
International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.12, September 2013

17

Implementation of RS Encoder and RS Decoder

using UHD Architecture

Naresh.B
M.Tech Student, ECE

Vardhaman College of Engineering,

Hyderabad, INDIA

S.Srinivas
Assistant Professor (Sr.), ECE

Vardhaman College of Engineering,

Hyderabad, INDIA

ABSTRACT

Reed Solomon (RS) codes are a sort of non-binary cyclic

codes. This code is widely used in wireless and mobile

communication units. RS encoder along with RS decoder

using UHD architecture is designed in this paper. In this brief,

a novel low complexity reformulated inverse-free burst-error

correction algorithm is developed. Then based on the

Proposed RiBC algorithm, a Unified VLSI architecture is

designed. It will be shown that, it can achieve high-speed,

throughput and improved error correcting capability than

Hard Decision Decoding (HDD) design with less area. A

design of (7, 3) Reed Solomon encoder and Decoder are

implemented using Verilog hardware description language

(HDL) code, simulated and synthesized by XILINX ISE

simulator.

General Terms

RiBC algorithm,RS codes,UHD.

Keywords
Burst error correction, Hard decision decoding, unified VLSI

Architecture

1. INTRODUCTION
Reed-Solomon (RS) codes are concerned with the detection

and correction of errors in symbols. RS codes are widely used

for correcting the errors in storage and communication

systems [1]. During transmission error may happen for a

number of reasons e.g. (scratches on CD, radio frequency

interference with mobile phone reception, noise etc.) At the

receiving side, the decoder detects and corrects a limited

predetermined number of errors occurred during transmission.

When we are dealing with the RS codes as forward error

correction, the errors are generated in transmission procedure

are divided into burst errors, random errors and erasures[2]. In

this brief, a low-complexity high speed RS encoding and

decoding architecture will improve the overall system

performance significantly. In this a low complexity

reformulated inverse free burst-error correcting (RiBC)

algorithm is developed for practical applications. Then, based

on the proposed reformulated inverse free burst error

correcting algorithm, a unified VLSI architecture that is

capable of correcting random errors, as well as burst errors

and erasures, is firstly presented for multi-mode decoding

requirements. It will be shown that, being the first RS Encoder

and then decoder owning enhanced burst-error correcting

capability, it can achieve significantly better burst error

correcting capability than hard-decision decoding (HDD)

design.

In this paper, area efficient RS encoder along with RS decoder

using UHD architecture are implemented.Section2 discusses

the Reed Solomon encoding procedure.Section3 introduces

the proposed RiBC algorithm and Section4 covers the

proposed unified hybrid decoding Architecture. Experimental

results are showing the simulation results of proposed design.

2. REED SOLOMON ENCODING

2.1 Reed- Solomon codes
Reed-Solomon code is a block code and can be specified as

RS (n, k) as shown in Fig1.The variable n is the size of the

code word with the unit of symbols, k is the number of data

symbols and 2t is the number of parity symbols. Each symbol

consists of m number of bits. Reed Solomon codes works on

Galois field. The Reed Solomon code allows correct up to t

number of symbol errors.Where t is given by

() / 2t n k  .

PARITYDATA

n

k 2t

Fig 1 : The structure of RS Codeword

2.2 Reed-Solomon Encoder
Reed-Solomon codes operate on the information by dividing

the message stream into blocks of data, adding redundancy

per block, dependent only on the current inputs. The symbols

in Reed-Solomon coding are elements of a Galois Field (finite

field). Encoding procedure is done by dividing the message

polynomial by generator polynomial, then it gives the Galois

field remainder. The Galois field remainder is appended to the

message[1]. This division is done by a Linear Feedback Shift

Register (LFSR) implementation.Reed-Solomon Encoder using

LFSR are shown in the Fig 2. The Linear Feedback Shift

Register is the main computational element of the Reed-

Solomon Encoder. The RS encoding procedure is based on

Finite Field operations. The generating polynomial for an RS

code takes the form

0 1 2 2 2 1 2 1 2 2() t t t tg z g g z g z g z g z      

3() 1g z z z  

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.12, September 2013

18

Feedback

Switch 1

Output symbol
sequence

Input message symbol
sequence

Switch 2

+ + + +

3 1 3
0

4Z3Z2Z
1Z0Z

Fig2: Reed-Solomon Encoder Block Diagram (LFSR)

3. PROPOSED RIBC ALGORITHM
RS codes are very effective for correcting long burst errors.

However, previous decoding algorithms in [5] and [6] are

infeasible for hardware implementation due to their high

computation complexity, long data path.

