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ABSTRACT
Self localization of mobile autonomous systems is fundamen-
tal step in various applications, such as assistant naviga-
tion systems for blind people or smart house appliances.
This paper presents a novel framework for Vision-based
Simultaneous Localization and Mapping which focuses on
the class of indoor mobile robots using only a monocular
camera. A method to combine local and global features
mapping have been proposed in a nested graph represen-
tation, where the indoor environment is divided into loca-
tions which is then decomposed into different views. The
Scale Invariant Feature Transform is used to extract and
build up a global map which provide rough estimation of
the robot position. Horizontal, vertical and diagonal de-
tails of the wavelet coefficients are then used to provide
finer estimation of the robot position and pose. The out-
put topological map is validated with the ground truth of
the environment. Moreover, the number of decomposition
levels of the wavelet transform is analysed. The results show
high localization accuracy and low rate of matching time.

General Terms:
I.2.9 Robotic, I.4 Image Processing and Computer Vision

Keywords:
Robot Vision, Local Features, Global Features, SIFT,
Wavelet Transform, Topological Map

1. INTRODUCTION
Simultaneous localization and mapping (SLAM) or Concur-
rent Mapping and Localization (CML) as referred in [27] is
one of the most extensively researched field of robotics.
SLAM is the problem of building a map while at the same
time localizing the robot within the map. Undoubtedly
SLAM is much more complicated than Localization or map-
ping processes. Mapping addresses the problem of generat-
ing a map using the acquired information by robot’s sensors
and the given robot’s poses. On the other hand, localization
addresses the problem of determining the robot’s locations
within a given map [27]. SLAM is significantly more difficult
since robot poses and map are both unknown.

Topological V-SLAM is a SLAM process which is based on
vision for environment sensing and used topological map
for representing the environment. Where robot location is
determined by capturing a picture (key frame) and compare
it with the previously collected key frames in the evolving
map. Then, it is localized at the position of the most similar
matched key frame. Otherwise, if no match, then it is a
new reference location. While map building can be achieved
by adding new node to the evolving map whenever a new
reference location is detected [19].
In this paper a V-SLAM algorithm is proposed with the use
of a single freely moving camera as the only data source.
Several research challenges have been considered: (1) How
to reduce the number of images needed to describe the
environment without losing important details of the test
environment? (2) How to reduce number of features and
how to track them through images? (3) How to calculate
in an efficient manner the similarity of the input image
against all the reference images in the map? (4) How to
represent the environment by two-level topological map?

The paper is organized as follows: First, the related work
about vision-based simultaneous localization and mapping
is explained in section 2. Then, the mathematical basis of
wavelets, and scale invariant feature extraction (SIFT) are
introduced in section 3. The architecture of the proposed
system is given in section 4. Section 5 describes the data set
used and the experimental results followed by the conclusion
in section 6.

2. VISION-BASED SIMULTANEOUS
LOCALIZATION AND MAPPING

Figure 1 illustrates vision-based SLAM process. It demon-
strates the egg-and-chicken relationship between the two
main processes localization and mapping. The captured im-
ages, landmarks database and the map of the environment
are the input for the localization process. On the other hand,
the captured images, landmarks database and the robot lo-
cations are the input for the mapping process. Sensory input
is one of the main issues that must be addressed when work-
ing with SLAM. The most common sensors researchers used
to exploit are laser & sonar. Nevertheless, recently vision
sensors gained more attention for performing SLAM [16].
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Fig. 1. Overview of Vision-based SLAM process.

