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ABSTRACT 

The combination of evolutionary algorithms and ANN has 

been a recent interest in the field of research. Hopfield model 

is a type of recurrent neural network which has been widely 

studied for the purpose of associative memories. In the present 

work, this Hopfield Model of feedback neural networks has 

been studied with Monte Carlo adaptation learning rule and 

one evolutionary searching algorithm i.e. genetic algorithm 

for pattern association. The aim is to obtain the optimal 

weight matrices with the MC-adaptation rule and Genetic 

algorithm for efficient recalling of any approximate input 

patterns. The experiments consider the Hopfield neural 

networks architectures that store all objects using Monte 

Carlo-adaptation rule and simulates the recalling of these 

stored patterns on presentation of prototype input patterns 

using evolutionary algorithm (Genetic Algorithm). 

Experiment shows the recalling of patterns using genetic 

algorithm have better results than the conventional recalling 

with Hebbian rule.   

General Terms 

Pattern Association, Hopfield Neural Network, Monte Carlo-

adaptation Rule and Evolutionary Algorithm. 

Keywords 
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1. INTRODUCTION 
There are numerous examples which demonstrate that a 

human brain can learn, understand and remember certain 

things completely, partially and sometimes not at all. Most of 

the children of five-year age group can start recognizing 

digits, letters, shapes, objects etc. either hand drawn, machine 

printed, or rotated. Depending on our capacity for learning, 

the information is stored in our brain [1][2][3].The inherent 

differences in information handling by human beings and 

machines are in the form of patterns and data, and also their 

functions of understanding and recognizing.  

Pattern association is a salient feature of human memory. 

Associative memory models, known as content-addressable 

memories, are class of the most extensively analyzed in neural 

networks. Associative memories can be either 

heteroassociative or autoassociative. It involves storing a set 

of patterns or a set of input-output pattern pairs in such a way 

that when test data are presented, the pattern or pattern pair 

corresponding to the data is recalled. This is purely a memory 

function to be performed for patterns [4][5][6].  

The main characteristics of neural networks are that they have 

the ability to learn complex nonlinear input-output 

relationships, use sequential training procedures, and adapt 

themselves to the data. Artificial neural Networks specially, 

Hopfield type are very good candidates for solving pattern 

association problems [7][8].  

2. BACKGROUND WORK 
Weight training in ANN's is usually formulated as 

minimization of an error function, such as the mean square 

error between target and actual outputs averaged over all 

examples, by iteratively adjusting connection weights. Most 

training algorithms, such as Back Propagation (BP) and 

conjugate gradient algorithms [9] are based on gradient 

descent. There have been some successful applications of 

BP in various areas [10], but BP has drawbacks due to its use of 

gradient descent. It often gets trapped in a local minimum of the 

error function and is incapable of finding a global minimum 

if the error function is multimodal and/or non-differentiable. A 

detailed review of BP and other learning algorithms can be 

found in [11]. 

One way to overcome gradient-descent-based training 

algorithms' shortcomings is to formulate the training process 

as the evolution of connection weights in the environment 

determined by the architecture and the learning task. 

Evolutionary algorithms [12][15-16] can then be used 

effectively in the evolution to find a near-optimal set of 

connection weights globally without computing gradient 

information. The fitness of an ANN can be defined according to 

different needs. 

The performance of the Hopfield neural networks, especially 

the quality of recall and the capacity of the effective storing, 

can be greatly improved by making use of a neural network 

designing method without altering whole structure of the 

network. By the use of genetic algorithm [17][18][19] with 

MC-adaptation rule [20], one can avoid applying the overlap 

criterion as carried out in the Hopfield neural network with 

conventional Hebbian rule. 

3. HOPFIELD NEURAL NETWORK 
A HNN is a simple recurrent type artificial neural network 

which is able to store certain memories or patterns in a 

manner rather similar to the brain - the full pattern can be 

recovered if the network is presented with only partial 

information about stored patterns [13][14].  

The smart thing about the Hopfield network is that there exists 

a rather simple way of setting up the connections between 

nodes in such a way that any desired set of patterns can be 

made "stable firing patterns". Thus any set of memories can 

be burned into the network at the beginning. Then if we kick 

the network off with any old set of node activity we are 

guaranteed that a "memory" will be recalled. Not too 

surprisingly, the memory that is recalled is the one which is 



International Journal of Computer Applications (0975 – 8887)  

Volume 78 – No.11, September 2013 

38 

"closest" to the starting pattern. In other words, we can give 

the network a corrupted image or memory and the network 

will "all by itself" try to reconstruct the perfect image. 

