
International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.11, September 2013

37

Analysis of Hopfield Associative Memory with

Combination of MC Adaptation Rule and an Evolutionary

Algorithm

Amit Singh
Asst. Professor

Sharda University
Greater Noida, UP, INDIA

 Somesh Kumar
Professor

Noida Inst. Of Engg. & Tech.
Greater Noida, UP, INDIA

T. P. Singh
Asst. Professor

Sharda University
Greater Noida, UP, INDIA

ABSTRACT

The combination of evolutionary algorithms and ANN has

been a recent interest in the field of research. Hopfield model

is a type of recurrent neural network which has been widely

studied for the purpose of associative memories. In the present

work, this Hopfield Model of feedback neural networks has

been studied with Monte Carlo adaptation learning rule and

one evolutionary searching algorithm i.e. genetic algorithm

for pattern association. The aim is to obtain the optimal

weight matrices with the MC-adaptation rule and Genetic

algorithm for efficient recalling of any approximate input

patterns. The experiments consider the Hopfield neural

networks architectures that store all objects using Monte

Carlo-adaptation rule and simulates the recalling of these

stored patterns on presentation of prototype input patterns

using evolutionary algorithm (Genetic Algorithm).

Experiment shows the recalling of patterns using genetic

algorithm have better results than the conventional recalling

with Hebbian rule.

General Terms

Pattern Association, Hopfield Neural Network, Monte Carlo-

adaptation Rule and Evolutionary Algorithm.

Keywords

Hopfield Neural Network with associative memory for pattern

association problem using MC-adaptation rule and

Evolutionary Genetic Algorithm.

1. INTRODUCTION
There are numerous examples which demonstrate that a

human brain can learn, understand and remember certain

things completely, partially and sometimes not at all. Most of

the children of five-year age group can start recognizing

digits, letters, shapes, objects etc. either hand drawn, machine

printed, or rotated. Depending on our capacity for learning,

the information is stored in our brain [1][2][3].The inherent

differences in information handling by human beings and

machines are in the form of patterns and data, and also their

functions of understanding and recognizing.

Pattern association is a salient feature of human memory.

Associative memory models, known as content-addressable

memories, are class of the most extensively analyzed in neural

networks. Associative memories can be either

heteroassociative or autoassociative. It involves storing a set

of patterns or a set of input-output pattern pairs in such a way

that when test data are presented, the pattern or pattern pair

corresponding to the data is recalled. This is purely a memory

function to be performed for patterns [4][5][6].

The main characteristics of neural networks are that they have

the ability to learn complex nonlinear input-output

relationships, use sequential training procedures, and adapt

themselves to the data. Artificial neural Networks specially,

Hopfield type are very good candidates for solving pattern

association problems [7][8].

2. BACKGROUND WORK
Weight training in ANN's is usually formulated as

minimization of an error function, such as the mean square

error between target and actual outputs averaged over all

examples, by iteratively adjusting connection weights. Most

training algorithms, such as Back Propagation (BP) and

conjugate gradient algorithms [9] are based on gradient

descent. There have been some successful applications of

BP in various areas [10], but BP has drawbacks due to its use of

gradient descent. It often gets trapped in a local minimum of the

error function and is incapable of finding a global minimum

if the error function is multimodal and/or non-differentiable. A

detailed review of BP and other learning algorithms can be

found in [11].

One way to overcome gradient-descent-based training

algorithms' shortcomings is to formulate the training process

as the evolution of connection weights in the environment

determined by the architecture and the learning task.

Evolutionary algorithms [12][15-16] can then be used

effectively in the evolution to find a near-optimal set of

connection weights globally without computing gradient

information. The fitness of an ANN can be defined according to

different needs.

The performance of the Hopfield neural networks, especially

the quality of recall and the capacity of the effective storing,

can be greatly improved by making use of a neural network

designing method without altering whole structure of the

network. By the use of genetic algorithm [17][18][19] with

MC-adaptation rule [20], one can avoid applying the overlap

criterion as carried out in the Hopfield neural network with

conventional Hebbian rule.

