
International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.16, September 2013

38

True Random Number Generator using Fish Tank Image

Rajat Katyal

University of Pune
S.C.O.E. – Dept. of I.T.

Vadgaon (Bk), Pune-41, India

Ankit Mishra
University of Pune

S.K.N.C.O.E. – Dept. of I.T.
Vadgaon (Bk), Pune-41, India

Adarsh Baluni
University of Pune

S.K.N.C.O.E. – Dept. of I.T.
Vadgaon (Bk), Pune-41, India

ABSTRACT

A Pseudo Random Number Generator (PRNG) uses a

deterministic system and an initial seed to generate random

numbers. In order for the output sequence to be truly random,

a truly random input seed is used. Most True Random

Number Generators (TRNG), use noise in the form nuclear

decay, atmospheric noise, electrical noise or Brownian motion

as their initial seed.

In order to reduce the computational complexity, we use a

simple setup of a fish tank as the variable environment,

capturing its images over time. The image data is then applied

to a reduction algorithm and hash function to generate the

initial seed. We propose a cost efficient method of extracting

the true seed from the image data and applying it to a pseudo

random generator, a Linear Congruential Generator (LCG) in

our case to give true random numbers.

General Terms

PRNG, TRNG, LCG

Keywords

True random number generator, Image data

1. INTRODUCTION
Random numbers are the numbers that are part of a sequence

in which values are uniformly distributed over a definite set

and any future value cannot be reliably predicted based on the

existing set of values. The sequence is produced by what is

usually called as a random number generator. There are two

types of random number generators: pseudo - random number

generator and true random number generator. A pseudo -

random number generator uses a deterministic algorithm

which produces random numbers based on some initial value

known as seed. Most random number sources actually utilize

a pseudo-random generator. Since the output is purely a

function of the seed data, the actual entropy of the output can

never exceed the entropy of the seed [2].In certain real world

secure systems the quality of random numbers is of

paramount importance. For such applications it is not

recommendable to use PRNGs as they use a deterministic

algorithm. The output for such PRNGs are same for a

particular seed, hence it is obvious that they cannot be secure

if the seed is predictable in any which way.

 TRNGs however use physical phenomena that are

unpredictable in nature to generate true random numbers. The

physical phenomena that are currently used are radioactive

decay, atmospheric noise, nuclear decay, Brownian motion,

clock drifts etc [9]. These results are then applied to

cryptographic hash function for obtaining uniformly

distributed outputs. Unfortunately one does not find these

methods as peripherals for the modern day PC’s making them

very difficult to implement.

We have used a simple fish-tank setup as the variable

environment and capturing its images over time as the initial

seed. A different image is used every time to generate a set of

random numbers. The image data provides the initial seed

which is extracted using a reduce algorithm and hashing. This

truly random seed is then fed to a pseudo random algorithm, a

linear congruential generator in our case, to give a set of

random numbers.

2. NEED
Random numbers are required in a lot of areas. Games,

statistical sampling, Monte Carlo method simulation,

gambling and lottery, sort and hash algorithms are a few of

the fields that utilize the element of randomness.

The extensive utility of random numbers lies in the real -

world security systems for exchange of classified data.

Cryptography uses random numbers to a great extent for

example while generating encryption key pairs and digital

signatures requiring a high degree of randomness [10].

3. GENERATION

3.1 Existing Methodologies
The Hardware random number generators use different

sources of entropy to calculate the initial seed values. These

generally require complex hardware setups. Some of the

commonly used methods are:

 Radioactive material decay time

 Atmospheric Noise

 Electrical noise from resistors or semiconductors

A similar approach to ours is to use a randomness extractor

such as cryptographic hash function against certain non-

uniformly random source.

This technique had been used by the Lavarnd generator that

took images of the patterns of floating point materials in a

lava lamp, extracting the seed and feeding it to a pseudo

random number generator.

3.2 Our Approach
We have used a fish tank setup having over 20 live fishes as

our variable environment source. Clicking its images over

time we get the random and unpredictable image data. The

image data is then applied to a reduce algorithm and hashing

to generate a true and unpredictable seed.

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.16, September 2013

39

This seed is fed to a pseudo random algorithm similar to that

of a linear congruential algorithm in order to generate truly

random numbers [14].

We have used the GIF image format having 640x480 pixels,

in order to reduce the computational time and complexity.

Two image samples are shown below along with their true

seed values.

3.3 Samples

Fig 1: Sample Image A

Fig 2: Image Sample B

In order to generate the different set of random numbers, we

use a different image samples. For the shown image samples,

the generated true initial seeds were:

Image A: 16338

Image B: 3453

Fig 3: Sample set of 50 possitive random numbers

A small sample set of 50 random numbers produced using our

generator is shown in Fig 3. The sample has a range of 0 -

32768. The figure illustrates the randomness of the generated

numbers.

3.4 FLOWCHART

Fig 4: Flowchart of True Random Number Generator

4. TESTING
There are a wide variety of testing methods available that are

carried out to check the quality of generated random numbers.

These are typically applied to a PRNG for its quality check or

any new type of random number generator [11].

Since we utilize an already proven pseudo random algorithm,

a linear congruential generator, we did a quality test for our

chosen variables and the initial seed. The observed pattern

showed a high quality of randomness.

