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ABSTRACT 

Distributed arithmetic (DA)-based computation is well known 

for efficient memory-based implementation of Finite impulse 

response (FIR) filter where the filter outputs are computed as 

inner-product of input-sample vectors and filter-coefficient 

vector. In this paper, we show that the LUT multiplier based 

approach in which the memory elements store all the possible 

values of product of filter co-efficient will be the efficient in 

terms of area with the same throughput in comparison of DA. 

We present two new approaches to LUT-based multiplication, 

which could be used to reduce the memory size to half of the 

conventional LUT-based multiplication. The proposed method 

in this paper have half memory required than the existing DA 

method .The DA and the proposed LUT method are simulated 

and synthesized using the Xilinx tool and the memory 

required by the proposed LUT is nearly 50% lesser than the 

DA.  
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1. INTRODUCTION 
Filters are widely used in many applications of signal 

processing, the FIR digital filters are advantageous for signal 

processing and image processing applications[1] in the 

present criteria .The transition between a pass band and 

adjacent stop band is determined by the order of the filter .If 

the filter order is higher ,then there is sharper transition 

between pass-band and adjacent stop-band and vice-versa for 

the lower order filter .Many applications in digital signal 

processing require higher order filters[2][3] .Some of the 

applications involving higher order filters are frequency 

channelization, channel equalization, speech processing and 

noise elimination. The filters used in mobile systems must be 

of higher tap and should consume low power with high speed. 

As the order of the filter increases, the complexity and time 

consumption increases exponentially. 

Now-a-days, the semiconductor industry has tremendous 

growth. The semiconductor memories have become cheaper, 

power efficient and faster. According to the requirements in 

different applications the memory technology has been used 

widely. The memories used in different applications have 

different uses like high reliability for biomedical instruments, 

low power memories for consumer products and high speed 

memories for multimedia applications. These memories have 

to be moved to processors or processors have to be moved to 

memory in order to minimize the bandwidth, power 

dissipation and access delay. The memory elements like RAM 

or ROM have been used either as a complete arithmetic circuit 

or a part of that for various applications [5]. Memory based 

elements are more regular when compared with the multiply-

accumulate structures and have greater potential for higher 

throughput and reduced latency. Since the memory access 

time is shorter than the multiplication time in conventional 

multipliers, these have less dynamic power dissipation due to 

less switching operations. Memory based structures are 

suitable for digital signal processing (DSP) algorithms, which 

involves multiplication with a fixed set of coefficients. 
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Fig 1: Conventional Memory–Based Multiplier 

There are two basic types of memory based techniques. One 

of them is on distributed arithmetic (DA) and the other is on 

computation of multiplication by look-up-tables [9].The 

distributed arithmetic (DA) consists of inner product 

computation [6]-[9].In this approach, an LUT is used to store 

all possible values of inner products of a fixed N-point bit 

vector and this increases as the word length of input values 

increases. In LUT multiplier based approach, the 

multiplications of input values with a fixed –coefficient are 

performed by an LUT consisting of all possible pre-computed 

product values. Various algorithms have been implemented 

for efficient LUT multiplier based implementation [9], but we 

do not find any further way to improve the efficiency. In this 

paper, we aim at presenting the new approach for designing 

LUT multiplier based implementation where the memory size 

is reduced to half of the conventional approach.  

The Conventional memory based multiplier is shown in Fig.1. 

It consists of Address port, Output port, and LUT of 2
L

words. The input is X with L-bits and the output is (W+L) 

bits. The principle of memory-based multiplication is shown 

in Fig 1.Let A be a fixed coefficient and X be an input word 

to be multiplied with A. If X is an unsigned binary number of 

word-length L, there can be 2
L

possible values of X. 

Similarly, there can be possible values of product 

C=A.X. Therefore, for Conventional implementation of 

memory-based multiplication, a memory unit of 2
L

 words is 

to be required, which can be used as look-up-table consisting 

of pre-computed product values corresponding to all possible 

values of X. The product-word (A.
i

X ), for 0 2 1
i

L
X

 

   , is 

stored at the memory location whose address is same as the 

binary value of Xi, , such that if L-bit binary value of Xi is used 

as address for the memory-unit, then the corresponding 

product value is read-out from the memory. 
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The even multiples 2A, 4A and 8A are derived by left-shift 

operations of A. Similarly, 6A and 12A are derived by left-

shifting 3A, while 10A and 14A are derived by left-shifting 5A 

and 7A, respectively. The address X= (0000) corresponds to 

(A .X) =0, which can be obtained by resetting the LUT output. 

