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ABSTRACT 

Reed Solomon (RS) codes are a sort of non-binary cyclic 

codes. This code is widely used in wireless and mobile 

communication units. RS encoder along with RS decoder 

using UHD architecture is designed in this paper. In this brief, 

a novel low complexity reformulated inverse-free burst-error 

correction algorithm is developed. Then based on the 

Proposed RiBC algorithm, a Unified VLSI architecture is 

designed. It will be shown that, it can achieve high-speed, 

throughput and improved error correcting capability than 

Hard Decision Decoding (HDD) design with less area. A 

design of (7, 3) Reed Solomon encoder and Decoder are 

implemented using Verilog hardware description language 

(HDL) code, simulated and synthesized by XILINX  ISE 

simulator. 

General Terms 

RiBC algorithm,RS codes,UHD. 

Keywords 
Burst error correction, Hard decision decoding, unified VLSI 
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1. INTRODUCTION 
Reed-Solomon (RS) codes are concerned with the detection 

and correction of errors in symbols. RS codes are widely used 

for correcting the errors in storage and communication 

systems [1]. During transmission error may happen for a 

number of reasons e.g. (scratches on CD, radio frequency 

interference with mobile phone reception, noise etc.) At the 

receiving side, the decoder detects and corrects a limited 

predetermined number of errors occurred during transmission. 

When we are dealing with the RS codes as forward error 

correction, the errors are generated in transmission procedure 

are divided into burst errors, random errors and erasures[2]. In 

this brief, a low-complexity high speed RS encoding and 

decoding architecture will improve the overall system 

performance significantly. In this a low complexity 

reformulated inverse free burst-error correcting (RiBC) 

algorithm is developed for practical applications. Then, based 

on the proposed reformulated inverse free burst error 

correcting algorithm, a unified VLSI architecture that is 

capable of correcting random errors, as well as burst errors 

and erasures, is firstly presented for multi-mode decoding 

requirements. It will be shown that, being the first RS Encoder 

and then decoder owning enhanced burst-error correcting 

capability, it can achieve significantly better burst error 

correcting capability than hard-decision decoding (HDD) 

design. 

 

 

In this paper, area efficient RS encoder along with RS decoder 

using UHD architecture are implemented.Section2 discusses 

the Reed Solomon encoding procedure.Section3 introduces 

the proposed RiBC algorithm and Section4 covers the 

proposed unified hybrid decoding Architecture. Experimental 

results are showing the simulation results of proposed design. 

2. REED SOLOMON ENCODING 

2.1 Reed- Solomon codes 
Reed-Solomon code is a block code and can be specified as 

RS (n, k) as shown in Fig1.The variable n is the size of the 

code word with the unit of symbols, k is the number of data 

symbols and 2t is the number of parity symbols. Each symbol 

consists of  m number of bits. Reed Solomon codes works on 

Galois field.  The Reed Solomon code  allows correct up to t 

number of symbol errors.Where t is given by   

( ) / 2t n k  . 

PARITYDATA

n

k 2t

 

Fig 1 :  The structure of RS Codeword 

2.2 Reed-Solomon Encoder 
Reed-Solomon codes operate on the information by dividing 

the message stream into blocks of data, adding redundancy 

per block, dependent only on the current inputs. The symbols 

in Reed-Solomon coding are elements of a Galois Field (finite 

field). Encoding procedure is done by dividing the  message 

polynomial by generator polynomial, then it gives the Galois 

field remainder. The Galois field remainder is appended to the 

message[1]. This division is done by a Linear Feedback Shift 

Register (LFSR) implementation.Reed-Solomon Encoder using 

LFSR are shown in the Fig 2. The Linear Feedback Shift 

Register is the main computational element of the Reed- 

Solomon  Encoder. The  RS encoding  procedure is based on 

Finite Field operations. The generating polynomial for an RS 

code takes the form 

0 1 2 2 2 1 2 1 2 2( ) .... t t t tg z g g z g z g z g z      
 

3( ) 1g z z z    
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Fig2: Reed-Solomon Encoder Block Diagram (LFSR) 

3. PROPOSED RIBC ALGORITHM 
RS codes are very effective for correcting long burst errors. 

However, previous decoding algorithms in [5] and [6] are 

infeasible for hardware implementation due to their high 

computation complexity, long data path.  