3.1 Proposed Reformulated Inverse-free

Burst-Error Correcting (RiBC) Algorithm
In [12] the original burst error correcting algorithm consists of

inversion operation and some computational steps contains

long data dependency and long data path. To resolve these

problems we reformulate BC algorithm to the proposed

reformulated inverse free burst error correction algorithm.

The Reformulated inverse free burst error correction

algorithm is a kind of list decoding algorithm [4]. In this

proposed RiBC algorithm eight polynomials are updated

simultaneously in each iteration. After every 2β inner

iterations,

~(2)

()z



,
 as the candidate of the error locator

polynomial of the random errors is computed for current lth

outer iteration. When l reaches n, we track the

~(2)

(z)


 , that

is identical for longest consecutive l, and record the last

element l* of the consecutive l’s. Then the corresponding

(2) (z) and

~(2)

(z)


 , at the l*-th loop are marked as

overall error locator polynomial
* ()z and error evaluator

polynomial
* (z) respectively

Algorithm for Reformulated Inverse - free Burst-Error

Correction (RiBC):

f -length (f<(2t--2 ) burst of errors plus maximum 

random errors):

Input: Syndromes 0, 1 2 2 1, ,........ ts s s s  ;

A1: Compute

1 (2 2) 2 (2 2) 1(z) (1 z)(1 z)......(1 z)(1)t t z            

2 2 2

1 2 2 21 t

tz z z 

   

    

A2: For l=0 step 1 until n-1 do

A2.1: Compute
2 2 2

1 2 2 2(z) (z) 1 ... ;l t

tz z z 

 

       

A2.2: Compute

2 1

0 1 2 1(z) ,t

tz z 

     

2 2

2 2

0

;
t

i j i t j

j

where S





  



  

A2.3: Initialize
(0) (0) (0) (0) 2 2

0 1 2 2(z) (z);t

tz z   

      

(0) (0) (0) (0) 2 2

0 1 2 2(z) (z);t

tB b b z b z 

     

~(0) ~(0) ~(0) ~(0)
2 2

0 1 2 2(z) 1;t

tz z   

     

~(0) ~(0) ~(0) ~(0)
2 2

0 1 2 2(z) 1;t

tB b b z b z 

    

~(0) ~(0) ~(0) ~(0)
2 1

0 1 2 1(z) (z);t

tz z   

     

~(0) ~(0) ~(0) ~(0)
2 1

0 1 2 1(z) (z);t

tz z   

     

~*(0) ~*(0) ~*(0) ~*(0)
2 1

0 1 2 1(z) (z);t

tz z S   

     

~*(0) ~*(0) ~*(0) ~*(0)
2 1

0 1 2 1(z) (z);t

tz z S   

     

(0) (0)1, 0;k  

A2.4: For 0r  Step1 Until 2 1  do

A2.4.1: Compute

~(1) ~() ~() ~()

1 0 ;
r r r r

r

i i i    


 

~*(1) ~*() ~() ~*()

1 0 ;
r r r r

r

i i i    


 

~()
1 () () ()

0 1 ;
r

r r r r

i i ib   

 

~(1) ~() ~() ~()
()

0 1;
r r r r

r

i i bi   


  

A2.4.2: If

~()

0 0
r

  and
() 0rk  then 1a  ; else

0a  ;

A2.4.3:

() ()(1)
1

~() ~()~(1)

1

~() ~()~(1)

1
_

~*() ~*()~*(1)

1

~() ()(1)

0
(1) () ()1 1

r rr
i ii

r rr

i ii

r rr

i ii

r rr

i ii

r rr

r r r

bb

bb

a

a

k k k





 

 

 




















  
  
  
  
    
    
       
  
  
  
     

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.12, September 2013

19

A3: Track the longest consecutive

~(2)

(z)


 that are

identical, recorded the last element
*l of the

consecutive l s then the overall error locator

polynomial
* (2)(z) (z)   at the

*l -th

outer loop.

