
International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.16, September 2013

16

Efficient Method for Look-Up-Table Design in Memory

Based Fir Filters

Md.Zameeruddin
M.Tech, DECS,
Dept. of ECE,

Vardhaman College of Engineering,
Hyderabad, INDIA

Sangeetha Singh
Associate Professor,

Dept. of ECE,
Vardhaman College of Engineering,

Hyderabad, INDIA

ABSTRACT

Distributed arithmetic (DA)-based computation is well known

for efficient memory-based implementation of Finite impulse

response (FIR) filter where the filter outputs are computed as

inner-product of input-sample vectors and filter-coefficient

vector. In this paper, we show that the LUT multiplier based

approach in which the memory elements store all the possible

values of product of filter co-efficient will be the efficient in

terms of area with the same throughput in comparison of DA.

We present two new approaches to LUT-based multiplication,

which could be used to reduce the memory size to half of the

conventional LUT-based multiplication. The proposed method

in this paper have half memory required than the existing DA

method .The DA and the proposed LUT method are simulated

and synthesized using the Xilinx tool and the memory

required by the proposed LUT is nearly 50% lesser than the

DA.

Keywords

Distributed Arithmetic (DA), FIR filter, Look-Up-Table.

1. INTRODUCTION
Filters are widely used in many applications of signal

processing, the FIR digital filters are advantageous for signal

processing and image processing applications[1] in the

present criteria .The transition between a pass band and

adjacent stop band is determined by the order of the filter .If

the filter order is higher ,then there is sharper transition

between pass-band and adjacent stop-band and vice-versa for

the lower order filter .Many applications in digital signal

processing require higher order filters[2][3] .Some of the

applications involving higher order filters are frequency

channelization, channel equalization, speech processing and

noise elimination. The filters used in mobile systems must be

of higher tap and should consume low power with high speed.

As the order of the filter increases, the complexity and time

consumption increases exponentially.

Now-a-days, the semiconductor industry has tremendous

growth. The semiconductor memories have become cheaper,

power efficient and faster. According to the requirements in

different applications the memory technology has been used

widely. The memories used in different applications have

different uses like high reliability for biomedical instruments,

low power memories for consumer products and high speed

memories for multimedia applications. These memories have

to be moved to processors or processors have to be moved to

memory in order to minimize the bandwidth, power

dissipation and access delay. The memory elements like RAM

or ROM have been used either as a complete arithmetic circuit

or a part of that for various applications [5]. Memory based

elements are more regular when compared with the multiply-

accumulate structures and have greater potential for higher

throughput and reduced latency. Since the memory access

time is shorter than the multiplication time in conventional

multipliers, these have less dynamic power dissipation due to

less switching operations. Memory based structures are

suitable for digital signal processing (DSP) algorithms, which

involves multiplication with a fixed set of coefficients.

LUT

(2^L WORDS)

A
D

D
R

E
S

S

 P
O

R
T

O
U

T
P

U
T

P
O

R
T

X AX
(W+L)L

Fig 1: Conventional Memory–Based Multiplier

There are two basic types of memory based techniques. One

of them is on distributed arithmetic (DA) and the other is on

computation of multiplication by look-up-tables [9].The

distributed arithmetic (DA) consists of inner product

computation [6]-[9].In this approach, an LUT is used to store

all possible values of inner products of a fixed N-point bit

vector and this increases as the word length of input values

increases. In LUT multiplier based approach, the

multiplications of input values with a fixed –coefficient are

performed by an LUT consisting of all possible pre-computed

product values. Various algorithms have been implemented

for efficient LUT multiplier based implementation [9], but we

do not find any further way to improve the efficiency. In this

paper, we aim at presenting the new approach for designing

LUT multiplier based implementation where the memory size

is reduced to half of the conventional approach.

The Conventional memory based multiplier is shown in Fig.1.

It consists of Address port, Output port, and LUT of 2
L

words. The input is X with L-bits and the output is (W+L)

bits. The principle of memory-based multiplication is shown

in Fig 1.Let A be a fixed coefficient and X be an input word

to be multiplied with A. If X is an unsigned binary number of

word-length L, there can be 2
L

possible values of X.