3.1 Proposed Reformulated Inverse-free 

Burst-Error Correcting (RiBC) Algorithm 
In [12] the original burst error correcting algorithm consists of 

inversion operation and some computational steps contains 

long data dependency and long data path. To resolve these 

problems we  reformulate  BC algorithm to the proposed 

reformulated inverse free burst error correction algorithm. 

The Reformulated inverse free burst error correction 

algorithm is a kind of list decoding algorithm [4]. In this 

proposed RiBC algorithm eight polynomials are updated 

simultaneously in each iteration. After every 2β inner 

iterations,

~(2 )

( )z



,
 as the candidate of the error locator 

polynomial of the random errors is computed for current  lth 

outer iteration. When l reaches n, we track the

~(2 )

(z)


 , that 

is identical for longest consecutive l, and record the last 

element l* of the consecutive l’s. Then the corresponding 

(2 ) (z)  and

~(2 )

(z)


 , at the l*-th loop are marked as 

overall error locator polynomial 
* ( )z  and error evaluator 

polynomial 
* (z)  respectively 

Algorithm for Reformulated Inverse - free Burst-Error 

Correction (RiBC): 

f -length ( f<( 2t--2  )  burst of errors plus maximum   

random errors ): 

Input: Syndromes 0, 1 2 2 1, ,........ ts s s s  ; 

A1: Compute 

1 (2 2 ) 2 (2 2 ) 1(z) (1 z)(1 z)......(1 z)(1 )t t z            

 

2 2 2

1 2 2 21 .... t

tz z z 

   

    
 

A2: For  l=0 step 1 until n-1 do 

 

A2.1: Compute
2 2 2

1 2 2 2(z) ( z) 1 ... ;l t

tz z z 

 

       

A2.2: Compute 

2 1

0 1 2 1(z) ..... ,t

tz z 

     
 

2 2

2 2

0

;
t

i j i t j

j

where S





  



    

A2.3: Initialize 
(0) (0) (0) (0) 2 2

0 1 2 2(z) .... (z);t

tz z   

      
 

(0) (0) (0) (0) 2 2

0 1 2 2(z) .... (z);t

tB b b z b z 

     
 

~(0) ~(0) ~(0) ~(0)
2 2

0 1 2 2(z) ..... 1;t

tz z   

     
 

~(0) ~(0) ~(0) ~(0)
2 2

0 1 2 2(z) ..... 1;t

tB b b z b z 

    
 

~(0) ~(0) ~(0) ~(0)
2 1

0 1 2 1(z) ..... (z);t

tz z   

     
 

~(0) ~(0) ~(0) ~(0)
2 1

0 1 2 1(z) ..... (z);t

tz z   

     
 

~*(0) ~*(0) ~*(0) ~*(0)
2 1

0 1 2 1(z) ..... (z);t

tz z S   

     
 

~*(0) ~*(0) ~*(0) ~*(0)
2 1

0 1 2 1(z) ..... (z);t

tz z S   

     
 

(0) (0)1, 0;k    

A2.4: For 0r   Step1 Until 2 1   do 

A2.4.1: Compute  

~( 1) ~( ) ~( ) ~( )

1 0 ;
r r r r

r

i i i    


 
 

  

~*( 1) ~*( ) ~( ) ~*( )

1 0 ;
r r r r

r

i i i    


 
 

  

~( )
1 ( ) ( ) ( )

0 1 ;
r

r r r r

i i ib   

 
 

  

~( 1) ~( ) ~( ) ~( )
( )

0 1;
r r r r

r

i i bi   


  
 

A2.4.2: If  

~( )

0 0
r

   and  
( ) 0rk  then  1a  ; else 

0a  ; 

A2.4.3: 

