
International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.15, September 2013

34

Mining Functional Dependency in Relational Databases

using FUN and Dep-Miner: A Comparative Study

Anupama A Chavan

M.Tech (2
nd

 year)
Department of Computer Science and Engineering

Lord Krishna College of Technology

Vijay Kumar Verma
Asst. Professor M.Tech (CSE)

Department of Computer Science and Engineering
Lord Krishna College of Technology

ABSTRACT

Database is a collection of tables of data items, if the database

is organized according to relational model it is called

relational database. In a relational database, a logical and

efficient design is just as critical. A poorly designed database

may provide erroneous information, or may even fail to work

properly may be difficult to use. Most of these problems are

the result of two bad design features called redundant data and

anomalies. Database normalization is the process of designing

a database satisfying a set of integrity constraints, efficiently

and in order to avoid inconsistencies when manipulating the

database. Most of the research work has been devoted to

functional dependencies. There are several algorithms have

been developed in the past year like TANE, FD_Mine

FD_Discover, Dep-Miner, FUN, FD Analysis using Rough

sets, FD discovery by Bayes Net. In This paper we present a

comparative study over Dep-Miner and FUN. We compare

the working process of Dep-Miner and FUN using a simple

example.

Keywords

Functional dependencies, closure of set, redundancy,

normalization.

1. INTRODUCTION
To discover dependency existing in an instance of a relation

received considerable interest as it allowed automatic

database analysis. Knowledge discovery and data mining

database management reverse engineering and query

optimization are among the main applications benefiting from

efficient dependencies discovery algorithms [6].

Redundancy is often caused by functional

dependency. A functional dependency is a link between two

sets of attributes in a relation. We can normalize a relation by

removing unwanted FDs. Normalization transforms

unstructured relation into separate relations, called normalized

ones. The main purpose of this separation is to eliminate

redundant data and reduce data anomaly. The data is

inconsistent due insert, update, and delete operations and

repetition of information. There are many different levels of

normalization depending on the purpose of database designer

such as 1NF, 2NF, 3NF, BCNF, 4NF, 5NF to make database

free from all the anomalies Most database applications are

designed to be either in the third, or the Boyce-Codd normal

forms in which their dependency relations are sufficient for

most organizational requirements. [2, 8]

2. BASIC CONCEPTS

2.1 Functional Dependency
Given a relation ‘R’, attribute ‘Y’ of ‘R’ is functional

dependant on attribute ‘X’ of ‘R’ if- each ‘X’ value of “r’ is

associated with precisely one value of ‘Y’ in ‘R’ ” . A

functional dependency is a statement X →Y requiring that X

functionally determines Y. For example

city → state

i.e. the state value depends on city value [7,8]

2.2 Free Set
A free set is a minimal set X of attributes in schema R such

that for any subset Y of X, |r[Y]|<|r[X]|. Thus, every single

attribute is a free set because they do not have a subset. If X is

a free set, A (R-X), and |X|<|XA| and |A| < |XA|, then XA is

another free set. The lhs of any minimal FD is necessarily a

free set. The free set of relation r, denoted by Fr(r), is a set of

all free sets on r.

2.3 Closure of Set
The closure of set X is calculated using cardinality as X+ =X +

{A|A (R-X) ^ |r[X]|}. That is, X+ contains attribute A on a

node at next level if X→ A.

2.4 Quasi-closure of Set
The quasi-closure of X is

Xo=X + (X - A1)
+ + - - - - - - + (X - Ak)

+. In fact Xo contains

the attributes on all the parent nodes of X and all the

dependent nodes of the parent nodes [1].

2.5 Maximal Equivalence Class
Let r be a stripped partition database. The set MC of maximal

equivalence classes of r is defined as follows

MC = max {c n | n r}.

2.6 Agree Set
Let ti and tj be tuples and X an attribute set. The tuples ti and

tj agree on X if ti[X] = tj [X]. The agree set of ti and tj is

defined as follows:

ag(ti,tj) ={A R/ti[A]=tj[A]}. If r is a relation, ag(r) =

{ag(ti,tj)/ti,tj r,ti tj}.

2.7 Maximal Set
A maximal set is an attribute set X which, for some attribute

A, is the largest possible set not determining A. We denote by

max(dep(r),A) the set of maximal sets for A [4].

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.15, September 2013

35

Level-2

3. FUN ALGORITHM
N. Novelli and R. Cicchetti, in 2001 proposed FUN: An

Efficient Algorithm for Mining Functional and Embedded

Dependencies. FUN describes FD approach at a general level

only without detailing the optimizations due to the stripped

partition database. Concept of free set is used for deriving

FDs in this algorithm.