Similarly, there can be possible values of product

C=A.X. Therefore, for Conventional implementation of

memory-based multiplication, a memory unit of 2
L

 words is

to be required, which can be used as look-up-table consisting

of pre-computed product values corresponding to all possible

values of X. The product-word (A.
i

X), for 0 2 1
i

L
X

 

   , is

stored at the memory location whose address is same as the

binary value of Xi, , such that if L-bit binary value of Xi is used

as address for the memory-unit, then the corresponding

product value is read-out from the memory.

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.16, September 2013

17

The even multiples 2A, 4A and 8A are derived by left-shift

operations of A. Similarly, 6A and 12A are derived by left-

shifting 3A, while 10A and 14A are derived by left-shifting 5A

and 7A, respectively. The address X= (0000) corresponds to

(A .X) =0, which can be obtained by resetting the LUT output.

For an input multiplicand of word-size L, only (2L/2) odd

multiple values need to be stored in the memory-core of the

LUT, whereas, the other (2L/2-1) non-zero values could be

derived by left-shift operations of the stored values. Based on

the above, an LUT for the multiplication of an L-bit input

with W-bit coefficient is designed by following strategy:

 A memory-unit of (2L/2) words of (W + L)-bit width

is used to store all the odd multiples of A.

 A barrel-shifter for producing a maximum of (L-1)

left-shifts is used to derive all the even multiples of A.

 The L-bit input word is mapped to (L-1)-bit LUT-

address by an encoder.

 The L-bit input word is mapped to (L-1)-bit LUT-

address by an encoder.

 The control-bits for the barrel-shifter are derived by

a control-circuit to perform the necessary shifts of the LUT

output. Besides, a RESET signal is generated by the same

control circuit to reset the LUT output when X=0.

The 2
L

possible values of X corresponds to 2
L

 possible

values of C=A.X. The (2
L

/2) words corresponding to the odd

multiples of A may only be stored in the LUT [9].One of the

possible product words is zero, while all the rest (2
L

/2)-1 are

even multiples of A which could be derived from left-shift

operations of one of the odd multiples of A. We illustrate this

in Table I for L=4. At eight memory locations, eight odd

multiples A x (2i + 1) are stored as pi for i=0, 1, 2….7.

Table 1: LUT words and product values for input word

length L=4

Input

x3x2x1x0

Address

d2d1d0

Word

symbol

of

shifts

Product

value

Stored

value

Control

S1 S0

0 0

0 1

1 0

1 1

0 0

0 1

1 0

0 0

0 1

0 0

0 1

0

1
2

3

1

2

A

2 1 x A

2 2 x A

2 3 x A

A0 0 0 P0

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0 0 1 1

0 1 1 0

1 1 0 0

0 1 0 1

1 0 1 0

0 1 1 1

1 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

2 0 x 3A

1

1

0

0

0

0

0

0

0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

P1

P2

P3

P4

P5

P6

P7

3A

5A

7A

9A
11A

13A

15A

2 1 x 3A

2 2 x 3 A

2 0 x 5A

2 1 x 5A

2 0 x 7A

2 1 x 7A

9A

11A

13A

15A

0 0

0 0

0 0

0 0

4-TO-3

BIT

ADDRESS

ENCODER

3-TO-8

LINE

ADDRESS

DECODER

CONTROL

CIRCUIT

BARREL

SHIFTER

8 X (W+4)

MEMORY ARRAY

x0

x1

x2

x3

d0

 d2

d1

w0

w1

w2

w3

 w5

w6

w7

w4

RESET

S0

S1

(W+4)

(W+4)