For an input multiplicand of word-size L, only (2L/2) odd 

multiple values need to be stored in the memory-core of the 

LUT, whereas, the other (2L/2-1) non-zero values could be 

derived by left-shift operations of the stored values. Based on 

the above, an LUT for the multiplication of an L-bit input 

with W-bit coefficient is designed by following strategy: 

 A memory-unit of (2L/2) words of (W + L)-bit width 

is used to store all the odd multiples of A. 

 A barrel-shifter for producing a maximum of (L-1) 

left-shifts is used to derive all the even multiples of A. 

 The L-bit input word is mapped to (L-1)-bit LUT-

address by an encoder. 

 The L-bit input word is mapped to (L-1)-bit LUT-

address by an encoder. 

 The control-bits for the barrel-shifter are derived by 

a control-circuit to perform the necessary shifts of the LUT 

output. Besides, a RESET signal is generated by the same 

control circuit to reset the LUT output when X=0. 

 

The 2
L

possible values of X corresponds to 2
L

 possible 

values of C=A.X. The ( 2
L

/2) words corresponding to the odd 

multiples of A may only be stored in the LUT [9].One of the 

possible product words is zero, while all the rest ( 2
L

/2)-1 are 

even multiples of A which could be derived from left-shift 

operations of one of the odd multiples of A. We illustrate this 

in Table I for L=4.  At eight memory locations, eight odd 

multiples A x (2i + 1) are stored as pi for i=0, 1, 2….7. 

 

Table 1: LUT words and product values for input word 

length L=4 

Input

x3x2x1x0

Address

d2d1d0

Word 

symbol

# of 

shifts

Product

value

Stored 

value

Control

S1   S0

0  0

0  1

1  0

1  1

0  0

0  1

1  0

0  0

0  1

0  0

0  1

0

1
2

3

1

2

A

2 1 x A

2 2 x A

2 3 x A

A0 0 0 P0

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0 0 1 1

0 1 1 0

1 1 0 0

0 1 0 1

1 0 1 0

0 1 1 1

1 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

2 0 x 3A

1

1

0

0

0

0

0

0

0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

P1

P2

P3

P4

P5

P6

P7

3A

5A

7A

9A
11A

13A

15A

2 1 x 3A

2 2 x 3 A

2 0 x 5A

2 1 x 5A

2 0 x 7A

2 1 x 7A

9A

11A

13A

15A

0  0

0  0

0  0

0  0
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Fig 2: Proposed LUT design for multiplication of W-bit fixed coefficient 
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2. THE PROPOSED LUT DESIGN 

APPROACH FOR MEMORY BASED 

MULTIPLICATION 
The proposed LUT design is shown in the following Fig 

2.Each block in the Fig 2 is again shown in detail the internal 

circuit in the Fig 3 to Fig 6.  
x3 x2 x1 x0

d0

d1

d2  

Fig 3: 4-to-3 bits input encoder 
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Fig 5: Structure of NOR cell 
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Fig 6: Two-stage logarithmic barrel-shifter for W=4 

The proposed LUT based multiplier for input word-size L=4 

is shown in Fig 2.It consists of 4-to-3 bit address encoder, 3-

to-8 line address decoder, a memory array of eight words of 

(W+4) bit-width, NOR cell, control circuit and a barrel shifter. 

The 4-to-3 bit input encoder is shown in Fig 3. It receives 4 

bit input word 3 2 1 0 )x x x x  and maps that into three bit 

address word 2 1 0( )d d d , according to the logic relations 

given below. 