3. HOPFIELD NEURAL NETWORK
A HNN is a simple recurrent type artificial neural network

which is able to store certain memories or patterns in a

manner rather similar to the brain - the full pattern can be

recovered if the network is presented with only partial

information about stored patterns [13][14].

The smart thing about the Hopfield network is that there exists

a rather simple way of setting up the connections between

nodes in such a way that any desired set of patterns can be

made "stable firing patterns". Thus any set of memories can

be burned into the network at the beginning. Then if we kick

the network off with any old set of node activity we are

guaranteed that a "memory" will be recalled. Not too

surprisingly, the memory that is recalled is the one which is

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.11, September 2013

38

"closest" to the starting pattern. In other words, we can give

the network a corrupted image or memory and the network

will "all by itself" try to reconstruct the perfect image.

In HNN, the output of each unit is fed to all the other units

with weights wij except wii, let the output function of each of

the units be bipolar so that

 where is the threshold for the unit i.

The state of each unit is either +1 or –1 at any given instant of

time. The state at time (t+1) is the same as the state at time (t)

for all the units. That is,

 for all i

Associated with each state of the network, Hopfield proposed

an energy function whose values always either reduces or

remains the same as the state of the network changes.

Assuming the threshold value of the unit i to be , the energy

function is given by

The energy as a function of the state of the network

describes the energy landscape in the state space. The energy

landscape is determined only by the network architecture, i.e.,

the number of units, their output functions, threshold values,

connections between units and the strengths of the

connections.

The change in energy due to update of the kth unit is given by

And therefore,

Therefore the energy decreases or remains the same when a

unit, selected at random, is updated provided the weights are

symmetric, and the self-feedback is zero.

3.1 Hebbian Rule
Synaptic dynamics, as discussed earlier, is described in terms

of expressions for the first derivative of the weights. They are

called learning equations. The proposed Hopfield model

consists of N neurons and N2 connection strengths. Hebbian

is the simplest learning rule, in which each neuron can be in

one of the two states, i.e. ±1, and p bipolar patterns

X are to be

memorized in associative memory. In this type of neural

network, the coupling matrix is usually determined by the

Hebbian rule as follows:


ix

is representing the ith bit of µth pattern.

 where i = 1,2 …..N (number of bits in a

pattern) and µ = 1,2 …..p (number of patterns)

3.2 MC-Adaptation Rule
The MC-adaptation rule [21] is different from the

conventional Hebbian rule as well as other learning rules such

as perceptron. It has been shown that, by applying this rule,

one can design neural networks with controllable degree of

symmetry. When apply this rules memory patterns are input

into the learning process one by one. i.e. each time the

adaptation of the coupling matrix is carried out by pursuing

the optimal solution for a specific memory pattern. Hebbian

is local learning rule while MC-adaptation rule is a global

design rule.

Most of the time for the application of MC-adaptation rule in

HNN, we generally initialize the coupling matrix using

Hebbian rule but in this paper we have changed the initial

weight matrix by random weight matrix as given below in the

first step.

Step 1:

Coupling matrix can be obtained randomly with four digit

decimal numbers between -1 and 1. Then we apply the MC

adaptation rule to guarantee all the memory patterns satisfying

the fixed point condition by driving the local fields to the

region of the following:

 Where

Step 2:

Specify a row in the coupling matrix , say the ith row, and

calculate:

 For and (patterns)

Step 3:

Now find the) and let record the

indices of patterns satisfying

Step 4:
Initialize two variables as:

and proceed as:

 if

 otherwise

 for and

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.11, September 2013

39

Step 5:

Now, record column indices with

satisfying condition and

 with satisfying condition

 respectively.

Step 6:

Adaptation follows as:

If randomly pick j form the list

 and make adaptation

If randomly pick j from the list

 and make adaptation

Otherwise randomly pick an index from the list

 or with equal

probability, and if make an

adaptation

Otherwise

Repeat Step 2 to Step 6 until

Apply the above procedure until for all rows.