OUTPUT, AX

Fig 2: Proposed LUT design for multiplication of W-bit fixed coefficient

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.16, September 2013

18

2. THE PROPOSED LUT DESIGN

APPROACH FOR MEMORY BASED

MULTIPLICATION
The proposed LUT design is shown in the following Fig

2.Each block in the Fig 2 is again shown in detail the internal

circuit in the Fig 3 to Fig 6.
x3 x2 x1 x0

d0

d1

d2

Fig 3: 4-to-3 bits input encoder

S1

RESET

S0

x0x1x2x3

Fig 4: control circuit

TO BARREL SHIFTER

(W + 4) BITS FROM MEMORY ARRAY

RESET

Fig 5: Structure of NOR cell

STAGE-2

AOIAOIAOIAOIAOIAOIAOI AOI

AOIAOIAOIAOIAOI AOI AOIAOI

S0

S1

q7 q6 q5 q4 q3 q2 q1 q0

p0p1p3 p2p4p5p6p7

STAGE-1

Fig 6: Two-stage logarithmic barrel-shifter for W=4

The proposed LUT based multiplier for input word-size L=4

is shown in Fig 2.It consists of 4-to-3 bit address encoder, 3-

to-8 line address decoder, a memory array of eight words of

(W+4) bit-width, NOR cell, control circuit and a barrel shifter.

The 4-to-3 bit input encoder is shown in Fig 3. It receives 4

bit input word 3 2 1 0)x x x x and maps that into three bit

address word 2 1 0()d d d , according to the logic relations

given below.

0 0 1 1 2 0 2 3

1 0 2 0 1 3

2 0 3

(.).(.).((.)) (1)

(.).((.)) (1)

. (1)

d x x x x x x x a

d x x x x x b

d x x c

  

  

 

These three bit address inputs are given to a decoder and it

generates 8 word select signals to select the referenced-word

from the memory array. The output of the memory array is

either AX or its sub multiple in bit-inverted form depending on

the value of X. From table I, we find that the LUT output is to

be shifted to one location left when the input operand X is one

of the values {(0010),(0110),(1010),(1110)}.Two left shifts

are required if X is either (0100) or (1100).Only when input

word X=(1000), three shifts are required. Since the maximum

number of shifts required on the stored–word is three, a two-

stage logarithmic barrel-shifter is adequate to perform the

necessary left-shift operations. The number of shifts required

to be performed on output of LUT depends on the control bits

s0 and s1 for different values of X are shown in Table I. The

control circuit generates the control bits by

0 0 1 2

1 0 1 (2)

()

()

a

b

s x x x

s x x

    

  

Depending on the control bits the number of shifts is decided

and implemented by the barrel shifter. A logarithmic barrel

shifter of W=L=4 is shown in the Fig 6. It consists of two

stages of 2-to-1 line bit level multiplexors with inverted

output, where each of the two stages involves (W+4) number

of 2-input AND-OR-INVERT(AOI) gates. The control bits

0 00
(s , s) and

1 1
(s , s) are fed to AOI gates of stage-1 and

stage-2 of barrel shifter. Since each stage of the AOI gates

perform inverted multiplexing, outputs with desired number

of shifts are produces in un-inverted form.

The input X= (0000) corresponds to multiplication by X=0

which results in product value A.X=0.So, the output of the

LUT is to be reset when the input operand word X= (0000).

The reset function is not implemented by a NOR-cell

consisting of (W+ 4) NOR gates as shown in Fig 6. The inputs

for the NOR gates are the RESET bit and (W+4) bits of LUT

output in parallel. When X= (0000), the control bits generates

active-high RESET according to the logical expression:

0 1 2 3 3().() ()RESET x x x x   

When RESET=1, the outputs of all NOR gates become 0, so

that the barrel shifter is fed with (W+4) number of zeros.

When RESET=0, the outputs of all NOR gates become

complement of the LUT output bits. The RESET function can

be implanted by an array of 2 input AND gates, but the

implementation of reset by NOR-cell is preferable since the

NOR gates have simpler CMOS implementation compared

with AND gates. Moreover, instead of using a separate NOR-

cell, the NOR gates could be integrated with memory array if

the LUT is implemented by ROM [9] [10]

2.1 Proposed 8-bit LUT Multiplier
The proposed 8-bit LUT multiplier is same as 4-bit LUT

multiplier, but the difference is the usage of dual port memory

array. Instead of using dual port memory array, we can use

two single port memory arrays, but the dual port memory

array is more efficient. The proposed 8 bit LUT multiplier is

shown in following Fig 7.

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.16, September 2013

19

Fig 7: Memory based multiplier using dual port memory array.