0 0 1 1 2 0 2 3

1 0 2 0 1 3

2 0 3

( . ).( . ).( ( . )) (1 )

( . ).( ( . )) (1 )

. (1 )

d x x x x x x x a

d x x x x x b

d x x c

  

  

 

 

These three bit address inputs are given to a decoder and it 

generates 8 word select signals to select the referenced-word 

from the memory array. The output of the memory array is 

either AX or its sub multiple in bit-inverted form depending on 

the value of X. From table I, we find that the LUT output is to 

be shifted to one location left when the input operand X is one 

of the values {(0010),(0110),(1010),(1110)}.Two left shifts 

are required if X is either (0100) or (1100).Only when input 

word X=(1000), three shifts are required. Since the maximum 

number of shifts required on the stored–word is three, a two-

stage logarithmic barrel-shifter is adequate to perform the 

necessary left-shift operations. The number of shifts required 

to be performed on output of LUT depends on the control bits 

s0 and s1 for different values of X are shown in Table I. The 

control circuit generates the control bits by 

0 0 1 2

1 0 1 (2 )

( )

( )

a

b

s x x x

s x x

    

  
 

Depending on the control bits the number of shifts is decided 

and implemented by the barrel shifter. A logarithmic barrel 

shifter of W=L=4 is shown in the Fig 6. It consists of two 

stages of 2-to-1 line bit level multiplexors with inverted 

output, where each of the two stages involves (W+4) number 

of 2-input AND-OR-INVERT(AOI) gates. The control bits 

0 00
(s , s )  and 

1 1
(s , s )  are fed to AOI gates of stage-1 and 

stage-2 of barrel shifter. Since each stage of the AOI gates 

perform inverted multiplexing, outputs with desired number 

of shifts are produces in un-inverted form. 

The input X= (0000) corresponds to multiplication by X=0 

which results in product value A.X=0.So, the output of the 

LUT is to be reset when the input operand word X= (0000). 

The reset function is not implemented by a NOR-cell 

consisting of (W+ 4) NOR gates as shown in Fig 6. The inputs 

for the NOR gates are the RESET bit and (W+4) bits of LUT 

output in parallel. When X= (0000), the control bits generates 

active-high RESET according to the logical expression: 

0 1 2 3 3( ).( ) ( )RESET x x x x     

When RESET=1, the outputs of all NOR gates become 0, so 

that the barrel shifter is fed with (W+4) number of zeros. 

When RESET=0, the outputs of all NOR gates become 

complement of the LUT output bits. The RESET function can 

be implanted by an array of 2 input AND gates, but the 

implementation of reset by NOR-cell is preferable since the 

NOR gates have simpler CMOS implementation compared 

with AND gates. Moreover, instead of using a separate NOR-

cell, the NOR gates could be integrated with memory array if 

the LUT is implemented by ROM [9] [10] 

2.1 Proposed 8-bit LUT Multiplier 
The proposed 8-bit LUT multiplier is same as 4-bit LUT 

multiplier, but the difference is the usage of dual port memory 

array. Instead of using dual port memory array, we can use 

two single port memory arrays, but the dual port memory 

array is more efficient. The proposed 8 bit LUT multiplier is 

shown in following Fig 7. 
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Fig 7: Memory based multiplier using dual port memory array.

The multiplication of 8–bit input with a W-bit fixed 

coefficient can be performed through a pair of multiplications 

using a dual-port memory of 8 words and pair of encoders, 

decoders, NOR cells and barrel shifter as shown in Fig 7.The 

shift-adder performs left shift operation of the output of barrel 

shifter corresponding to more significant half of input by four 

bit-locations, and adds that to the output of the other barrel-

shifter. 

3. MEMORY-BASED FIR FILTERS 

USING DIFFERENT METHODS. 
In this section ,we are going to show the three different 

methods of memory-based FIR filters .In each method, 

different approach have been taken. 

3.1 Memory based FIR filters using 

conventional LUT  
The structure of N-tap FIR filters for input word length L=8 

are shown in Fig 8. It consists of N memory units for 

conventional based multiplication, along with (N-1) add-

subtract (AS) cells and a delay register. During each cycle, all 

the 8 bits of current input sample x(n) are fed to all the LUT-

multipliers in parallel as pair of 4-bit addresses X1 and X2.The 

structure of the LUT multiplier is shown in Fig 8. It consists 

of a dual port memory unit of size [16 x (W +4)] and a shift–

add cell.  