After executing algorithm for all rows (i), we will obtain a

desirable optimal weight matrix J with the patterns being

memory as fixed point.

4. THE GENETIC ALGORITHM
Thus, ANN and genetic algorithms are two techniques for

optimization and learning, each with its own strength and

weaknesses. The two have generally evolved along separate

paths. However, recently there have been attempts to combine

the two technologies and researchers have combined neural

network and genetic algorithms in a number of different ways

In this simulation, recalling is done by Genetic Algorithm.

When GA [22-23] starts, a population of weight matrices is

produced by crossover from the parent weight matrices which

are generated by MC adaptation rule in the storing stage. In

each generation, this population is modified through uniform

random mutations and their fitness values are evaluated.

The cycle of generating the new population with better

individuals and restarting the search is repeated until an

optimum solution was found. The fitness function is

evaluating the best matrices of the weights population on the

basics of the hundred percent successful recalling with zero

bit error of the stored patterns on the presentation of the same

as the input pattern. It indicates that the stable states of the

network will be used for the evaluation of the weight’s

population.

Crossover generates new population of size:

 N*N + Initial population,

 where N is number of neuron.

Fitness function evaluates and collect all those weight

matrices which can successfully recall the respective stored

patterns by providing the same as input pattern (with no error)

at a time will be considered as fitted weight matrix.

After fitness evaluation mutation operator executes to increase

the population and generates population of size:

 N*N + Fitted Population

Now this generated population will be used for recalling

purpose.

5. EXPERIMENTS
The patterns used for the simulations are shown in Figure 1.

Each pattern consisted of a 5 X 3 pixel matrix representing an

alphabet of the set. White and black pixels are respectively

assigned corresponding values of -1 and +1.

Fig 1: Set of patterns used for training

Using these bipolar values, the set of above alphabets is

represented in the form a series. For example, object is

written as:

[-1 1 -1 1 -1 1 1 1 1 1 -1 1 1 -1 1]

The results presented in this section demonstrate that, within

the simulation framework presented above, large significant

difference exists between the performance of genetic

algorithm conventional Hebbian rule for recalling alphabets

those have been stored in Hopfield neural network using MC

adaptation rule and Hebbian learning rule respectively.

In total 1000 times the recalling was made through both the

algorithms separately for each pattern. In these cases, noise

was created by reverting 0-bit, 1-bit, 2-bits and 3-bits in the

presented prototype input patterns in the already stored

patterns. These positions of the bit(s) to be reverted to create

noise are taken randomly.

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.11, September 2013

40

Table 1: The results of recalling of taken set of alphabets

when there is no error in the presented input prototype

patterns

Alphabets

P
at

te
rn

 1

P
at

te
rn

 2

P
at

te
rn

 3

P
at

te
rn

 4

P
at

te
rn

 5

R
ec

a
ll

in
g

 S
u

cc
es

s

(i
n

 %
) H
eb

b
ia

n

84.0 100 100 94.3 86.4

G
A

100 100 100 100 100

Table 21: The results of recalling of taken set of alphabets

when there is 1-bit error in the presented input prototype

patterns

Alphabets

P
at

te
rn

 1

P
at

te
rn

 2

P
at

te
rn

 3

P
at

te
rn

 4

P
at

te
rn

 5

R
ec

a
ll

in
g

 S
u

cc
es

s

(i
n

 %
) H
eb

b
ia

n

5.3 6.0 6.6 5.6 6.5

G
A

100 100 100 100 100

Reverted bit

position 12 2 5 9 13

Table 22: The results of recalling of taken set of alphabets

when there is 1-bit error in the presented input prototype

patterns

* Pattern 4 was recalled instead pattern 2

Alphabets

P
at

te
rn

 1

P
at

te
rn

 2

P
at

te
rn

 3

P
at

te
rn

 4

P
at

te
rn

 5

R
ec

a
ll

in
g

 S
u

cc
es

s

(i
n

 %
) H
eb

b
ia

n

6.5

94.0

(4)* 6.6 5.9 7.1

G
A

99.1
100

(4)*
99.2 100 100

Reverted bit

position 3 8 9 10 5

Table 31: The results of recalling of taken set of alphabets

when there is 2-bits error in the presented input prototype

patterns

Alphabets

P
at

te
rn

 1

P
at

te
rn

 2

P
at

te
rn

 3

P
at

te
rn

 4

P
at

te
rn

 5

R
ec

a
ll

in
g

 S
u

cc
es

s

(i
n

 %
)