FUN uses the cardinality of projection r[X] to test

FD satisfaction: | r[X] | = | r[XA] | if X→A. We note that |

r[X] | is the same as the number of equivalent classes in the

partition of X.[1] A free set P is a set of attributes such that

removing an attribute from P decreases the number of P’s

distinct values. Free sets correspond to left hand sides of FDs.

The concept of closure and quasi-closure is used to define

right hand sides of FDs. The closure of P denoted by P+ is the

union of the attributes in P and the additional attributes which

can be added to P without increasing the number of P’s

distinct values. The quasi-closure of P, is the union of P and

the closures of P’s maximal subsets, while all attributes in P+

are determined by P, only those not in P’s quasi-closure yield

minimal FDs. In summary, the minimal FDs satisfied in r are

the FDs of the form P→A where P is a free set. Steps

followed by algorithm are shown in below figure. [1, 5, 9].

Fig 1: Steps in FUN Algorithm

In a levelwise manner, the algorithm searches for

free sets of increasing sizes. At the level corresponding to FDs

with a left hand side of size the algorithm knows from the

previous level the free sets of size and their quasi-closure as

well as the collection of candidate free sets of size s+1. It first

computes the closure of the free

Sets of size s, and displays the FDs of the form X → A where

X is a free set of size. Then, it computes the quasi-closure of

the candidate free sets of size s+1 using the closure of the free

sets of size s. Then, it prunes the candidate free sets X of size

s" that are not free sets, based on the number of distinct values

of X and of its maximal subsets that are free sets, Finally it

generates the candidate free sets of size s +1 from the free sets

of size s. Consider a simple employee data base shown in

Table 1[5, 9].

Table 1. Simple employee data base

T

No

Emp_No

Dep_No

Year

Dep_Name

Mgr_no

A B C D E

1 1 1 2005 Production 5

2 1 5 2004 Marketing 12

3 2 2 2002 Sales 2

4 3 2 2008 Sales 2

5 4 3 2008 Purchase 2

6 5 1 1995 Production 5

7 6 5 1998 Marketing 12

From the above relation first find out Maximal equivalence

class

{ {1,2},{1,6},{2,7},{3,4,5}}

In our example the concur set for the pair of tuples (1,2) is

concur set con(1, 2)={A} Similarly, we have con(1,6) =

con(2,7) = con(3,4) ={B,D,E}, con(3,5) = {E}, con(4,5)

={C,E} so the concur set of r are con(r)={A, BDE , E CE}.

Complete working process of FUN is shown in the table 2.

Table 2. Working of FUN Algorithm

4. DEP-MINER ALGORITHM
St_ephane Lopes, Jean-Marc Petit, and Lot_ Lakhal in 2000

proposed a new efficient algorithm called Dep-Miner. Dep-

Miner is used for discovering agree sets, maximal sets, left-

hand sides of minimal non-trivial functional dependencies and

real-world Armstrong relations. In Dep-Miner the underlying

idea is based on the concept of agree set, which groups all

attributes having the same value for a given pair of tuples.

From these sets, maximal sets we can derive. The maximal

sets for some attribute A are the largest possible sets of

attributes not determining A. Then from the complements of

X Cardinality

One item

candidate

set

Closure FD

A 6 A A

B 4 B B,D,E B → D, E

C 6 C C,E C → E

D 4 D B,D,E D → B, E

E 3 E E

AB Free set A,B,D,E
A,B,C,D,

E
AB → C

AC Free set A,C,E
A,B,C,D,

E
AC →B, D

AD Free set A,B,D,E
A,B,C,D,

E
AD → C

AE Free set A,E
A,B,C,D,

E
AE →

B,C,D

BC Free set B,C,D,E
A,B,C,D,

E
BC → A

BD Not free ------ ------

BE Not free ----- ------

CD Free set B,C,D,E
A,B,C,D,

E
CD → A

CE Not free ------ ------

DE Not free ------- ------

Compute cardinality of single

attribute (Card (P))

Quasi-closure of attribute at

Move to Level- 3

If Card(X) =Card (P)

Compute cardinality of two

attribute (Card (X))

X is non free item set & not

participates further

Level-1

Relation

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.15, September 2013

36

complement

complement

these maximal sets they derive the left hand sides of FDs

using a levelwise algorithm for each attribute A it searches for

left hand sides X by increasing the size of X. The steps

followed by algorithm are shown in below figure.

Fig 2: Steps in Dep-Miner Algorithm

Stripped partition databases, is used to compute agree sets. To

avoid computing agree sets for all pairs of tuples by limiting

themselves to the tuples within MC the set of maximal

equivalence classes of the stripped partition database. So if we

consider employee database given in table 1 maximal

equivalence class is MC= {{1,2},{1,6},{2,7},{3,4,5}}.