Imaging sensors offer a variety of desirable properties. Cam-
eras are low cost, provide a huge amount of information,
available and passive. Moreover, vision offers numerous al-
gorithmic solutions to essential problems such as: feature
detection and matching, image segmentation and classifica-
tion, object recognition and scene interpretation and image
indexing. There are different types of the imaging devices ,
e.g. omnidirectional cameras, stereo cameras, multiple cam-
era rigs and depth cameras. However, the use of single cam-
eras have received increasing attention during the past few
years. Some visual SLAM implementations using single cam-
eras are [17][4].
Localization is a fundamental problem in mobile robotics.
It has three approaches: geometric, topological and hybrid
[23]. A 2D grid is usually used as a map representation for
geometric-based approaches, where the exact robot location
is tracked with respect to map coordinate system. Topolog-
ical approaches use a simple graph as a map representation.
The robot is localized if a node of the graph is recognized as
the current location of the robot. If an approach combines
the geometric and topological map representations it is said
to be a hybrid approach [30]. Localization systems based on
landmarks rely on either artificial or natural landmarks to
represent the environment and try to determine correspon-
dences between the observed landmarks and a pre-loaded
map to estimate the location of the robot [31][14]. Artificial
landmarks are easier to detect. However, they require modifi-
cations of the environment. Therefore, systems based on nat-
ural landmarks are often preferred. Various features could be
used as natural landmarks such as corners, doors, windows,
or wall colors. Typically, these systems are designed for spe-
cific environments and hence they can be hardly applied to
different environments [30]. Another way for a robot to de-
termine its location is through image statistics. The most
popular image statistic is the histogram. Mapping addresses
the problem of projecting the information gathered by the
sensors into a consistent model of the environment. Different
methods used for representing the map of the environment
such as, metric, feature-based map or as topological graph
[25][6]. The most popular metric representation is grid-based
maps, also known as occupancy grids. They represent the
environment being mapped in form of cells. Each cell, is
marked as free or occupied. It’s very intuitive for humans.
However, usually they don’t scale well with the actual en-
vironment dimension [18]. The main idea of feature-based
maps is to extract features from the environment (e.g. lines,
corners, doors) and then to represent them by, for instance,

colour, length, width, position, etc [29]. Topological maps
represent environments as a list of significant places (nodes)
that are connected via arcs (edges). Topological maps scale
well to large environments, since the amount of information
that is stored is limited to the description of the places.
Topological maps yield ambiguities when representing the
same place more than once, which are difficult to overcome.
To overcome such problem, many authors proposed to use
the topological map in a combination with metric or feature-
based maps which is commonly know as hybrid maps [18][2].

3. FEATURE EXTRACTION AND
CLASSIFICATION

Features extraction is the process of finding some sort of
description that can be used later to identify the region or
the object of interest and to differ this object from other
examples. There are multiple ways to do feature extraction
and it depends largely on what types of features are ex-
tracted as well as the used sensors. It is agreed that local
features are more robust to scene dynamics and illumina-
tion adjustments than global features. This ability makes
local features more applicable for wide-range characteriza-
tion of the environment. To illustrate, it can better recognize
a room from one another than to recognize a a different loca-
tion in the same room. By contrast, global features usually
have weak resistance to illumination and dynamic changes,
which makes the global features suitable for narrow-range
characterization of the environment. For example, images
captured at adjacent locations own similar signatures even
if there are illumination or dynamic changes [19]. The fol-
lowing sections explain the feature extractors used in this
paper.

3.1 Local Features Processing
Indoor environments usually present high variability in their
visual appearance, i.e. same visual feature can be captured
from different angles or distances. Among the available tech-
niques for feature detection and extraction, SIFT has proven
to have the ability to find and match features with higher
degree of uniqueness and robustness. It has been successfully
applied to robot localization and robot SLAM [23][9][26][24].
A lot of approaches have been proposed for local feature
extraction before SIFT, but they aren’t invariant to scale
and more sensitive to projective distortion and illumination
change [10]. SIFT was developed and published by David
Lowe in 1999-2004. It aims at representing an image by a set
of local interest points (visual features) which are invariant
to image translation, scaling, and rotation and partially in-
variant to illumination changes and affine or 3D projection.
SIFT algorithm consists of two main stages which are (1)
detection of key points and (2) description of the detected
key points.
Key points are detected & localized in two steps. First a
pyramid of difference-of-Gaussian (DOG) images is created.
The second step is to localize the key points by comparing
each sample point in DOG image to its eight neighbours
in the current image and the nine neighbours in the scale
above and below. The point is selected if and only if it is
significantly greater than (Maxima) or less than (Minima)
all of them. A vector of 128 elements is built to describe
each localized key point. The 16 x 16 neighbours of each key
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point are divided into 4 x 4 subregions, for each subregion
the orientation histogram is computed in 8 bins, this leads
to a SIFT feature vector with 4 x 4 x 8 feature element.
After running the SIFT algorithm, 1000-2000 key points are
extracted from the image. To find the best match for key
point x of image i in image j simply compute the Euclidean
distance between key point x and all key points extracted in
image j. The best match would be the nearest point found
in image j. Image i and image j are said to be matched if a
predefined number of the SIFT points of image i is found in
image j.