H
eb

b
ia

n

0.5 0.9 0.1 0.4 1.0

G
A

 100 100 100 100 100

Reverted bit

position
9,10 12,14 1,15 6,9 9,14

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.11, September 2013

41

Table 32: The results of recalling of taken set of alphabets

when there is 2-bits error in the presented input prototype

patterns

* Pattern 2 was recalled instead pattern 4

Alphabets

P
at

te
rn

 1

P
at

te
rn

 2

P
at

te
rn

 3

P
at

te
rn

 4

P
at

te
rn

 5

R
ec

a
ll

in
g

 S
u

cc
es

s

(i
n

 %
) H
eb

b
ia

n

0.6 0.7 1.4
7.2

(2)*
0.7

G
A

99.7 98.4 100
100

(2)* 100

Reverted bit

position
2,11 11,12 4,9 2,8 3,9

Table 4: The results of recalling of taken set of alphabets

when there is 3-bits error in the presented input prototype

patterns

* Pattern 2, 5 was recalled instead pattern 2

Pattern 2 was recalled instead pattern 4

^ Pattern 3, 5 was recalled instead pattern 5

Alphabets

P
at

te
rn

 1

P
at

te
rn

 2

P
at

te
rn

 3

P
at

te
rn

 4

P
at

te
rn

 5

R
ec

a
ll

in
g

 S
u

cc
es

s
(i

n

%
)

H
eb

b
ia

n

0.1

0.1

(2,5)* 0.1

0.4

(2)#

0.1

(3,5)^

G
A

15 28 32 0 47

Reverted bit

position
3,10,

11

3,12,

14

3,12,

14 3,8,9

2,9,

13

6. CONCLUSION AND FUTURE SCOPE
By using MC adaptation rule to slightly modify the Hopfield

Neural network designed by the Hebbian rule, one can

significantly improve the performance of the network. The

improved Neural Network has higher storage capacity than

the original ones. The simulation results (i.e. tables 1-4) are

indicating that genetic algorithm with MC adaptation learning

rule has more success rate then the Hebbian rule for storing

and recalling the taken set of alphabets, which are containing

0, 1, 2, and 3 bit errors from stored patterns in Hopfield neural

network. Sometimes it has also been observed that the

performance of GA was less than what was expected to be.

One of the reason for this deviation may be the position(s) of

bits reverted to induce noise in the recalling pattern. Second

reason may be high similarity between two stored patterns

which can be reduced by taking more pixels and hence more

neurons in the Hopfield memory. It is also possible to obtain

more than one weight matrices from the generated population

of weight matrices as the optimal weight matrices for

recalling the exact pattern on presentation of any prototype

input pattern of already stored pattern.

The direct application of GA with MC adaptation rule to the

pattern association has been explored in this paper. The aim is

to introduce as alternative approach to solve the pattern

association problem. The results from the experiments

conducted on the algorithm are quite encouraging.

Nevertheless more work needs to be perform especially on the

tests for noisy input patterns. We can extend this concept for

pattern recognition for alphabets of different languages,

shapes, numerals. Some real dataset of handwritten characters

may also be tested using the presented approach and the

comparison with the previous approaches may be analyzed.

7. REFERENCES
[1] Simpson P K, “Foundations of Neural Networks”,

Artificial Neural Networks: Paradigms, Applications and

Hardware Implementations (E. Sanchez-Sinencio and C.

Lau, eds.), New York: IEEE Press, pp. 3-24, 1992.

