
International Journal of Computer Applications (0975 – 8887)

Volume78– No.1, September 2013

42

Load Balancing Approach for Scheduling Sequential

Task in Grid Computing Environment

Neeraj Pandey

Department of Computer
Science & Engineering

G. B. Pant Engineering College
Ghurdauri, UK, India

Shashi Kant Verma

Department of Computer
Science & Engineering

G. B. Pant Engineering College
Ghurdauri, UK, India

Vivek Kumar Tamta

Department of Computer
Science & Engineering

G. B. Pant Engineering College
Ghurdauri, UK, India

ABSTRACT

In grid computing environment, the efficiency of computing

node is affected by several factors such as node utilization,

allocation of jobs etc. The incoming job is allocated to

appropriate node in such a way that the node utilization is

maximized and a well-balanced load across all the

participating computing nodes that enhances the overall

performance of grid computing. This paper presents an

amended hybrid approach for scheduling sequential task. The

proposed approach uses combination of first-come-first-

served (FCFS) and genetic algorithm (GA). A sliding-window

technique is presented to initiate alteration between the FCFS

and GA, to offers a rapid task assignment. For GA we initially

generate random population and use straightforward

encoding. The proposed method is evaluated in the terms of

makespan value and node utilization with a varying set of

simulation cases and parameters after then it is compared with

a well design first-come-first-server (FCFS) and hybrid

genetic algorithm (HGA). Experimental results have shown

significant improvement compared to the both FCFS and

HGA algorithms. The result gives minimized makespan value

with increased node utilization for both homogeneous and

heterogeneous types of nodes.

Keywords

Grid Computing, Load Balancing, Task Scheduling, Genetic

Algorithm, Performance evaluation

1. INTRODUCTION
A grid computing environment consist aggregations of both

homogeneous and heterogeneous resources and provide

infrastructure for solving problems for any stand-alone

machine. The main focus of grid computing is large-scale

resource sharing, innovative application and, in some case

high-performance orientation [1]. There are various

computing application that requires high performance

computing resources to process the job and lead to increase

overall execution time for job and thus decreases the node

utilization and overall system performance. A “task” is a

small segment of program and it has equal probability to

scheduled individually in any of the computing node. A

computing node within a grid environment is a processor that

receive tasks from a centralized queue. Different nodes have

different task/job processing capabilities, different memory

segment and because of heterogeneous nature of computing

node a load imbalance exists between nodes therefore a

special load balancing scheme is needed to manage this load

imbalance effectively. The scheduling of jobs is primarily

concerned for the proper functionality of a grid computing

system.

Genetic algorithms [3,4,8,9,10,13,14,16] are search heuristics,

to find optimal solution job scheduling as compared to other

search procedures. It is a method for solving optimization

problems and based on process of natural genetics.

The First-Come-First-Serve (FCFS) algorithm [4,5,10] is a

simple job scheduling algorithm in which task executed

according to their arrival pattern in the job queue and the job

which arrived earlier will be executed first. Consider a grid

environment consists of m computing nodes Ni given as:

Ni = {N1, N2, N3, ……,Nm} . (1)

Where each computing nodes has its own capability Ci to

execute the task and given as:

Ci = {C1, C2, C3, ……,Cm} . (2)

Since each task require some memory segments (Ms),

processing power (Pp), and input/output (Io) function,

therefore the capacity of a node can be defined as a three tuple

element given as:

C = {Ms, Pp, Io} . (3)

A group of n task Tj which is executed on Pi is given as:

Tj = {T1, T2, T3, ………, Tn} . (4)

Since every task has a start time Ts, an end time Te, an arrival

time Ta, and a computational duration Tx, therefore we can

define a task as a group of 4 elements and given as:

{Ts, Te, Ta, Tx) = {Tsj, Tej, Taj, Txj} . (5)

A task can be scheduled to any of the node involve in grid

system, so the execution time of the task is determined by the

dividing the computational time of the task to the capacity of

the computing node.

Texe = Tx / c . (6)

The final goal of FCFS is minimize the execution time of the

task. i.e.,

Texe = min {Texe | ∀ Ni} . (7)

This paper present an amended hybrid job scheduling

approach [4] based on FCFS and genetic algorithm in

distributed computing environment. We also design the FCFS

and HGA approach for job scheduling and compare the

proposed algorithm to these algorithm. The proposed

algorithm contain traditional scheduling heuristics to generate

a feasible solution by determining the status of computing

node and their capability to execute the task.