3.2 Global Features Processing
The purpose of any transform is to make the job eas-
ier. Wavelet transform has been successfully used for vi-
sion based robot localization, vision based SLAM and im-
age retrieval algorithms [19][11][28][15] for their capabil-
ity in representing images in a compact way without los-
ing information about location of the image discontinuity,
shapes and textures. Wavelet has shown a better tool for
non-stationary signal analysis than Fourier transform. The
wavelet transform is a tool that decomposes signals into dif-
ferent frequency components, and then studies each com-
ponent with a resolution matched to its scale. This way,
wavelet transform provides a tool for time and frequency lo-
calization.Mallat [12] has proposed an iterative algorithm to
compute the discrete wavelet transform. It is based on the
multiresolution analysis. It applies a two-band subband cod-
ing procedure in an iterative fashion and builds the wavelet
transform from the bottom up, i.e., small coefficients for
small scales are computed first.
The algorithm is based on computing iteratively an approx-
imation at a lower resolution level j of the original signal
f(t), which is in the original resolution level 0. For this an
orthogonal set of basis functions φk,j(t), k, j ∈ Z is used,
called the scaling functions. The differences of the informa-
tion between two approximations at successive resolution
levels (the details) are extracted by the orthogonal set of
the wavelet functions ψk,j(t), k, j ∈ Z.
Daubechies constructed the first wavelet family of scale func-
tions that are orthogonal and have finite vanishing moments,
i.e. compact support [3]. This property insures that the num-
ber of non-zero coefficients in the associated filter is finite
and assures the locality of the analysis. At a certain position
k the corresponding coefficients Aj,k(t) or Dj,k(t) analyze
f(t) around k. So this analysis is local. The Haar wavelet
ψhaar, is the basis of the simplest wavelet transform. Histor-
ically, it is the first mention of what is called now “wavelet”
in thesis by Alfred Haar in 1909. It is discontinuous and the
only symmetric wavelet in the Daubechies family and the
only one of them that has an explicit expression. It is a sim-
ple difference function. The associated filter is of length two.
This means that the resulting approximation and detail im-
ages are all half the number of columns and rows. The scale
function φhaar, is a simple average function.
The 2D wavelet transform is widely used for analysis and
processing of images and videos. This transform is per-
formed by two separate 1D transforms along the rows and
the columns of the image data constructing one 2D scaling
function and three different 2D wavelet functions.
The results of the analysis at each decomposition level are
a low-pass image or a coarser approximation A and three

detail images, horizontal details H, vertical details V , and
diagonal details D, which contain the details lost while go-
ing from the original image to its approximation A. The
approximation A represents the image at a coarser resolu-
tion. It results from averaging the image in both dimensions
x and y. The horizontal detail H is obtained by averaging
in the x-dimension and differencing in the y-dimension. The
vertical detail V is obtained by averaging in the y-dimension
and differencing in the x-dimension. The diagonal detail D
is obtained by differencing in both dimensions and then av-
eraging [7]. As shown in Figure 2 horizontal edges tend to
show up in H and vertical edges in V , while D contains all
other details [21].