The SA cell shifts its right input to left by four bit locations 

and adds the shifted value with its other input to produce a (W 

+ 8)-bit output. The shift operation in the shift–add cells is 

hardwired with the adders, so that no additional adders are 

required. The outputs of the multipliers are given to the 

pipeline of AS cells in parallel. It consists of either adder or 

subtract or depending on the corresponding filter weight is 

positive or negative. The FIR filter structure of Fig .7, takes 

one input sample in each cycle, and produces one filter output 

in each cycle. The first filter output is obtained after a latency 

of three cycles (one cycle each for memory output, the SA cell 

and the last AS cell). But the first (N-1) outputs are not correct 

because they do not contain the contributions of all the filter 

coefficients.  

 

Fig 8: Conventional LUT-multiplier based structure of an 

N-tap FIR filter for input-width length L=8. 

3.2 Memory–based FIR filter using 

proposed LUT design 
As shown in Fig 9, the proposed structure of FIR filter 

consists of a single memory–module, and an array of N shift–

add (SA) cells, (N-1) AS cells and a delay register. The 

structure is same as that of 4-bit proposed LUT model 

consisting of 4-to-3 bit encoder, control circuits and a pair of 

3-to-8 line decoders to generate the necessary control signals 

and word select signals for the dual port memory core. The 8 

bit input sample is divided as 4bit MSB and 4 bit LSB and the 

same process goes on as in 4 bit LUT, but here as a pair of 4 

bit LUT. 
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Fig 9: Structure of N the order FIR filter using proposed LUT-multiplier

 

The memory based structure of proposed LUT differs from 

conventional memory based structure in two design aspects. 

1. The conventional LUT–multiplier is replaced by 

odd multiple storage LUT, so that the multiplication 

by an L-bit word could be implemented by (2L/2)/2 

words in the LUT in a dual port memory. 

2. Since the same pair of address words X1 and X2 is 

used by all the N LUT multipliers in Fig 9, only one 

memory module with N segments could be used 

instead of N modules. If all the multiplications are 

implemented by a single memory module, the 

hardware complexity of 2(N-1) decoder circuits can 

be eliminated. 

 

3.3 DA-based implementation of FIR filter 
In this section, we present the existing method of computation 

in FIR filters which is DA based implementation of FIR filter 

that has the same throughput rate as that of the LUT-

multiplier based structures. Finally we found that the DA-

based FIR filter structure results in minimum area and 

minimum area-delay product for address length 4.In 

Fig.10,we have shown a modified form of the 2-D structure of 

FIR filter presented in[8] is replaced by pipelined adder-tree 

and pipelined-shift-add-tree to reduce the number of latches 

and latency. In each cycle, one 8-bit input sample is fed to the 

word-serial bit-parallel converter, out of which a pair of 

consecutive bits are transferred to each of its four DA-based 

computing sections. The structure of each DA-based section is 

shown in Fig.10.2. The Figure consists of a pair of serial-in 

parallel-out bit-level shift-registers (SIPOSRs), (N/4) memory 

modules of size [16 x (W + 2)], (N/4) shift-add (SA) cells and 

a pipelined shift-adder-tree. 

 

 

 

Fig 10.1: DA-based FIR filter 
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Fig 11: Pipelined shift-add-tree E=log2 N 

The memory module, in each cycle, is fed with a pair of 4-bit 

words at the pair of address-ports. The left address-port 

receives 4-bit words from Serial-in parallel-out shift register-

1(SIPOSR-1), whereas the right address-port receives 4 bits 

from the serial-in parallel-out shift register-2(SIPOSR-2).The 

bits at the right address port are the next significant bits 

corresponding to the bits available at the left address-port. 