In HNN, the output of each unit is fed to all the other units 

with weights wij except wii, let the output function of each of 

the units be bipolar so that 

         

               

  where is the threshold for the unit i.  

The state of each unit is either +1 or –1 at any given instant of 

time. The state at time (t+1) is the same as the state at time (t) 

for all the units. That is, 

                 

  for all i  

Associated with each state of the network, Hopfield proposed 

an energy function whose values always either reduces or 

remains the same as the state of the network changes. 

Assuming the threshold value of the unit i to be , the energy 

function is given by 

        

The energy  as a function of the state  of the network 

describes the energy landscape in the state space. The energy 

landscape is determined only by the network architecture, i.e., 

the number of units, their output functions, threshold values, 

connections between units and the strengths of the 

connections.  

The change in energy due to update of the kth unit is given by 

        

And therefore, 

        

Therefore the energy decreases or remains the same when a 

unit, selected at random, is updated provided the weights are 

symmetric, and the self-feedback is zero. 

3.1 Hebbian Rule 
Synaptic dynamics, as discussed earlier, is described in terms 

of expressions for the first derivative of the weights. They are 

called learning equations. The proposed Hopfield model 

consists of N neurons and N2 connection strengths.  Hebbian 

is the simplest learning rule, in which each neuron can be in 

one of the two states, i.e. ±1, and p bipolar patterns 

X  are to be 

memorized in associative memory. In this type of neural 

network, the coupling matrix is usually determined by the 

Hebbian rule as follows: 

 

 

 

 

      

                                    

                

ix

 
is representing the ith bit of µth pattern.       

  where i = 1,2 …..N (number of bits in a 

pattern) and µ = 1,2 …..p (number of patterns) 

3.2 MC-Adaptation Rule 
The MC-adaptation rule [21] is different from the 

conventional Hebbian rule as well as other learning rules such 

as perceptron. It has been shown that, by applying this rule, 

one can design neural networks with controllable degree of 

symmetry. When apply this rules memory patterns are input 

into the learning process one by one. i.e. each time the 

adaptation of the coupling matrix is carried out by pursuing 

the optimal solution for a specific memory pattern.  Hebbian 

is local learning rule while MC-adaptation rule is a global 

design rule.  

Most of the time for the application of MC-adaptation rule in 

HNN, we generally initialize the coupling matrix using 

Hebbian rule but in this paper we have changed the initial 

weight matrix by random weight matrix as given below in the 

first step. 

Step 1: 

Coupling matrix can be obtained randomly with four digit 

decimal numbers between -1 and 1.  Then we apply the MC 

adaptation rule to guarantee all the memory patterns satisfying 

the fixed point condition by driving the local fields to the 

region of the following: 

 
                                  Where   

Step 2: 

Specify a row in the coupling matrix , say the ith row, and 

calculate: 

                                              

             For  and  (patterns) 

Step 3: 

Now find the ) and let  record the 

indices of patterns satisfying   

Step 4: 
Initialize two variables as: 

  

and proceed as:  

   if      

                                       otherwise 

                  for   and  
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Step 5: 

Now, record column indices  with 

satisfying condition  and 

 with satisfying condition 

 respectively. 

Step 6: 

Adaptation follows as: 

If   randomly pick j form the list 

 and make adaptation 

   

If   randomly pick j from the list 

 and make adaptation 

    

Otherwise randomly pick an index from the list 

  or   with equal 

probability, and if   make an 

adaptation 

    

Otherwise 

         

Repeat Step 2 to Step 6 until   

Apply the above procedure until for all rows. 

After executing algorithm for all rows (i), we will obtain a 

desirable optimal weight matrix J with the patterns being 

memory as fixed point.  

4. THE GENETIC ALGORITHM 
Thus, ANN and genetic algorithms are two techniques for 

optimization and learning, each with its own strength and 

weaknesses. The two have generally evolved along separate 

paths. However, recently there have been attempts to combine 

the two technologies and researchers have combined neural 

network and genetic algorithms in a number of different ways 

In this simulation, recalling is done by Genetic Algorithm. 

When GA [22-23] starts, a population of weight matrices is 

produced by crossover from the parent weight matrices which 

are generated by MC adaptation rule in the storing stage. In 

each generation, this population is modified through uniform 

random mutations and their fitness values are evaluated. 

The cycle of generating the new population with better 

individuals and restarting the search is repeated until an 

optimum solution was found. The fitness function is 

evaluating the best matrices of the weights population on the 

basics of the hundred percent successful recalling with zero 

bit error of the stored patterns on the presentation of the same 

as the input pattern. It indicates that the stable states of the 

network will be used for the evaluation of the weight’s 

population. 