The rest of paper is structured into 6 section. Section 2

presents the review of related work. The problem definition

and system model are explained in Section 3. The proposed

algorithm in detail are described in section 4. Section 5

presents experimental result and analysis, finally section 6

conclude the paper.

International Journal of Computer Applications (0975 – 8887)

Volume78– No.1, September 2013

43

2. RELETED WORK
K. Q. Yan et al. [10] proposed a hybrid load balancing policy

which integrated static and dynamic load balancing

technologies to assist in the selection for effective nodes.

Essentially, a static load balancing policy is applied to select

effective and suitable node sets. The task first divided into

independent subtasks and after then minimum resource

demand is taken. The execution of task are done according to

value estimated by a value function.

A task allocation algorithm based on multi-heuristic

evolutionary approach for heterogeneous distributed system is

presented in [16]. It manoeuvres on batches of unmapped

tasks and tasks are dynamic and pre-emptive in nature. It

operates dynamically, and allow each tasks for continuous

execution. The main involvement is on-line estimation of

resources where resources are varying in nature, dynamic

model for task execution and the scheduling method with no

prior knowledge.

In the last few year genetic algorithm becomes very popular to

solve load balancing problem. There are numerous studies on

scheduling method for computational grid environment.

Zomaya and Hwei [3] present a centralized methods for load

balancing based on genetic algorithm. The number of tasks

are fixed and allocation of task to the node is done when a

predefine criteria is met. Also they suppose that there are

always adequate task in the waiting queue ready to process

and the characteristics of task is known earlier before

scheduling it.

Yajun Li et al. [4] address the load balancing problem by

presenting a hybrid approach to the load balancing of

sequential tasks under grid computing environments. Two

policy that are used for scheduling is FCFS and genetic

algorithm and tasks are scheduled according to policy used. In

centralized queue, when number of task becomes equal to

sliding window size the genetic algorithm start its functioning.

The results are compared with the FCFS and dynamic GA

with improvement in terms of makespan, mean deviation and

node utilization.

Junwei Cao et al. [5] demonstrates that AI techniques can be

utilized to achieve effective workload and resource

management. A combination of intelligent agents and multi-

agent approaches is applied to both local grid resource

scheduling and global grid load balancing. The grid agents are

controlled by a centralized mechanism and each agent have

previous knowledge of all other agents.

Zomaya et al. [8] present a genetic algorithm based solution

for the problem of task scheduling. There is no need to apply

any problem specific assumptions such is the case when using

heuristics. The tasks are dependent in nature i.e., precedence

constraints exists between tasks and a priority is assigned to

each task before they added to a list of waiting tasks.

A grid system can be affected by various factors such as

system failures, node availability, and communication delay.

Shanshan Song et al. [9] models the risk and insecure

conditions in Grid job scheduling and propose six risk-

resilient scheduling algorithms to assure secure Grid job

execution under different risky conditions. The encoding

methods for GA is based on the messy encoding concept and

the initial population is based on the prior solution. A job

failure model is also developed including three risk springy

methods such as pre-emptive, delay tolerant, and replication

for scheduling of grid jobs.

3. SYSTEM MODEL
In this Section, we first present the system model, followed by

the OMNeT++ simulation model.

3.1 System Model
The system model assumed in this paper consists of n

computing nodes where each node has its own capacity Ci.

Nodes are connected to each other through a communication

channel. we also assume that there exist a centralized

scheduling scheme, in which all the task arrive at a central

queue, at the scheduler. The tasks coming from the grid users

are first placed in a task queue and the task scheduler schedule

the task according to the policy used such as FCFS or genetic

algorithm. The scheduler makes sure that queue is filled with

a minimum number of tasks for execution (in case of genetic

algorithm).

A near-optimal schedule based on genetic algorithm is

determined by the scheduler. The task scheduler schedule the

job to appropriate node. The scheduling model is given in

fig.1. The scheduling algorithm has full knowledge about the

available computing node or resources and current workload,

when making decision to schedule the current task. A

scheduling agent is able to estimate all statistics information

and responsible to provide all necessary information to task

dispatcher to make the scheduling decision. Because of

limited availability of network resources (nodes), nodes does

not contain a waiting queue for tasks.