Original image Approximation and
detail images

Fig. 2. Approximation and details of an image.

4. THE PROPOSED SYSTEM
This paper proposes a novel system for vision-based Robot
SLAM. The input to the system is a sequence of key frames,
and the output is a topological map represented by two-
levels nested graph, as well as, two-levels local/global local-
ization. The mobile robot starts off without a priori knowl-
edge of the environment replying only on the visual infor-
mation. A prototype of the proposed system was introduced
in [5].

4.1 Sensing
A single camera is used. When vision-based SLAM uses only
a single camera, it is called Monocular SLAM, Mono-SLAM
or bearing-only SLAM. One of the main advantages of the
single camera setup is its low cost compared to other cap-
turing devices; besides the robot’s stability is not affected
due to its light weight. However, single cameras don’t pro-
vide any information about the feature depth, for this rea-
son there must be an extra processing over multiple frames
to track the same feature in order to compute its depth.
The image sequences of the dataset used in this research
were acquired using the MobileRobots PowerBot robot plat-
form equipped with a stereo camera system consisting of
two Prosilica GC1380C cameras, however, a monocular vi-
sion system is used in this paper. The images were continu-
ously acquired at a rate of 5fps, more details about the used
dataset can be found in [20].

4.2 Preprocessing
First, the captured image is converted to grey scale, and then
the "Next Increase" procedure is applied to decide whether
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Fig. 3. Two successive captured images are subtracted to esti-
mate the amount of change.

the captured image is a key frame or not. This procedure
was successfully used in [13]. To demonstrate, key frames
are images with a significant change between it and the pre-
vious accepted key frame, thus, eliminating the useless im-
ages and reducing the computation complexity without los-
ing information. Next increase procedure simply computes
the absolute difference between two images pixel by pixel,
an example is shown in Figure 3. It keeps only the images
whose difference between it and the last non-removed key
frame is greater than a predefined threshold (0.08 for all
images).

4.3 Feature Extraction
Features can be classified as global or local features. Ex-
amples of global features are the mean color of the object,
image histogram, or the wavelet signature. Strong edges and
corners are common examples of local features [28][1]. The
authors believe that local features provide rough level of esti-
mation for the robot’s location, while global features provide
detailed estimation for the robot’s position such as its pose.
In this paper, two-level map is produced and the robot is
two-level localized, for example in which room the robot is,
and in which corner the robot is. Global image signatures
and local features are combined in the same framework as
shown in Figure ??. SIFT local features are used for the
high level estimation of the robot position and map build-
ing. Whereas, for the low level estimation of the robot posi-
tion and map building discrete wavelet signature of images
grabbed are chosen due to its simplicity, robustness, scala-
bility and small memory requirements.

4.4 Feature Tracking
First, for implementing the global level: The main idea is
to merge all extracted SIFT interest points from multiple
frames that belong to the same location in a buffer, so that
each reference location is described by a group of SIFT in-
terest points.

Feature Tracking Initiation. Initially the map is empty.
When SIFT features from the first frame arrive, a new map
node is created. Each extracted SIFT interest point pi, is
saved in the node as: [Xi, Yi, Si, Oi, Di, Ci] Where (X,
Y ) is the current 2D position of the SIFT landmark relative
to the initial coordinates frame, (S, O) are the scale and
orientation of the landmark, D is a set of descriptors (n x
128) associated with each interest point, and C is a count
to indicate how many consecutive frames this landmark has
been missed. Initially this count is set to 0.

Feature Tracking Maintenance. Over subsequent frames,
the map is maintained, new entries are added to each node,
features are tracked and entries are removed from nodes
when appropriate so that a minimum number of features

Fig. 4. 4th level of 2D Haar discrete wavelet signature (horizon-
tal, vertical & diagonal details, respectively.)

robustly describe each reference location. There are the fol-
lowing types of features to consider: (1) New features arrive
from a key frame for a previously visited location, so they
are added to the node and the missed count for each feature
is initialized to 0. (2) This feature was matched before in a
previously visited location, so, the missed count remains 0,
and it is said to be an active feature.