( ) ( )( 1)
1

~( ) ~( )~( 1)

1

~( ) ~( )~( 1)

1
_

~*( ) ~*( )~*( 1)

1

~( ) ( )( 1)

0
( 1) ( ) ( )1 1

r rr
i ii

r rr

i ii

r rr

i ii

r rr

i ii

r rr

r r r

bb

bb

a

a

k k k





 

 

 




















  
  
  
  
    
    
       
  
  
  
     
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A3: Track the longest consecutive 

~(2 )

(z)


  that are 

identical, recorded the last element 
*l  of the 

consecutive l s  then the overall error locator 

polynomial 
* (2 )(z) (z)    at the  

*l -th 

outer loop. 

The overall evaluator polynomial  
* (z)  is corresponding 

~(2 )

(z)


   at the   
*l -th outer loop. 

Output  
* (z) ,

* (z)
 

The proposed Reformulated Inverse-free burst error correction 

algorithm is targeted for correcting burst (local) errors plus 

some random (global) errors. If the channel condition 

guarantees that only single long burst of errors occurred. Wu 

[7] presented a low complexity single long burst of errors 

correcting (sLBC) for that case. The single long burst of 

errors correcting algorithm is a special version of 

Reformulated inverse-free burst error correction algorithm. 

3.2 Algorithm for single long Burst of 

Errors Correction (sLBC) 

Input: Syndromes 0, 1 2 2 1, ,........ ts s s s  ; 

B1: Compute 
1 (2 1) 2 (2 1)(z) (1 z)(1 z)....(1 )t t z          

2 2 1

1 2 2 11 .... t

tz z z   

      

B2: Compute 

2

2 2 1

2 1 2 2 1 2 3 0 2 1(z) .... t

t t t ts s z s z s z   

       

B3:  B3.1: Find roots of (z) ; 

B3.2:  Track the longest consecutive root sequence
 1s 

,
s 

,…..
2 2s t  

 ; 

  B3.3:   Use t to calculate the value of s,  , 

Then it can claim that a burst of errors starts at position 
s 

 

with length  ; 

B4: Compute new error locator polynomial   
* 2 2(z) ( z)s t    

 
B5: Compute new error value polynomial   

* 2 1

0 1 2 1(z) ..... t

tz z   

    
 

       Where 
* * *

0 1 1 0.....i i i is s s     
 

for 0,1,2........2 1i t  ; 

Output  
* (z) ,

* (z)
 

3.3 Algorithm for Random Error and 

Erasure Correction (rEEC)  

Input: Syndromes 0, 1 2 2 1, ,........ ts s s s  ; 

Erasure locations: 0 1, 1, ....., ; 2 2z z z t   
 

C1: Compute 

0 1 1(z) (1 z z)(1 z)....(1 z)z z      

2

1 21 .....z z z   

      

 

C2: Compute   
2 1

0 1 2 1(z) .... t

tz z 

     
 

where

0

i j i j

j

s






  ; 

C3: Initialization: 
(0) (0)(z) (z) (z)B   

 
(0) (0) (0) 0 2 1

0 1 2 1(z) .... (z)t

tz z   

      
 

(0) (0) 0 0 2 1

0 1 2 1(z) .... (z)t

t z   

      
 

(0) (0)k 0, 1 
 

C4: For r=0 step 1 until 2 1t   do 

C4.1:  Compute 
( 1) 1 (r) (r) (r) (r)

0(z) x (z) (z)r       
; 

( 1) (r) (r) (r) (r)

0 0(z) (z) x (z) x (z)r rB      
 

C4.2: If  
( )

0 0r   and 
(r) 0k  then  a=1;  else a=0; 

(r) (r)( 1)

1 (r) ( )(r 1)

(r)(r 1) (r)

0

( 1) (r)(r)

(z)(z)

(z) (z)(z)

11

r

r

r

xBB

ax

a

k kk

 










   
  

     
    

    
         

 

Output:,
* (2 )(z) (z)t  

 

4. UHD ARCHITECTURE 
The above three algorithms are share many similar 

computation steps. Based on this interesting similarity, a UHD 

architecture is designed. Figure 3 shows the overall 

architecture of Unified Hybrid Decoding decoder. Three types 

of lines illustrate data flows for different work modes: solid 

line for mode-1 for burst combined with random error 

correction RiBC algorithm, dashed line for mode-2 for only 

burst error correction and big dashed line for mode-3 for only 

random error correction. Different blocks are used to process 

different steps in algorithm.  