The overall evaluator polynomial
* (z) is corresponding

~(2)

(z)


 at the
*l -th outer loop.

Output
* (z) ,

* (z)

The proposed Reformulated Inverse-free burst error correction

algorithm is targeted for correcting burst (local) errors plus

some random (global) errors. If the channel condition

guarantees that only single long burst of errors occurred. Wu

[7] presented a low complexity single long burst of errors

correcting (sLBC) for that case. The single long burst of

errors correcting algorithm is a special version of

Reformulated inverse-free burst error correction algorithm.

3.2 Algorithm for single long Burst of

Errors Correction (sLBC)

Input: Syndromes 0, 1 2 2 1, ,........ ts s s s  ;

B1: Compute
1 (2 1) 2 (2 1)(z) (1 z)(1 z)....(1)t t z        

2 2 1

1 2 2 11 t

tz z z   

    

B2: Compute

2

2 2 1

2 1 2 2 1 2 3 0 2 1(z) t

t t t ts s z s z s z   

       

B3: B3.1: Find roots of (z) ;

B3.2: Track the longest consecutive root sequence
 1s 

,
s 

,…..
2 2s t  

 ;

 B3.3: Use t to calculate the value of s,  ,

Then it can claim that a burst of errors starts at position
s 

with length  ;

B4: Compute new error locator polynomial
* 2 2(z) (z)s t    

B5: Compute new error value polynomial

* 2 1

0 1 2 1(z) t

tz z   

    

 Where
* * *

0 1 1 0.....i i i is s s     

for 0,1,2........2 1i t  ;

Output
* (z) ,

* (z)

3.3 Algorithm for Random Error and

Erasure Correction (rEEC)

Input: Syndromes 0, 1 2 2 1, ,........ ts s s s  ;

Erasure locations: 0 1, 1,, ; 2 2z z z t   

C1: Compute

0 1 1(z) (1 z z)(1 z)....(1 z)z z    

2

1 21z z z   

    

C2: Compute
2 1

0 1 2 1(z) t

tz z 

     

where

0

i j i j

j

s






  ;

C3: Initialization:
(0) (0)(z) (z) (z)B   

(0) (0) (0) 0 2 1

0 1 2 1(z) (z)t

tz z   

      

(0) (0) 0 0 2 1

0 1 2 1(z) (z)t

t z   

      

(0) (0)k 0, 1 

C4: For r=0 step 1 until 2 1t  do

C4.1: Compute
(1) 1 (r) (r) (r) (r)

0(z) x (z) (z)r       
;

(1) (r) (r) (r) (r)

0 0(z) (z) x (z) x (z)r rB      

C4.2: If
()

0 0r  and
(r) 0k  then a=1; else a=0;

(r) (r)(1)

1 (r) ()(r 1)

(r)(r 1) (r)

0

(1) (r)(r)

(z)(z)

(z) (z)(z)

11

r

r

r

xBB

ax

a

k kk

 










   
  

     
    

    
       

Output:,
* (2)(z) (z)t  

4. UHD ARCHITECTURE
The above three algorithms are share many similar

computation steps. Based on this interesting similarity, a UHD

architecture is designed. Figure 3 shows the overall

architecture of Unified Hybrid Decoding decoder. Three types

of lines illustrate data flows for different work modes: solid

line for mode-1 for burst combined with random error

correction RiBC algorithm, dashed line for mode-2 for only

burst error correction and big dashed line for mode-3 for only

random error correction. Different blocks are used to process

different steps in algorithm.

sc

Received
codeword

FIFO

KES PT CSEE

Corrected
Codeword

UHD Architecture

-Block

-Block -Block

Fig 3:Overall architecture of UHD decoder

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.12, September 2013

20

A Reed–Solomon decoder consists of mainly four blocks:

 The syndrome computation (SC) block.

 The key Equation solver (KES) block.

 Position tracking (PT) block.

 The Chien search and error evaluator (CSEE)

block

4.1 Syndrome Calculation
The first step in decoding process is the received symbol is to

determine the data syndrome.The syndrome calculation block

is used to check whether the received polynomial contains

errors or not. The syndrome generation block evaluates the

received codeword polynomial. If the received codeword

consists an error then the syndrome polynomial is non zero.If

received codeword contains an error, it indicates that the

received syndrome polynomial is zero,and the data is passed

through the decoder without any error correction.The

syndromes can then be calculated by substituting the 2t roots

of the generator polynomial G(z) into R(z). The syndrome

polynomial is generally represented as, Where α is the

primitive element.