The multiplication of 8–bit input with a W-bit fixed

coefficient can be performed through a pair of multiplications

using a dual-port memory of 8 words and pair of encoders,

decoders, NOR cells and barrel shifter as shown in Fig 7.The

shift-adder performs left shift operation of the output of barrel

shifter corresponding to more significant half of input by four

bit-locations, and adds that to the output of the other barrel-

shifter.

3. MEMORY-BASED FIR FILTERS

USING DIFFERENT METHODS.
In this section ,we are going to show the three different

methods of memory-based FIR filters .In each method,

different approach have been taken.

3.1 Memory based FIR filters using

conventional LUT
The structure of N-tap FIR filters for input word length L=8

are shown in Fig 8. It consists of N memory units for

conventional based multiplication, along with (N-1) add-

subtract (AS) cells and a delay register. During each cycle, all

the 8 bits of current input sample x(n) are fed to all the LUT-

multipliers in parallel as pair of 4-bit addresses X1 and X2.The

structure of the LUT multiplier is shown in Fig 8. It consists

of a dual port memory unit of size [16 x (W +4)] and a shift–

add cell.

The SA cell shifts its right input to left by four bit locations

and adds the shifted value with its other input to produce a (W

+ 8)-bit output. The shift operation in the shift–add cells is

hardwired with the adders, so that no additional adders are

required. The outputs of the multipliers are given to the

pipeline of AS cells in parallel. It consists of either adder or

subtract or depending on the corresponding filter weight is

positive or negative. The FIR filter structure of Fig .7, takes

one input sample in each cycle, and produces one filter output

in each cycle. The first filter output is obtained after a latency

of three cycles (one cycle each for memory output, the SA cell

and the last AS cell). But the first (N-1) outputs are not correct

because they do not contain the contributions of all the filter

coefficients.

Fig 8: Conventional LUT-multiplier based structure of an

N-tap FIR filter for input-width length L=8.

3.2 Memory–based FIR filter using

proposed LUT design
As shown in Fig 9, the proposed structure of FIR filter

consists of a single memory–module, and an array of N shift–

add (SA) cells, (N-1) AS cells and a delay register. The

structure is same as that of 4-bit proposed LUT model

consisting of 4-to-3 bit encoder, control circuits and a pair of

3-to-8 line decoders to generate the necessary control signals

and word select signals for the dual port memory core. The 8

bit input sample is divided as 4bit MSB and 4 bit LSB and the

same process goes on as in 4 bit LUT, but here as a pair of 4

bit LUT.

4-TO-3 BIT
ENCODER

&
CONTROL
CIRCUIT

3-TO-8 LINE
PORT-1

ADDRESS
DECODER

8 x (W + 4)
DUAL-PORT

MEMORY ARRAY

3-TO-8 LINE
PORT-2

ADDRESS
DECODER

4-TO-3 BIT
ENCODER

&
CONTROL
CIRCUIT

BARREL SHIFTER-
1

BARREL SHIFTER-
2

SHIFT-ADDER

NOR
CELL-1

NOR
 CELL-2

x10

x11

x12

x13

d12

d11

d10

 RESET-1 RESET-2

 W10

W11

W12

W13

 W14

W15

 W16

 W17

W00

W01

W02

W03

W04

W05

W06

W07

d00

d01

d02

X00

X01

X02

X03

(W + 8)-bit output,AX

S10

 S11

S00

 S01

Y(n)

LUT-
MULTIPLIER

LUT-
MULTIPLIER

LUT-
MULTIPLIER

LUT-
MULTIPLIER

LUT-
MULTIPLIER

DELAY AS CELL AS CELL AS CELL AS CELL

X2

X1

X(n)=S

8

4

4

|h(1).S| |h(0).S||h(N-1).S| |h(N-2).S| |h(N-3).S|

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.16, September 2013

20

Fig 9: Structure of N the order FIR filter using proposed LUT-multiplier

The memory based structure of proposed LUT differs from

conventional memory based structure in two design aspects.

1. The conventional LUT–multiplier is replaced by

odd multiple storage LUT, so that the multiplication

by an L-bit word could be implemented by (2L/2)/2

words in the LUT in a dual port memory.

2. Since the same pair of address words X1 and X2 is

used by all the N LUT multipliers in Fig 9, only one

memory module with N segments could be used

instead of N modules. If all the multiplications are

implemented by a single memory module, the

hardware complexity of 2(N-1) decoder circuits can

be eliminated.