Feature Tracking Termination. If the missed count C of any
feature in the map reaches a predefined limit N , i.e., this
feature has not been observed at the location it is supposed
to appear, therefore this feature tracking is terminated, it’s
said to be a passive feature and is removed from the map.
Likewise, for implementing the local level: if a key frame is
accepted in the global node, then, the 4th level of the 2D
Haar discrete wavelet transform is calculated, and a signa-
ture consists of the horizontal, vertical and diagonal details
is saved in this node. Figure 4 presents an example of the
computed wavelet signature.

4.5 Mapping
In the proposed approach the environment map is repre-
sented by adjacency graph. Nodes of the graph represent
locations, while arcs represent the adjacency relationships
between the locations. The general approach of map
building is to incrementally integrate new nodes into the
map. Each node in the graph of the first level (locations)
is a rich node that contains information about a reference
location (ID, Label, Matched key frames, The set of SIFT
interest points, A count for the missed matches for each
SIFT interest point, The total number of SIFT Interest
points, and the total number of key frames matched).
Similarly, each node in the second level is also a rich node
that contains the following information (ID, Label, and the
wavelet signatures of the matched key frames).

The complete process for two-level mapping can be summa-
rized in the following steps: First, SIFT points are extracted
from the captured key frame. Second, similarity is computed
between the current key frame and all nodes of the global
map by means of the number of matched SIFT points.
For instance, a captured key frame can represent a wide
scene that was captured over multiple sequence of images.
as show in Figure 5, accordingly SIFT features extracted
from one key frame can match SIFT features from multiple
key frames representing same scene (captured at close
locations). Clearly, the idea of matching the test image with
a set of SIFT features that represents a reference location,
is much preferred than matching the test image with all
images representing reference location in the database, it
provides wider range of matching and saves extensive search
time complexity and memory requirement. The situation
is shown in Figure 6. Finally, a ranking with the best n
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Fig. 5. Sample example of matching a key frame with node con-
sisting of SIFT features extracted from set of key frames repre-
senting same scene.

Fig. 6. Similarity computed between an input key frame and
global map nodes.

similarity values and its associated locations is obtained.
If the similarity value of the highest ranking global node
exceeded a predefined threshold (25 SIFT points used in
the experiments) then, the test frame is assigned to this
global node, otherwise a new node is added to the global
map, and a connection between the new node and the last
visited node is created.

Likewise, for the local map, the wavelet signature of the test
frame is computed, and compared to all wavelet signatures
of the matched global node. A ranking with the best n sim-
ilarity values and their associated views is obtained. If the
similarity value of the nearest local node exceeded a prede-
fined threshold (96%), then, the test frame is allocated at
this view; else, a new node is added to the sub-map of the
global node and an edge between the new node and the last
visited node is generated.

4.6 Localization
The key element of the proposed two-level topological lo-
calization method is the place recognition module. Usually
place recognition modules need to determine the reference
image that is most similar in appearance to the current in-
put image, by comparing it with images of an entire database
which can exceed thousands of images. The proposed place
recognition module, treat the previously learned set of im-

ages for the same reference location as group of features, ow-
ing to this, the current input image is compared to features
of each reference location which results in a fast matching
process. For the global level localization, the place recogni-
tion system depends on SIFT features extracted from the
new input image and match it with SIFT features of each
reference location. The input image is localized and is given
a position label that is associated with the matched global
node. Furthermore, for the local level localization, the place
recognition system utilizes image signatures, created by the
standard 2D Haar discrete wavelet decomposition technique.
When the system is presented with a new image, the image
signature is computed and then compared with all wavelet
signatures in the same global node to determine the nearest
view. The current image is localized locally and is given the
label of the view associated with the nearest matched image
signature.

