPOS in X. Then cl(A) is an IFRCS in X. By hypothesis f(A) is an IFGSPCS in Y and hence is an IFSPCS in Y, since Y is an IFSPT_{1/2}space. This implies spcl(f(cl(A))) = f(cl(A)). Now spcl(f(A)) \subseteq spcl(f(cl(A))) = f(cl(A)). Since cl(A) is an IFRCS, cl(int(cl(A))) = cl(A). Therefore spcl(f(A)) \subseteq f(cl(A)) = (cl(int(cl(A)))) \subseteq f(A \cup cl(int(cl(A)))) \subseteq f(α cl(A)). Hence spcl(f(A)) \subseteq f(α cl(A)).

(ii) \Rightarrow (iii) Let A be an IFSOS in X. Since every IFSOS is an IFSPOS, the proof is obvious.

(iii) \Rightarrow (i) Let A be an IFRCS in X. Then A = cl(int(A)). Therefore A is an IFSOS in X. By hypothesis, spcl(f(A)) \subseteq f(α cl(A)) \subseteq f(cl(A)) = f(A) \subseteq spcl(f(A)). That is spcl(f(A)) = f(A). Hence f(A) is an IFSPCS and hence is an IFGSPCS in Y. Thus f is an IFaGSPCM.

(i) \Rightarrow (iv) Let A be an IFPOS in X. Then A \subseteq int(cl(A)). Since int(cl(A)) is an IFROS in X, by hypothesis, f(int(cl(A))) is an IFGSPOS in Y. Since Y is an IFSPT_{1/2}space,

 $\begin{array}{ll} f(\text{int}(\text{cl}(A))) \text{ is an IFSPOS in Y. Therefore } f(A) \subseteq f(\text{int}(\text{cl}(A))) \\ \subseteq \text{spint}(f(\text{int}(\text{cl}(A)))) &= \text{spint}(f(A \cup \text{int}(\text{cl}(A)))) \\ = \text{spint}(f(\text{scl}(A))). \text{ That is } f(A) \subseteq \text{spint}(f(\text{scl}(A))). \end{array}$

(iv) \Rightarrow (i) Let A be an IFROS in X. Then A is an IFPOS in X. By hypothesis, f(A) $_$ spint(f(scl(A))). This implies f(A) $_$ spint(f(A \cup int(cl(A)))) $_$ spint(f(A \cup A)) = spint(f(A)) $_$ f(A). Therefore f(A) is an IFSPOS in Y and hence an IFGSPOS in Y. Thus f is an IFaGSPCM, by Theorem 3.16.

Theorem 3.30:Let f: X \rightarrow Y be a mapping where Y is an IFSPT_{1/2}space. If f is an IFaGSPCM, then int(cl(int(f(B)))) \subseteq f(spcl(B)) for every IFRCS B in X.

Proof:Let B \subseteq X be an IFRCS. By hypothesis, f(B) is an IFGSPCS in Y. Since Y is an IFSPT1/2space, f(B) is an IFSPCS in Y. Therefore spcl(f(B)) = f(B). Now int(cl(int(f(B)))) \subseteq f(B) \cup int(cl(int(f(B)))) = spcl(f(B)) = f(B) = f(spcl(B)). Hence int(cl(int(f(B)))) \subseteq f(spcl(B)).

Theorem 3.31:Let f: $X \rightarrow Y$ be a mapping where Y is an IFSPT1/2space. If f is an IFaGSPCM, then f(spint(B)) \subseteq cl(int(cl(f(B)))) for every IFROS B in X.

Proof:This theorem can be easily proved by taking complement in Theorem3.30.

Next we provide the characterization theorem for an IFaGSPOM.

Theorem 3.32:Let f: $X \rightarrow Y$ be a bijective mapping. Then the following are equivalent.

(i)f is an IFaGSPOM

(ii)f is an IFaGSPCM

(iii)f-1is an IFaGSP continuous mapping.

Proof:(i) \Leftrightarrow (ii) is obvious from the Theorem 3.16.

(ii) \Rightarrow (iii) Let A \subseteq X be an IFRCS. Then by hypothesis, f(A) is an IFGSPCS in Y. That is $(f^{1})^{-1}(A)$ is an IFGSPCS in Y. This implies f^{1} is an IFaGSP continuous mapping.

(iii) \Rightarrow (ii)Let A \subseteq X be an IFRCS.Then by hypothesis (f⁻¹)⁻¹(A) is an IFGSPCS in Y. That is f(A) is an IFGSPCS in Y. Hence f is an IFaGSPCM.

4. **REFERENCES**

- [1] Atanassov, K.,Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 1986, 87-96.
- [2] Chang, C., Fuzzy topological spaces, J. Math. Anal. Appl., 1968, 182-190.
- [3] Coker, D., An introduction to intuitionistic fuzzy topological space, Fuzzy sets and systems, 1997, 81-89.
- [4] Gurcay, H., Coker, D., and Haydar, Es. A., On fuzzy continuity in intuitionistic fuzzy topological spaces, The J.fuzzy mathematics, 1997, 365-378.
- [5] Joung Kon Jeon, Young Bae Jun, and Jin Han Park, Intuitionistic fuzzyalpha-continuity and intuitionistic fuzzy pre continuity, International Journal of Mathematics and Mathematical Sciences, 2005, 3091-3101.
- [6] Santhi, R. and Jayanthi, D., Intuitionistic fuzzy generalized semi-pre closed mappings(Submitted)
- [7] Santhi, R. and Jayanthi, D., Intuitionistic fuzzy generalized semi-pre closed set(Accepted by Tripura Mathematical Society, Tripura)
- [8] Santhi, R. and Jayanthi, D., Intuitionistic fuzzy generalized semi-pre continuous mappings(Accepted by The International journal of contemporary Mathematical\\ Sciences, Bulgaria)
- [9] Santhi, R. and Jayanthi, D., Intuitionistic fuzzy almost generalized semi-pre continuous mappings(Submitted)
- [10] Seok Jong Lee and Eun Pyo Lee, The category of intuitionistic fuzzy topological spaces, Bull. Korean Math. Soc. 2000, 63-76.
- [11] Thakur, S. S and Rekha Chaturvedi, Regular generalized closed sets in intuitionistic fuzzy topological spaces, Universitatea Din Bacau, Studii Si Cercetari Stiintifice, Seria: Matematica, 2006, 257-272.
- [12] Young Bae Jun and Seok- Zun Song, Intuitionistic fuzzy semi-pre opensets and Intuitionistic semi-pre continuous mappings, jour. of Appl. Math & computing, 2005, 467-474.
- [13] Zadeh, L. A., Fuzzy sets, Information and control, 1965, 338-35