3.3 DA-based implementation of FIR filter
In this section, we present the existing method of computation

in FIR filters which is DA based implementation of FIR filter

that has the same throughput rate as that of the LUT-

multiplier based structures. Finally we found that the DA-

based FIR filter structure results in minimum area and

minimum area-delay product for address length 4.In

Fig.10,we have shown a modified form of the 2-D structure of

FIR filter presented in[8] is replaced by pipelined adder-tree

and pipelined-shift-add-tree to reduce the number of latches

and latency. In each cycle, one 8-bit input sample is fed to the

word-serial bit-parallel converter, out of which a pair of

consecutive bits are transferred to each of its four DA-based

computing sections. The structure of each DA-based section is

shown in Fig.10.2. The Figure consists of a pair of serial-in

parallel-out bit-level shift-registers (SIPOSRs), (N/4) memory

modules of size [16 x (W + 2)], (N/4) shift-add (SA) cells and

a pipelined shift-adder-tree.

Fig 10.1: DA-based FIR filter

1

1

SERIAL-IN PARALLEL-OUT BIT-LEVEL SHIFT-REGISTER-1

SERIAL-IN PARALLEL-OUT BIT-LEVEL SHIFT-REGISTER-1

PIPELINE-ADDER-TREE

16 x

(W+2)

MEMOR

Y

16 x (W+2)
MEMORY

16 x (W+2)
MEMORY

16 x (W+2)
MEMORY

SA CELL-

1

SA CELL-

2

SA CELL-

3
SA CELL-(N/4)

4 4 4 4 44

(w+2) (w+2)(w+2) (w+2)

(w+4) (w+4) (w+4)(w+4)

(W
+

2
+

E
)-

B
IT

O
U

T
P

U
T

4 4

Fig 10.2: Structure of each section of filter E=log2 N

Fig 10: DA-based structure for FIR filters

4-TO-3 BIT
ENCODER

&
CONTROL
CIRCUIT

4-TO-3 BIT
ENCODER

&
CONTROL
CIRCUIT

3-TO-8
LINE PORT-1

ADDRESS
DECODER

3-TO-8
LINE PORT-2

ADDRESS
DECODER

SHIFT-ADD
CELL-1

SHIFT-ADD
CELL-(N)

SHIFT-ADD
CELL-2

SHIFT-ADD
CELL-3

SHIFT-ADD
CELL-(N-1)

UNIT DELAY
AS

CELL-1
AS

CELL-1
AS

CELL-(N-2)
AS

CELL-(N-1)

 W +8 W +8W +8W +8W +8

W +4 W +4 W +4 W +4 W +4
W +4 W +4 W +4

W +4
W +4

 W +8+LOG2N

FILTER

OUTPUT

8-bit

input

sample

x(n)
X2

X1

X00

X01

X02

X03

X10

X11

X12

X13

WS2

WS1
8

8

3

3

d00

d01

d02

S01,S00 and RESET-1

S11,S10 and RESET-2

h
(N

-1
).

X
1

h
(N

-1
).

X
2

 h
(N

-2
).

X
2

h
(N

-3
).

X
2

h
(N

-2
).

X
1

h
(N

-3
).

X
1

h
(1

).
X

1

h
(1

).
X

2

h
(0

).
X

1

h
(0

).
X

2

DUAL-PORT SEGMENTED MEMORY-CORE

[8 x(W + 4)] x N MEMORY ARRAY IN N SEGMENTS OF SEGMENT SIZE [8x(W + 4)]

DA BASED COMPUTING SECTION -1

DA BASED COMPUTING SECTION -2

DA BASED COMPUTING SECTION -3

DA BASED COMPUTING SECTION -4

W
O

R
D

 S
E

R
IA

L
 B

IT
 P

A
R

A
L
L
E

L

C
O

N
V

E
R

T
E

R

P
IP

E
L
IN

E
D

 S
H

IF
T

 A
D

D
-T

R
E

E

INPUT

SAMPLES

FILTER

OUTPUT

(W + 2 +E)

(W + 2 +E)

(W + 2 +E)

(W + 2 +E) 2

2

2

2

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.16, September 2013

21

SA1

SA1

SA2

W+2+E

W+2+E

 W+2+E

W+2+E
W+4+E

W+4+E

W+8+E

Fig 11: Pipelined shift-add-tree E=log2 N

The memory module, in each cycle, is fed with a pair of 4-bit

words at the pair of address-ports. The left address-port

receives 4-bit words from Serial-in parallel-out shift register-

1(SIPOSR-1), whereas the right address-port receives 4 bits

from the serial-in parallel-out shift register-2(SIPOSR-2).The

bits at the right address port are the next significant bits

corresponding to the bits available at the left address-port.