5. EXPERIMENTAL RESULTS AND
DISCUSSION

The system is tested in the indoor office environment of
The Computer Vision and Active Perception Laboratory
(CVAP) at The Royal Institute of Technology (KTH) in
Stockholm, Sweden [20]. The robot was manually driven
through the environment while continuously acquiring im-
ages at a rate of 5 fps. The dataset will be explained in the
following section.

5.1 Dataset Description
The dataset COLD-Stockholm [20] is used which is consisted
of 9,564 images, each image in the training sequence is la-
beled and assigned to an ID and a semantic category of
the area (usually a room) in which it was acquired. The se-
quences were acquired using the PowerBot robot platform
equipped with a stereo camera system. However, monocu-
lar system can be used by ignoring the left or the right im-
ages. The environment consists of eight main rooms or areas,
Corridor, Kitchen, LargeOffice, MeetingRoom, PrinterArea,
RecycleArea, SmallOffice & Toilet.

5.2 Evaluation Metrics
The results were evaluated manually with the help of the
annotation of the images in the datasets. Each frame was
labelled either correctly matched or miss matched based on
the estimated classification of the system and the ground
truth of the datasets.

The results were also evaluated according to the confusion
matrix described in [8]. Where Accuracy AC, Recall TP and
Precision P are calculated.
The accuracy AC is defined as, the proportion of the total
number of predictions that were correct. The recall or true
positive rate TP is defined as, the proportion of positive
cases that were correctly identified. The precision P is de-
fined as, the proportion of the predicted positive cases that
were correct.

5.3 Results
Figure 7 shows the output of the experiment, in which the
high level topological map is estimated. Figure 7(a) shows
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the output topological map augmented on the ground truth
of the environment. Figure 7(b) compares the estimated
topological map by the robot to the ground truth of the en-
vironment which validates that the topological nodes have
been correctly recognized by the robot to a high extend of
accuracy. The set of observed nodes are colored in blue and
edges represent the connection between reference locations
(Rooms). For example, the room category ’kitchen’ is rec-
ognized and represented by three nodes in the global map:
reference locations 2, 3 & 4.

(a)

(b)

Fig. 7. The resulted global map: (a) The estimated global map
of the system and (b) An overlay of the output global map and
the ground truth.

Figure 8 shows the output low level topological map. It
shows the decomposition of node 3 to produce sub-map,
which consists of five views and connection between them.
A visual example of matching a query frame to a location
and view is shown in Table 1. For the high level topological
localization, a ranking with the best 3 nearest locations are
obtained associated with the number of similarity interest
points, the test key frame is high level estimated at the lo-
cation with highest matching interest points. On the other
hand, for the low level topological localization, when the
best matched scenes don’t exceed the predefined threshold
(96%), a new scene is added to the map, and the current
key frame localized locally.
Table 2 describes the distribution of the right and left images
of the dataset, where only 965 images are selected as key
frames from a total of 4782 images. The table shows that
906 key frames were correctly matched from the entire key
frames. For the left images of the dataset, the table shows
the distribution of the key frames similar to the right images.
Table 3 shows the evaluation based on the confusion matrix

Fig. 8. The decomposition of the global node 3 into nodes for
different views.

Table 2. Left & Right datasets distribution and percentage of
correctly classified key frames.

No. of No. of No. of Correct
Category No.

of
Key Locations Views Match

Images Frames G. Nodes L. Nodes
Right Left Right Left Right Left Right Left

Corridor 2,292 240 235 8 6 46 57 209 171
Kitchen 1,200 57 55 3 3 21 18 36 40
Meeting
Room

1,156 71 67 10 8 38 33 66 50

Small office 1,392 101 102 8 6 36 36 101 87
Large office 2,366 428 425 3 2 34 23 428 418
Printer area 420 53 57 2 2 22 13 51 55
Recycle area 354 15 15 1 1 9 8 15 15
Toilet 384 0 0 0 0 0 0 0 0
Total 9,564 965 965 35 26 206 185 906 863

Matching Rate 93.8% 90.2%

Table 3. The average Accuracy, Recall and Precision according to
the confusion matrix of the right & left datasets.