For building agree sets, we only consider couples of

tuples belonging to a common equivalence class of MC. In

our example the agree set for the pair of tuples(1,2) is ag{A}

Similarly we have ag(1,6), ag(2,7) ag(3,4) ={B_D_E}

ag(3,5)={E} ag(4,5)={C,E},so agree sets of r are

ag(r)={A,BDE, E,CE}.

The maximal sets from the agree sets as follows, in this

example, we have max (A, r) = {BDE, CE} and the

complement of the maximal set of A is cmax {A, r} = {AC,

ABD}. Finally, the left-hand sides of FDs are defined from

these complements of maximal sets and last generate

Armstrong relation from maximal sets.

The entire working process of Dep-Miner is shown

in the table 3 [4, 9].

Table 2. Working of Dep-Miner Algorithm

So final FDs are

BC→A, CD→A, D→B, AC→B, AE→B, AB→C, AD→C,

AE→C, B→D, AC→D, AE→D, B→E, C→E, D→ E

5. CONCLUSION
In FUN testing FDs is based on partition refinement. The

dependency holds if the partition refines means if every

equivalence class in is a subset of some equivalence class. In

FUN approach describe a general level only without detailing

the optimizations due to the stripped partition.

Characterization of FDs is based on the concept of free sets.

Free sets correspond to left hand sides of FDs. Right hand

sides FDs define the closure and quasi-closure of an attribute

set.

Dep-Miner discovers FDs by considering pairs of

tuples, i.e. agree sets. First, a stripped partition database is

extracted from the initial relation. Then, using such partitions,

agree sets are computed and maximal sets are generated.

Thus, a minimum FD cover according to these maximal sets is

found. Dep-Miner employs a levelwise search. It combines

the discovery of functional dependencies along with the

construction of real-world Armstrong relations

6. REFERENCES
[1] Jixue Liu, Jiuyong Li, Chengfei Liu, and Yong Feng

Chen “Discover dependencies from Data—A review”

IEEE transactions on knowledge and data engineering,

vol. 24, no. 2, February 2012

[2] Nittaya Kerdprasop and Kittisak Kerdprasop “Functional

dependency discovery via Bayes net analysis” recent

researches in computational techniques, non-linear

systems and control ISBN: 978-1-61804-011

[3] Jalal Atoum, Dojanah Bader and Larafat Awajan

“Mining functional dependency from relational databases

using equivalent classes and minimal cover “ Journal of

computer science 4 (6): 421-426, 2008 ISSN 1549-

3636© 2008 science publications

[4] St_ephane Lopes, Jean-Marc Petit, and Lot_ Lakhal

“Dep-Miner Effective Discovery of Functional

Dependencies and Armstrong Relations” Springer-

Verlag Berlin Heidelberg 2000, pp. 350-364

[5] N. Novelli and R. Cicchetti, “Fun: An Efficient

Algorithm for Mining Functional and Embedded

Dependencies” Lecture Notes in Computer Science

Volume 1973, 2001, pp 189-203

[6] Y. Huhtala, J. Karkkainen, P. Porkka, and H. Toivonen,

“Tane : An Efficient Algorithm for Discovering

Functional and Approximate Dependencies,” Computer

J., vol. 42, no. 2, pp. 100-111, 1999.

[7] Vijay Verma and Pradeep Sharma,” Data Dependencies

Mining In Database by Removing Equivalent Attributes”

IJCSE, Vol.-1, Issue-1, July 2013

[8] Avi Silberschatz , Henry F. Korth ,S.

Sudarshan,”Databse System Concepts, Sixth Edition,

McGraw-Hill ISBN 0-07-352332-1

[9] Charlotte Vilarem, “Approximate Key and Foreign Key

Discovery in Relational Databases”, University Of

Toranato

[10] Vijaya Lakshmi, Dr. E. V. Prasad a fast and efficient

method to find the conditional functional dependencies

in databases International journal of engineering research

and development e-issn: 2278-067, P-ISSN: 2278-800x,

www.ijerd.com volume 3, issue 5 (august 2012), pp. 56

R

H

S

cmax (RHS,r)

Size1 Size2

Candidate
Trav

ersal
Candidate

Trav

ersal

A {AC,ABD} A,B,C,D A
BC,BD,

CD

BC,

CD

B
{BCDE,ABD,

ABCD}

A,B,C,D,

E
B,D

AC,AE,

CE

AC,

AE

C
{BCDE,AC,

ABCD}

A,B,C,D,

E
C

AB,AD,

AE,DB,

BE,DE

AB,

AD,

AE

D
{BCDE,ABD,

ABCD}

A,B,C,D,

E
B,D

AC,AE,

CE

AC,

AE

E {BCDE} B,C,D,E
B,C,

D,E
-

Relation

Stripped Partition Database

Complement of

Agree Set

Agree Set

Maximal Set Complement of

Maximal Set

Armstrong

Relation
Functional

Dependencies

IJCATM : www.ijcaonline.org