Crossover generates new population of size: 

 N*N + Initial population,       

  where N is number of neuron. 

Fitness function evaluates and collect all those weight 

matrices which can successfully recall the respective stored 

patterns by providing the same as input pattern (with no error) 

at a time will be considered as fitted weight matrix. 

After fitness evaluation mutation operator executes to increase 

the population and generates population of size: 

 N*N + Fitted Population 

Now this generated population will be used for recalling 

purpose. 

5. EXPERIMENTS 
The patterns used for the simulations are shown in Figure 1. 

Each pattern consisted of a 5 X 3 pixel matrix representing an 

alphabet of the set. White and black pixels are respectively 

assigned corresponding values of -1 and +1. 

 

Fig 1: Set of patterns used for training 

Using these bipolar values, the set of above alphabets is 

represented in the form a series. For example, object    is 

written as: 

[-1  1   -1  1   -1  1   1   1   1   1   -1  1   1   -1  1] 

The results presented in this section demonstrate that, within 

the simulation framework presented above, large significant 

difference exists between the performance of genetic 

algorithm conventional Hebbian rule for recalling alphabets 

those have been stored in Hopfield neural network using MC 

adaptation rule and Hebbian learning rule respectively.  

In total 1000 times the recalling was made through both the 

algorithms separately for each pattern. In these cases, noise 

was created by reverting 0-bit, 1-bit, 2-bits and 3-bits in the 

presented prototype input patterns in the already stored 

patterns. These positions of the bit(s) to be reverted to create 

noise are taken randomly. 
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Table 1: The results of recalling of taken set of alphabets 

when there is no error in the presented input prototype 

patterns 
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Table 21: The results of recalling of taken set of alphabets 

when there is 1-bit error in the presented input prototype 

patterns 
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Table 22: The results of recalling of taken set of alphabets 

when there is 1-bit error in the presented input prototype 

patterns 

* Pattern 4 was recalled instead pattern 2 

 

 

 

 

 

Alphabets 

 

P
at

te
rn

 1
 

P
at

te
rn

 2
 

P
at

te
rn

 3
 

P
at

te
rn

 4
 

P
at

te
rn

 5
 

     

R
ec

a
ll

in
g

 S
u

cc
es

s 

(i
n

 %
) H
eb

b
ia

n
 

6.5 

94.0 

(4)* 6.6 5.9 7.1 

G
A

 

99.1 
100 

(4)* 
99.2 100 100 

Reverted bit 

position 3 8 9 10 5 

 

Table 31: The results of recalling of taken set of alphabets 

when there is 2-bits error in the presented input prototype 

patterns 
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Table 32: The results of recalling of taken set of alphabets 

when there is 2-bits error in the presented input prototype 

patterns 

* Pattern 2 was recalled instead pattern 4 
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Table 4: The results of recalling of taken set of alphabets 

when there is 3-bits error in the presented input prototype 

patterns 

* Pattern 2, 5 was recalled instead pattern 2 

# Pattern 2 was recalled instead pattern 4 

^ Pattern 3, 5 was recalled instead pattern 5 
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6. CONCLUSION AND FUTURE SCOPE 
By using MC adaptation rule to slightly modify the Hopfield 

Neural network designed by the Hebbian rule, one can 

significantly improve the performance of the network. The 

improved Neural Network has higher storage capacity than 

the original ones. The simulation results (i.e. tables 1-4) are 

indicating that genetic algorithm with MC adaptation learning 

rule has more success rate then the Hebbian rule for storing 

and recalling the taken set of alphabets, which are containing 

0, 1, 2, and 3 bit errors from stored patterns in Hopfield neural 

network. Sometimes it has also been observed that the 

performance of GA was less than what was expected to be. 

One of the reason for this deviation may be the position(s) of 

bits reverted to induce noise in the recalling pattern.  Second 

reason may be high similarity between two stored patterns 

which can be reduced by taking more pixels and hence more 

neurons in the Hopfield memory. It is also possible to obtain 

more than one weight matrices from the generated population 

of weight matrices as the optimal weight matrices for 

recalling the exact pattern on presentation of any prototype 

input pattern of already stored pattern. 

The direct application of GA with MC adaptation rule to the 

pattern association has been explored in this paper. The aim is 

to introduce as alternative approach to solve the pattern 

association problem. The results from the experiments 

conducted on the algorithm are quite encouraging. 

Nevertheless more work needs to be perform especially on the 

tests for noisy input patterns. We can extend this concept for 

pattern recognition for alphabets of different languages, 

shapes, numerals. Some real dataset of handwritten characters 

may also be tested using the presented approach and the 

comparison with the previous approaches may be analyzed. 
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