According to the pair of 4-bit addresses a pair of (W + 2) bit

words are read-out from each memory module and fed to the

SA cell. The SA cell shifts the right-input by one position to

left and adds that with the left-input to produce a (W + 4)-bit

output. The outputs of the SA cells are added by pipelined

shift-add-tree consisting of three adders in two pipelined

stages (shown in Fig.11). The pair of shift-adders(SA 1) in

stage-1 shift their lower input to left by two-bit positions and

add with their upper input, while the shift-adder(SA2) in

stage-2 shifts the lower input by four-bit positions and adds

that to the upper input to produce a
2

(8 log)W N  -bit

output. Therefore, the structure consists of N cycles to fill the

serial-in parallel-out shift registers, one cycle for memory

access and the one cycle for producing the output of the shift-

add cell,
2

(log 2)N  cycles in the pipelined-adder-tree and

two cycles at pipelined–shift-adder-tree. The latency for this

structure is
2

(log 2)N N  cycles, and it has the same

throughput of one output per cycle same as that of the LUT-

multiplier-based structures. When the input word-length is

multiple of 8, such as L=8k (k is integer of any value). The

DA-based filter could also be implemented by k parallel

sections where each section is an 8-bit filter identical to one of

structures in Fig.10. The outputs of all the 8-bit filter sections

are shift-added in a pipeline shift-add-tree to derive the filter

outputs. The structure for L=8k would have the same

throughput of one output per cycle with a latency of

2 2
(log log 2)N N k   cycles.

4. RESULTS

The simulation results of the existing method, conventional

LUT and proposed LUT are shown in the following Fig.12,

Fig.13 and Fig.14 respectively. The synthesis reports of both

conventional LUT and proposed LUT with 8 bit inputs are

taken as reference and shown in the Fig.15, Fig.16 and Fig.17

respectively. On comparing both the methods, we can see the

usage of the memories by individual blocks and the memory

occupied by the proposed LUT is found to be low in

comparison of conventional LUT. The synthesis report clearly

determines the size occupied by the individual blocks and

their area percentage. The DA method is taken as reference

and compared with the Conventional LUT method and

proposed LUT method using synthesis report. The simulation

and synthesis are done in Xilinx software. In comparison, the

Conventional LUT occupies 58% of total available resources,

i.e. the size is reduced 42% of size compared to DA.

Similarly, the proposed LUT occupies 50%, i.e. the size is

reduced to 50% when compared to DA. By considering all

factors, the proposed LUT method saves nearly 20% of

memory than to DA method.

Fig 32: Simulation result of Distributed arithmetic

Fig 43: Simulation result of Conventional LUT

Fig 54: Simulation result of Proposed LUT design

Device Utilization summary (estimated values)

Logic Utilization Used Available Utilization

Number of Slices 244 960 25%

Number of 4 input LUTs 387 1920 20%

Number of bonded IOBs 44 66 66%

Fig 65: Synthesis report of Distributed Arithmetic

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.16, September 2013

22

Device Utilization summary (estimated values)

Logic Utilization Used Available Utilization

Number of Slices 69 960 7%

Number of slice Flip

Flops

48 1920 2%

Number of 4 input LUTs 127 1920 6%

Number of bonded IOBs 26 66 39%

Number of GCLKS 1 24 4%

Fig 76: Synthesis report of Conventional LUT

Device Utilization summary (estimated values)

Logic Utilization Used Available Utilization

Number of Slices 62 960 6%

Number of slice Flip

Flops

44 1920 2%

Number of 4 input LUTs 112 1920 5%

Number of bonded IOBs 22 66 33%

Number of CLKS 1 24 4%

Fig 87: Synthesis report of Proposed LUT

5. CONCLUSION
The modified LUT based multiplication is implemented to

reduce the LUT size than that of the conventional LUT

design. The LUT size is reduced to half by using two stage

logarithmic barrel shifter and (W+4) number of NOR gates,

where W is the word-length of the fixed multiplier coefficient.