[2] Anderson J A, Rosenfeld E, “Neurocomputing:

Foundations of Research” MIT Press, Boston, MA,

1988.

[3] Hinton G E, Sejnowski T J, “Neural Network

Architectures for AI”, Tutorial Number MP2, National

Conference on Artificial Intelligence (AAAI-87), July

1987.

[4] Jain A K, Robert P W D, Mao J, “Statistical Pattern

Recognition: A Review”, IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 22, number 1,

pp. 4-33, 2000.

[5] Grenander U, General Pattern Theory, Oxford

University Press, 1993.

[6] Schalkoft R, Pattern Recognition- Statistical, structural

and neural approaches, John Wiley & Sons, 1992.

[7] Kosko, B., “Neural Networks and Fuzzy Systems”

Prentice-Hall India, 2005.

[8] Yao X, “Evolving Artificial Neural Network”,

Proceedings of the IEEE, vol. 87, number 9, September

1999.

[9] Moller M F, “A scale conjugate gradient algorithm for

supervised learning”, Neural Networks, vol 6, number 4,

pp 525-533, 1993.

[10] Chauvin Y and Rumelhart D E, Eds., Backpropagation:

Theory, Architectures, and Applications, Hillsdale, NJ:

Erlbaum, 1995.

[11] Sutton R S, “Two problems with back propagation and

other steepest-descent learning procedures for networks”,

in Proceedings of 8th Annual Conference of Cognitive

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.11, September 2013

42

Science Society, Hillsdale, NJ: Erbaum, pp. 823 – 831,

1986.

[12] Bremermann H J, “The Evolution of Intelligence: The

Nervous System as a Model of its Environment”,

Technical Report No. 1, Contract No. 477(17),

Department of Mathematics, University of Washigton,

Seattle, 1958.

[13] Hopfield J J, “Neurons with graded response have

collective computational properties like those of two

state neurons”, Proceedings of National Academy of

Sciences, vol. 81, pp. 3088-3092, 1984.

[14] Hopfield J J, Tank D W, “Computing with neural

circuits: A model”, Science, vol. 233, pp625-633, 1986.

[15] Shapiro J L, “Theoretical aspects of evolutionary

computing”, Statistical Mechanics Theory of Genetic

Algorithms, Natural Computing (Springer-Verlag,

London, UK), pp. 87-108, 2001.

[16] Koza J R and Rice J P, “Genetic generation of both

the weights and architecture for a neural network”, in

Proceedings of IEEE Int. Joint Conf. Neural Networks

(IJCNN'91 Seattle), vol.2, pp. 397-404, 1991.

[17] Wright S, “The evolution of life”, Panel discussion in

Evolution After Darwin: Issues in Evolution, vol III, S

Tax and C Callender, Eds. Chicago: University of

Chicago Press, 1960.

[18] Bäck T, Hammel U, Schwefel H P, “Evolutionary

Computation: Comments on the History and Current

State”, IEEE Trans. Evolutionary Computation, vol. 1,

pp 3-17, April 1997.

[19] Schaffer J D, Whiltley D and Eshelman, “Combination

of genetic algorithm and neural network: The state of the

art”, IEEE Computer Society, 1992.

[20] Zhou Zen and Zhao Hong, Improvement in Hopfield

Neural Network by MC-adaptation rule, department of

physics,Xiamen 2006.

[21] Zhou Zen and Zhao Hong, Improvement in Hopfield

Neural Network by MC-adaptation rule, department of

physics,Xiamen 2006

[22] A. Imada and K. Araki, (1997) Applications of an

Evolutionary Strategy to the Hopfield Model of

Associative Memory, in: Proceedings of the IEEE

international conference on evolutionary computation,

pp. 679-683.

[23] Yan W, Zhu Z, and Hu R, “Hybrid genetic/BP algorithm

and its application for radar target classification”, in Proc.

1997 IEEE National Aerospace and Electronics Conf.,

NAECON. Part 2 (of 2), pp. 981-984, 1997.

IJCATM : www.ijcaonline.org