Category a b c d (AC) (TP) (P)

Corridor 695.5 47.5 43.5 190 0.9 0.8 0.79
Kitchen 865.5 18 4.5 38 0.97 0.9 0.67
Meeting Room 852.5 11 3 58 0.98 0.94 0.83
Small office 820 7.5 5.5 94 0.98 0.94 0.9
Large office 480 3.5 26 423 0.96 0.94 0.99
Printer area 860 2 5.5 53 0.98 0.91 0.96
Recycle area 898 0 5.5 15 0.98 0.75 0.98
Toilet 914 0 0 0 1 0 0

Average 798.1 11.1 11.6 108.8 96.8% 77% 76%

for the right and left images, where the average Accuracy,
precision and recall were calculated.
The matching rate is slightly differs between the right and
the left images, However, it lays in the range between 90.2%
and 93.8%. An interesting observation, as the number of
nodes (global and local) increases, the matching rate also
increases. This is observed regarding the physical rooms as
well as the overall matching.

5.4 Discussion
In previous work [22], An analysis have been done on the
selection of the mother wavelet transform for feature de-
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Table 1. Example of two-level localization of a test key frame.

Test key frame
Actual Location: 3

Nearest Matched Locations (High
Level Topological Localization)

Number of common IP’s Location3: 116 Location1: 32 Location2: 0

Nearest Matched Views in Location
3 (Low Level Topological Localiza-
tion)

Similarity View 1: 89.5% View 3: 86.4% View 1: 86.3%

Estimated Two-Level Topological
Localization (Location# , View#)

High Level Localization: Location 3.

Low Level Localization: New View is added to the map ’View 5’.

tection and localization. The Haar wavelet has better fea-
ture localization property in a comparison with the higher
ordered Daubechies wavelets. Based on this analysis it is
preferred to use the Haar wavelet for creating image signa-
ture based on the 4th decomposition level. Further analysis
have been done on the number of the decomposition levels.
Figure 9 shows, the relation between level of wavelet de-
composition and number of decomposed views is inversely
proportion. As the level of decomposition increases, the sig-
nature’s size is significantly reduced, but higher level de-
composition discard important features in the image, like
edges and high frequency patterns, useful for environment
characterization. On the other hand, as the level of decom-
position increases, the number of views (nodes in the sub-
map) formed increases, which limits the matching between
frames to a restricted settings, i.e. each captured image will
be treated as a separate view, as a result, the decomposed
local node will represent a narrow view. Level 4 is chosen
for decomposition because the trade-off between a compact
representation and a reliability similarity computation. An-
other reason is the compromise between a reduced size of
wavelet signature and a controlled number of the splitting
nodes of the local map.

6. CONCLUSION
In this paper, a global image signature together with a lo-
cal feature extractor module is combined in a framework for
mobile robot nested-based topological localization and map-
ping. The system reduced the number of images needed to
describe the environment without losing important details
by applying the key frame selection technique. The detected
SIFT features are tracked and maintained and terminated
based on the missed count C as explained above. The simi-
larity matching of the global map level is achieved in an effi-
cient way by comparing the test image with a set of features

Fig. 9. Analysis of wavelet decomposition levels.

that represent a reference location instead of comparing it
by all relevant images in the database. Successful experi-
ments are presented using COLD-Stockholm database [20],
the output map is validated with the ground truth, which
proved the validity of the proposed system, and the refer-
ence locations are correctly detected as well as the robot
locations are correctly obtained during operation. The pro-
posed system succeeds in achieving an overall matching of
92% and an overall retrieval accuracy of 97%.
In the future, some optimization techniques are intended
to be used to group the different global nodes of the same
location in one class. So that the graph is extended by a third
level from above, where each node in that level represents a
class gathering all nodes of the same location of the ground
truth data. The objective is to represent each real world
room by a single class.
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