 

sc

Received 
codeword

FIFO

KES PT CSEE

Corrected
Codeword

UHD Architecture

-Block

-Block -Block

 

Fig 3:Overall architecture of UHD decoder 
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A Reed–Solomon decoder consists of  mainly  four blocks: 

 The syndrome computation (SC) block. 

 The key Equation solver (KES) block. 

 Position tracking (PT) block. 

 The Chien search and error evaluator (CSEE) 

block 

4.1   Syndrome Calculation 
The first step in decoding process is the received symbol is to 

determine the data syndrome.The syndrome calculation block 

is used to check whether the received polynomial contains 

errors or not. The syndrome generation block evaluates the 

received codeword polynomial. If the received codeword 

consists an error then the syndrome polynomial is non zero.If 

received codeword contains an error, it indicates that the 

received  syndrome polynomial is zero,and the data is passed 

through the decoder without any error correction.The 

syndromes can then be calculated by substituting the 2t roots 

of the generator polynomial G(z) into R(z). The syndrome 

polynomial is generally represented as, Where α is the 

primitive element.          

                            
     

1

0

( )
n

i ij

i j

j

S r r 




  , 0,1,....(2 1)i t   

4.1.1  Block : 
 - block is used to carryout steps A1, B1, or C1 in different 

work modes. No matter which work mode is selected, the 

computation of  (z) is always carried out as follows: 
2

1 1 2( ) (1 ) 1 ( ) ............i iz A z z z z 

          
 

Where     denotes                      

or    , and   denotes 2t-2  , 2t-1. 

4.1.2   Block: 

 block used to process Steps A2.1 and B3.1.  For these 

steps, the common operation is multiply accumulate for each 

coefficient of the polynomial. Only a slight difference exists 

in step B3.1 it is a Chien Search-like step, hence an extra 

adder tree is required to verify the validity of current received 

symbol. For each l in step A2.1 since 

2 2

1 2[ ] ( ) 1 ......l t

tz z z z 

   

      

should be maintained within 2t+3 cycles 

4.1.3  Block: 
 -block is used to process steps A2.2, B2 and C2. Actually, 

the inherent nature of steps A2.2, B2 and C2 is the 

multiplication of two polynomials. 

4.2 Key Equation Solver Block 

Architecture 
This is the heart of the Reed-Solomon Decoder. This KES 

block generates the Error Locator polynomial (z) . After 

the Error Locator polynomial has been found, it is used to 

determine the Error Evaluator polynomial (z) . 

In this step with the help of  S(z),  KES  block will calculate 

error locator polynomial Λ(z) and error evaluator polynomial 

(z)  by solving key equation: Λ(z)S(z)= (z)  mod 
2tz .  

Key equation solver block determines the overall system 

performance significantly.The overall decoding process is 

done by using this key equation solver only. 

Control

PE 10
PE 11 PE 12t-2 PE 12t-1

PE 02t-2 PE 02t-3
PE 01 PE 00

ctrl

0
0

0
0

( )r

( )r

( )r

( )

0

r



( )

0

r



( )

0

r



 
Fig 4:Overall architecture of Key Equation Solver block 

In UHD decoder KES block is carry out steps A2.4, B4, B5 

and C4. Fig 4 represents the overall architecture of KES block 

and internal structures of its two types of processing elements 

(PE): PE0 and PE1 are shown in the Fig 5 and Fig 6. As 

shown in fig 4 the KES block consist of 2t-1PE0’s and 2t 

PE1’s in the rth iteration. Each register in PE0i / PE1i stores the 

corresponding coefficients of different polynomials(Fig5, 

Fig6). 