According to the pair of 4-bit addresses a pair of (W + 2) bit 

words are read-out from each memory module and fed to the 

SA cell. The SA cell shifts the right-input by one position to 

left and adds that with the left-input to produce a (W + 4)-bit 

output. The outputs of the SA cells are added by pipelined 

shift-add-tree consisting of three adders in two pipelined 

stages (shown in Fig.11). The pair of shift-adders(SA 1) in 

stage-1 shift their lower input to left by two-bit positions and 

add with their upper input, while the shift-adder(SA2) in 

stage-2 shifts the lower input by four-bit positions and adds 

that to the upper input to produce a 
2

( 8 log )W N  -bit 

output. Therefore, the structure consists of N cycles to fill the 

serial-in parallel-out shift registers, one cycle for memory 

access and the one cycle for producing the output of the shift-

add cell,
2

(log 2)N   cycles in the pipelined-adder-tree and 

two cycles at pipelined–shift-adder-tree. The latency for this 

structure is 
2

( log 2)N N  cycles, and it has the same 

throughput of one output per cycle same as that of the LUT-

multiplier-based structures. When the input word-length is 

multiple of 8, such as L=8k (k is integer of any value). The 

DA-based filter could also be implemented by k parallel 

sections where each section is an 8-bit filter identical to one of 

structures in Fig.10. The outputs of all the 8-bit filter sections 

are shift-added in a pipeline shift-add-tree to derive the filter 

outputs. The structure for L=8k would have the same 

throughput of one output per cycle with a latency of 

2 2
( log log 2)N N k   cycles. 

4. RESULTS 

The simulation results of the existing method, conventional 

LUT and proposed LUT are shown in the following Fig.12, 

Fig.13 and Fig.14 respectively. The synthesis reports of both 

conventional LUT and proposed LUT with 8 bit inputs are 

taken as reference and shown in the Fig.15, Fig.16 and Fig.17 

respectively. On comparing both the methods, we can see the 

usage of the memories by individual blocks and the memory 

occupied by the proposed LUT is found to be low in 

comparison of conventional LUT. The synthesis report clearly 

determines the size occupied by the individual blocks and 

their area percentage. The DA method is taken as reference 

and compared with the Conventional LUT method and 

proposed LUT method using synthesis report. The simulation 

and synthesis are done in Xilinx software. In comparison, the 

Conventional LUT occupies 58% of total available resources, 

i.e. the size is reduced 42% of size compared to DA. 

Similarly, the proposed LUT occupies 50%, i.e. the size is 

reduced to 50% when compared to DA. By considering all 

factors, the proposed LUT method saves nearly 20% of 

memory than to DA method. 

 

Fig 32: Simulation result of Distributed arithmetic 

 

Fig 43: Simulation result of Conventional LUT 

 

Fig 54: Simulation result of Proposed LUT design 

Device Utilization summary (estimated values) 

Logic Utilization Used Available Utilization 

Number of Slices 244 960 25% 

Number of 4 input LUTs 387 1920 20% 

Number of bonded IOBs 44 66 66% 

Fig 65: Synthesis report of Distributed Arithmetic 
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Device Utilization summary (estimated values) 

Logic Utilization Used Available Utilization 

Number of Slices 69 960 7% 

Number of slice Flip 

Flops 

48 1920 2% 

Number of 4 input LUTs 127 1920 6% 

Number of bonded IOBs 26 66 39% 

Number of GCLKS 1 24 4% 

Fig 76: Synthesis report of Conventional LUT 

Device Utilization summary (estimated values) 

Logic Utilization Used Available Utilization 

Number of Slices 62 960 6% 

Number of slice Flip 

Flops 

44 1920 2% 

Number of 4 input LUTs 112 1920 5% 

Number of bonded IOBs 22 66 33% 

Number of CLKS  1 24 4% 

Fig 87: Synthesis report of Proposed LUT 

5. CONCLUSION 
The modified LUT based multiplication is implemented to 

reduce the LUT size than that of the conventional LUT 

design. The LUT size is reduced to half by using two stage 

logarithmic barrel shifter and (W+4) number of NOR gates, 

where W is the word-length of the fixed multiplier coefficient. 

Two memory based structures having the unit throughput rate 

are designed for the implementation of the FIR filter. One is 

LUT based multiplier using conventional and the other is 

proposed LUT method. These two structures are found to 

have same cycle-periods, which depend on word-length, 

adders and filter order. The proposed LUT multiplier-based 

designs have half the memory than the conventional LUT 

design at the cost of ~4NW AOI gates and nearly ~2NW NOR 

gates. Therefore, the LUT multiplier based of FIR filter is 

more efficient than conventional in terms of area-complexity 

for a given throughput and low latency. These LUT based-

multipliers can be used for memory based implementations of 

linear and cyclic convolutions, and sinusoidal transforms. The 

performance of memory based structures with different adders 

and memory can be studied in future 
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