Two memory based structures having the unit throughput rate

are designed for the implementation of the FIR filter. One is

LUT based multiplier using conventional and the other is

proposed LUT method. These two structures are found to

have same cycle-periods, which depend on word-length,

adders and filter order. The proposed LUT multiplier-based

designs have half the memory than the conventional LUT

design at the cost of ~4NW AOI gates and nearly ~2NW NOR

gates. Therefore, the LUT multiplier based of FIR filter is

more efficient than conventional in terms of area-complexity

for a given throughput and low latency. These LUT based-

multipliers can be used for memory based implementations of

linear and cyclic convolutions, and sinusoidal transforms. The

performance of memory based structures with different adders

and memory can be studied in future

6. REFERENCES
[1] J.G.Proakis and D. G. Manolakis, Digital Signal

Processing: Principles, Algorithms and Applications.

Upper Saddle River, NJ: Prentice-Hall, 1996.

[2] G.Mirchandani, R. L. Zinser Jr., and J. B. Evans, “A new

adaptive noise cancellation scheme in the presence of

crosstalk [speech signals],”IEEE Trans. Circuits Syst. II,

Analog. Digit. Signal Process,vol. 39, no. 10, pp. 681–

694, Oct. 1995

[3] D. Xu and J. Chiu, “Design of a high-order FIR digital

filtering and variable gain ranging seismic data

acquisition system,” in Proc. IEEE Southeastcon’93,

Apr. 1993, p. 6

[4] K. K. Parhi, VLSI Digital Signal Procesing Systems:

Design and Implementation .New York: Wiley, 1999

[5] D. G. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru,

and R.Mckenzie, “Computational RAM: Implementing

processors in memory,” IEEE Trans. Design Test

Compute., vol. 16, no. 1, pp. 32–41,Jan. 1999.[13] H.-R.

Lee, C.-W. Jen and C.-M. Liu, “On the design

automation of the memory-based VLSI architectures for

FIR filters,” IEEE Trans.Consum. Electron., vol. 39, no.

3, pp. 619–629, Aug. 1993

[6] H.-R. Lee, C.-W. Jen and C.-M. Liu, “On the design

automation of the memory-based VLSI architectures for

FIR filters,” IEEE Trans.Consum. Electron., vol. 39, no.

3, pp. 619–629, Aug. 1993

[7] S. A. White, “Applications of the distributed arithmetic

to digital signal processing:A tutorial review,” IEEE

ASSP Mag., vol. 6, no. 3, p. 5–19,Jul. 1989

[8] H.-C. Chen, J.-I. Guo, T.-S. Chang, and C.-W. Jen, “A

memory-efficient- realization of cyclic convolution and

its application to discrete cosine transform,” IEEE Trans.

Circuits Syst. Video Technol., vol. 15,no. 3, pp. 445–453,

Mar. 2005

[9] P. K. Meher, S. Chandrasekaran, and A. Amira, “FPGA

realization of FIR filters by efficient and flexible

systolization using distributed arithmetic, ”IEEE Trans.

Signal Process., vol. 56, no. 7, pp. 3009–3017, Jul.2008.

[10] J.-I. Guo, C.-M. Liu, and C.-W. Jen, “The efficient

memory-based VLSI array design for DFT and DCT,”

IEEE Trans. Circuits Syst. II, Analog Digit. Signal

Process, vol. 39, no. 10, pp. 723–733, Oct. 1992.

[11] A. K. Sharma, Advanced Semiconductor Memories:

Architectures, Designs, and Applications. Piscataway,

NJ: IEEE Press, 2003.

[12] E. John, “Semiconductor memory circuits,” in Digital

Design and Fabrication, V. G. Oklobdzija, Ed. Boca

Raton, FL: CRC Press, 2008.

IJCATM : www.ijcaonline.org