1

0

()
n

i ij

i j

j

S r r 




  , 0,1,....(2 1)i t 

4.1.1 Block :
 - block is used to carryout steps A1, B1, or C1 in different

work modes. No matter which work mode is selected, the

computation of (z) is always carried out as follows:
2

1 1 2() (1) 1 ()i iz A z z z z 

          

Where denotes

or , and  denotes 2t-2 , 2t-1.

4.1.2 Block:

 block used to process Steps A2.1 and B3.1. For these

steps, the common operation is multiply accumulate for each

coefficient of the polynomial. Only a slight difference exists

in step B3.1 it is a Chien Search-like step, hence an extra

adder tree is required to verify the validity of current received

symbol. For each l in step A2.1 since

2 2

1 2[] () 1l t

tz z z z 

   

      

should be maintained within 2t+3 cycles

4.1.3 Block:
 -block is used to process steps A2.2, B2 and C2. Actually,

the inherent nature of steps A2.2, B2 and C2 is the

multiplication of two polynomials.

4.2 Key Equation Solver Block

Architecture
This is the heart of the Reed-Solomon Decoder. This KES

block generates the Error Locator polynomial (z) . After

the Error Locator polynomial has been found, it is used to

determine the Error Evaluator polynomial (z) .

In this step with the help of S(z), KES block will calculate

error locator polynomial Λ(z) and error evaluator polynomial

(z) by solving key equation: Λ(z)S(z)= (z) mod
2tz .

Key equation solver block determines the overall system

performance significantly.The overall decoding process is

done by using this key equation solver only.

Control

PE 10
PE 11 PE 12t-2 PE 12t-1

PE 02t-2 PE 02t-3
PE 01 PE 00

ctrl

0
0

0
0

()r

()r

()r

()

0

r



()

0

r



()

0

r



Fig 4:Overall architecture of Key Equation Solver block

In UHD decoder KES block is carry out steps A2.4, B4, B5

and C4. Fig 4 represents the overall architecture of KES block

and internal structures of its two types of processing elements

(PE): PE0 and PE1 are shown in the Fig 5 and Fig 6. As

shown in fig 4 the KES block consist of 2t-1PE0’s and 2t

PE1’s in the rth iteration. Each register in PE0i / PE1i stores the

corresponding coefficients of different polynomials(Fig5,

Fig6).

D

D

D

D

1

1

1

0

0

0

Group A Ctrl 1

ctrl

()r

(r)

0

()r

ib

()r

ib

(r)

i
(r)

i

1i 

()r

(r)

0

(r)

1bi

(r)

1ib 

Fig 5: Block diagram of 0iPE

D

D

D

D

1

1

0

0

ctrl

()r

(r)

0

(r)

0

Group B

Group C

()r

i

()r

i

()* r

i
()* r

i

(r)

i

(r)*

i

()r

()

1

r

i 

()*

1

r

i 

Fig 6: Block diagram of 1iPE

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.12, September 2013

21

4.3 Position Track (PT) Block
PT block is used to track the longest consecutive polynomials

that are identical or positions of roots that is steps B3.2 and

B3.3.

The inputted

 from KES block at the lth

outer iteration are denoted as

~

()i l , and

~

()i l . In

addition,) (temp) represents

~

(1)i l  , while

~

()i l

(store) are the coefficients of current continuously

identical . Moreover,
 (longest) stores the

coefficients of current longest continuously identical

 . Control signals shift and equalare generated from

signal generation Schedule. After l reaches n, (longest) and

~

i (longest) are outputted as the coefficients of overall error

locator polynomial and overall error evaluator

polynomial
* ()z .

4.4 Chien Search and Error Correction
In this approach error locator polynomial and error value

polynomial values are passed to the Chien search and Forney

algorithm blocks. To find the error location, Chien search is

the very good efficient method. Chien search method is used

for finding error positions. Fig7 shows the basic Chien search

block. Error correction block is shown in the Fig8.Its basic

idea is simple but efficient: If () 0i   for current i, it

indicates that the ith symbol of the received codeword is

wrong and needs to be corrected. After obtaining the error

positions, the following Forney algorithm is applied to

determine the error value.
1

1

(X)

()

i

i

iX



 


 



whereYi indicates error magnitude for the ith erroneous

symbol.