0

5000

10000

15000

20000

25000

30000

35000

0 20 40 60

Series1

IMAGE DATA

INITIAL SEED

RANDOM

NUMBERS

REDUCE ALGORITHM

AND HASHING

PSEUDO RANDOM

GENERATOR

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.16, September 2013

40

A single type of test cannot determine the quality of

randomness. Also in a few tests, a vague pattern of result can

actually mean higher quality of randomness as it is basically a

factor of unpredictability.

A Runs Test carried out on 80 numbers (below Table 1) yields

the following result. Such a test alone cannot be a quality

testing factor for randomness, but is one of the essential tests.

Some other known testing methods are are frequency test,

serial test, poker test and gap test.

Table 1: Runs Test carried on a sample of 80 numbers

7053 7716 1270 6327 3041

5846 3780 3705 444 6035

4682 6603 5612 8623 893

4319 8631 4384 980 4195

1618 5393 3641 7440 7430

7954 2538 5232 4324 5356

1919 320 8676 1102 2864

4830 5704 749 1773 3347

7545 8503 914 3770 1524

2219 4633 3774 7635 1939

63 2391 5476 1662 2766

2541 3267 7942 1667 8222

5249 1920 8396 1151 5693

1683 6473 3452 270 6502

1246 4585 290 2133 8577

7928 2106 69 7192 3981

Sample Set 80

Number of Runs(R) 50

P- Value 0.02107

Conclusion Moderate evidence

against Sequential

Randomness

5. RESULT AND CONCLUSION
The random number generator is truly random as the seed

value used is taken from an unpredictable source. Hence it

completely avoids the possibility of determinism which is a

risk factor in pseudo random number generators.

The generator yields truly random numbers up to 16 bits or

65536 with a high degree of randomness. The random number

generation can be divided mainly into two phases: Image to

seed conversion and Pseudo random generation.

It is also much easier to implement as compared to other

hardware random number generators which use radioactive

decay, atmospheric noise, electrical noise, etc. and require a

much complex hardware setup to generate randomness. The

TRNG using fish tank image data is a cost efficient alternative

to generate truly random numbers.

6. LIMITATIONS AND FUTURE SCOPE
1. Image processing time period

Although the pseudo random processing time is comparable to

any good PRNG but it involves an additional overhead of

image processing time which makes it slightly slower.

The Future Scope of the True Random Number Generator is

to reduce the overall processing time. This can be done by

using a camera to generate the hexadecimal image data and

using it directly, thereby reduce the GIF image conversion

overhead.

2. Output range: 16bit

The 16bit range (0-65536) of random numbers can be

increased by using a bigger sized compiler and micro-

processor, while maintaining the high degree of randomness.

7. ACKNOWLEDGMENTS
Our thanks to P.Hellekalek and everybody that has

contributed in generating good quality random numbers. Also

special thanks to our friend Tejaswi Bhutada.

8. REFERENCES
[1] P. Hellekalek, Good random number generators are (not

so) easy to find, Mathematics and Computers in
Simulation 46 (1998) 485-505.

[2] Benjamin Jun and Paul Kocher, P. 1999 The Intel

Random Number Generator. Technical Report.
University of Maryland at College Park.

[3] N. K Pareek, V. Patidar, K. K Sud, A Rndom Bit

Generator Using Chaotic Maps, International Journal of

Network Security, Vol. 10, no. 1, pp. 32-38, 2010.

[4] Tang, H.C., “An Analysis of Linear Congruential

Random Number Generators when Multiplier

Restrictions Exist,” European Journal of Operational
Research, Vol. 182, pp. 820828 (2007).

[5] Hedayatpour, S., Chuprat, Suriayati, Hash functions-

based random number generator with image data source,

Open Systems (ICOS), 2011 IEEE.

[6] Xuan Li, Guoji Zhang, Yuliang Liao, Chaos-based true
random number generator using image

[7] P. Murali and R.Palraj, True Random Number Generator
Based on Image for Key Exchange program.

[8] Xuan Li; Guoji Zhang; Yuliang Liao, "Chaos-based true

random number generator using image," Computer

Science and Service System (CSSS), 2011 International

Conference on , vol., no., pp.2145,2147, 27-29 June 2011
doi: 10.1109/CSSS.2011.5974933

[9] Matsumoto, M. and T. Nishimura. "Mersenne Twister: A

623-Dimensionally Equidistributed Uniform

Pseudorandom Number Generator." ACM Transactions

on Modeling and Computer Simulation 8, no. 1 (1998):
3|30.

[10] Volos, C.K.; Kyprianidis, I. M.; Stouboulos, I. N.,

"Image encryption process based on a chaotic True

Random Bit Generator," Digital Signal Processing, 2009

16th International Conference on , vol., no., pp.1,4, 5-7

July 2009 doi: 10.1109/ICDSP.2009.5201107

[11] Gentle, J. E. Random Number Generation and Monte
Carlo Methods, (2nd Ed.) SpringerVerlag, 2003.

[12] Geman, S. and D. Geman. "Stochastic Relaxation, Gibbs
Distributions, and the Bayesian

[13] Restoration of Images." IEEE Transactions on Pattern

Analysis and Machine Intelligence 6, no. 6 (1984):
721|741

[14] Junod, P. "Cryptographic Secure Pseudo-Random Bits

Generation: The Blum|Blum|Shub Generator." August
1999.http://crypto.junod.info/bbs.pdf

IJCATM : www.ijcaonline.org