D

D

D

D

1

1

1

0

0

0

Group A Ctrl 1

ctrl

( )r

(r)

0

( )r

ib

( )r

ib

(r)

i
(r)

i

1i 

( )r

( r )

0

(r)

1bi

(r)

1ib 

 
Fig 5: Block diagram of 0iPE

 

D

D

D

D

1

1

0

0

ctrl

( )r

(r)

0

(r)

0

Group B

Group C

( )r

i

( )r

i

( )* r

i
( )* r

i

(r)

i

(r)*

i

( )r

( )

1

r

i 

( )*

1

r

i 

 
Fig 6: Block diagram of 1iPE
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4.3 Position Track (PT) Block  
PT block is used to track the longest consecutive polynomials 

that are identical or positions of roots that is steps B3.2 and 

B3.3. 

The inputted     
     

   
    

   
     

 from KES block at the lth 

outer iteration are denoted as 

~

( )i l       , and

~

( )i l . In 

addition,     ) (temp) represents

~

( 1)i l  , while

~

( )i l  

(store) are the coefficients of current continuously 

identical          . Moreover,   
  (longest) stores the 

coefficients of current longest continuously identical  

         . Control signals shift and equalare generated from 

signal generation Schedule. After l reaches n,   (longest) and 

~

i  (longest) are outputted as the coefficients of overall error 

locator polynomial       and overall error evaluator 

polynomial
* ( )z . 

4.4 Chien Search and Error Correction 
In this approach error locator polynomial and error value 

polynomial values are passed to the Chien search and Forney 

algorithm blocks. To find the error location, Chien search is 

the very good efficient method. Chien search method is used 

for finding error positions. Fig7 shows the basic Chien search 

block. Error correction block is shown in the Fig8.Its basic 

idea is simple but efficient: If ( ) 0i   for current i, it 

indicates that the ith symbol of the received codeword is 

wrong and needs to be corrected. After obtaining the error 

positions, the following Forney algorithm is applied to 

determine the error value. 
1

1

(X )

( )

i

i

iX



 


 


 

whereYi indicates error magnitude for the ith erroneous 

symbol. 

Cx 0

1
D Ci

α l  

Fig 7: Basic Chien search cell 

 

 

 

 

Zero detect

FIFO Output

ROM 
interface

D D D

D

Error value

Output corrected

( )i 

( )i 

( )l i 

D

Fig 8:  Error Correction block 

The block diagram of proposed architecture is shown in the 

Fig9. The encoded output being given to the decoder along 

with introduction of noise. The decoder is fed with all the 

information need for decoding after a certain latency it will 

check whether all the code words are valid code words, if so it 

will output or else it will correct them, if the number of 

corrupted code words are less than the maximum error 

correcting capability of the RS Decoder. 

 
Fig 9: Block Diagram of Proposed Architecture 

5. EXPERIMENTAL RESULTS 
The Simulation results of  proposed architecture are carried 

out using Xilinx ISE simulator. 

 

Fig10:  Simulation result of encoder  
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Fig11: Simulation result for  Syndrome  

 

 

Fig12:  Simulation result for  decoder  

 

 
Fig13: Simulation result for Encoder _Decoder 

 

Fig14: Simulation result for Encoder_ Decoder 

 

 

Fig 15: Final output for proposed Architecture 

 Message will be passing from encoder to decoder.The 

decoder checks the resulted data and gives the error free data. 

Fig15 shows the output of proposed architecture. 

6. CONCLUSION 
In this paper, a Unified Hybrid Architecture of the area-

efficient Reed Solomon encoder along with Reed Solomon 

decoder using UHD architecture is developed. The 

architecture that can support three decoding modes is 

presented for the first time. The proposed architecture is used 

to capable of correct burst (local) errors and random (global) 

errors at a time. It will provide applications like Bar code 

scanning, high speed optical communications, and Data 

storage devices. Compare to traditional RS decoder the  

proposed architecture can achieve efficient burst error 

correcting capability. 
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