Cx 0

1
D Ci

α l

Fig 7: Basic Chien search cell

Zero detect

FIFO Output

ROM
interface

D D D

D

Error value

Output corrected

()i 

()i 

()l i 

D

Fig 8: Error Correction block

The block diagram of proposed architecture is shown in the

Fig9. The encoded output being given to the decoder along

with introduction of noise. The decoder is fed with all the

information need for decoding after a certain latency it will

check whether all the code words are valid code words, if so it

will output or else it will correct them, if the number of

corrupted code words are less than the maximum error

correcting capability of the RS Decoder.

Fig 9: Block Diagram of Proposed Architecture

5. EXPERIMENTAL RESULTS
The Simulation results of proposed architecture are carried

out using Xilinx ISE simulator.

Fig10: Simulation result of encoder

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.12, September 2013

22

Fig11: Simulation result for Syndrome

Fig12: Simulation result for decoder

Fig13: Simulation result for Encoder _Decoder

Fig14: Simulation result for Encoder_ Decoder

Fig 15: Final output for proposed Architecture

 Message will be passing from encoder to decoder.The

decoder checks the resulted data and gives the error free data.

Fig15 shows the output of proposed architecture.

6. CONCLUSION
In this paper, a Unified Hybrid Architecture of the area-

efficient Reed Solomon encoder along with Reed Solomon

decoder using UHD architecture is developed. The

architecture that can support three decoding modes is

presented for the first time. The proposed architecture is used

to capable of correct burst (local) errors and random (global)

errors at a time. It will provide applications like Bar code

scanning, high speed optical communications, and Data

storage devices. Compare to traditional RS decoder the

proposed architecture can achieve efficient burst error

correcting capability.

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.12, September 2013

23

7. REFERENCES

[1] B.Sklar, “ Digital Communication, Fundamental and

Application” Prentice Hall, Upper Saddle River,

2001.p.1104.

[2] S.B.Wicker and V.K. Bhargava, eds “Reed-Solomon

codes and their applications” New york: IEEE press

1994.

[3] Amina, P. Chio, I.A. Sahagun and D. J. Sabido IX

“VLSI Implementation of A (255,223) Reed- Solomon

Error- Correction Codec,” Roc. Of Second National ECE

Conference.

[4] D.V. Sarwate and N.Rshanbhag, “High-speed

Architectures for Reed-Solomon Decoder,” IEEE

transaction on VLSI system, OCT, 2001.

[5] E. Dawson and A. Khodkar, “Burst error-correcting

algorithm for Reed-Solomon codes,” Electron. Lott, vol.

31, pp. 848–849, 1995.

[6] L.Yin, J.Lu, K.B.Letaief and Y.Wu Burst-error-

correcting algorithm for Reed-Solomon codes.

Electronics Letters.,vol. 37, no. 11, pp.695-697, may

2001.

[7] Y. Wu, “Novel burst error correcting algorithms for

Reed-Solomon codes,” in Proc. IEEE Allerton Conf.

Commun., Control, Comput.2009, pp. 1047–1052.

[8] R. E. Blahut, Theory and Practice of Error-Control

Codes. Reading, MA: Addison-Wesley, 1983.

[9] H.C.Chang and C. B. Shung, , “New serial architectures

for the Berlekamp–Massey algorithm,”IEEE Trans.

Commun. vol. 47, pp. 481–483, Apr. 1999.

[10] K. Bhargava, Eds. Piscataway, NJ: IEEE Press, 1994.

Algorithms and architectures for a VLSI Reed– Solomon

codec.

[11] T. Zhang and K. K. Parhi, “On the high-speed VLSI

implementation of errors-and-erasures correcting Reed-

Solomon decoders,” in Proc. ACMGreat Lake SympVLSI

(GLVLSI), 2002.

[12] Li Li, Bo Yuan “Unified Architecture for Reed-Solomon

decoder combined with burst error correction”, IEEE

transaction on VLSI systems,JULY 2012.

IJCATM : www.ijcaonline.org