Grid

User

Waiting Queue

Scheduling

Policy
Scheduling

Agent Resources

Task Generator Computing Nodes

Dispatcher

Scheduling Information

Fig 1: System Model

The waiting queue consists of a large number of unscheduled

tasks. If all of tasks available in waiting queue scheduled at

once, it take a long time to proceed as well as find an efficient

schedule, thus it increase the overall processing time of the

system and give the chance to the computing node to become

in ideal state. To minimize and eliminate this condition we

only consider a small subset of these waiting tasks, hence a

sliding window mechanism is used.

3.2 OMNeT++ Model
OMNeT++ (Objective Modular Network Testbed in C++)

[6,7] is an public source, component based, modular and

open-architecture event discrete simulation environment used

by various research groups for communication network

performance evaluation. Because of its generic and flexible

architecture, it has been successfully used in other areas like

the simulation of IT systems, queuing networks, hardware

architectures and business processes as well [15]. An

OMNeT++ model consists of the following parts:

 Message definitions files (with .msg suffix)

represent job or task to be scheduled.

 Network Description files (with .ned suffix) shows

the components of the simulated network in a

graphical manner.

 Simple modules implementation (with .cc suffix).

 Configuration files (with .ini suffix) consists of

Configuration and input data for the simulation.

International Journal of Computer Applications (0975 – 8887)

Volume78– No.1, September 2013

44

Model, Structure & Network

Definition (*.ned)

Active Component Definition

(*.cc)

Makefile building

(opp_makemake)

Simulation Executable Creation

(Make)

Configuration & Parameter Value

(omnetpp.ini)

Run Simulation Executable

Simulation Result

START

END

Fig 2: Flow Chart for Simulation using OMNeT++

The flow chart for OMNeT++ simulation for our proposed

algorithm is given in fig. 2. There are 4 modules of

simulation model given as:

 Task generator

 Grid agent

 Dispatcher

 Computing node

The Task generator produces the task and these tasks are

stored in a centralized task queue. The task generated by task

generator are mutually independent i.e., there is no precedence

constraint exists between the task.

If tasks are arriving in the queue at the exponentially

distributed rate λ, then the probability that there will be n

tasks after time t is given as:

!

n

t

n

t
P t e

n

(8)

The inter-arrival time, , is the average time between task

arrivals, measured in time per task and given as:

 = 1 / λ . (9)

The dispatcher schedule the task to an appropriate node. To

make enhanced scheduling decision, grid agent collects all the

pertinent information such as node capacity and provide it to

the dispatcher. The dispatcher module consist all 3 algorithm:

first-come-first-served (FCFS), hybrid genetic algorithm

(HGA), and proposed amended hybrid genetic algorithm

(AHGA). The task get schedule to appropriate node according

to the policy used. More precisely, proposed approach for task

scheduling is to divide-the scheduling function into 2 phase.

In first phase the task get scheduled according to the FCFS

policy. The second phase start when the number of task in

sliding window reaches its size and it start the GA. Again we

emphasize that the grid agent has adequate knowledge about

the characteristics of task placed in waiting queue, available

nodes and system that help to make an impeccable scheduling

decision. The process of scheduling in grid can be categorized

in two parts: static or deterministic and dynamic or stochastic.

This paper presents a deterministic scheduling approach in

which, the arrival times of tasks are known earlier.

4. PROPOSED ALGORITHM
This section describe the proposed algorithm with a brief

introduction.

4.1 Genetic Algorithm
In past some year GA gain very popularity to solve load
balancing problem. This technique requires a coding scheme
that can represent all legal solutions to the optimization
problem [4]. The general schema of genetic algorithm is given
in fig. 3. The algorithm is started with a set of solutions called
population and represented by chromosomes.

Population

Parents

Child

Crossover

Mutation

Initialization

Termination

Parent Selection

Survivor Selection

Fig 3: General schema of genetic algorithm

To form a new population, solutions (offspring) from one

population are taken and used. Solutions which are selected to

form a new offspring, are selected according to their fitness

value. The outline of the genetic algorithm is given below:

Begin

1. Create an random initial population P of individuals of

size N as parent 1(N=10)

2. Evaluate all individuals in the population P using fitness

function

3. For generation = 1 to maximum generation Do

4. For each individual in population P Do

5. Select a mate for individual as parent 2

(Reproduction)

6. Generate offsprings (Childs) using genetic

crossover and mutation operator with appropriate

crossover and mutation rate

7. Appraise fitness of offspring using fitness function

8. Endfor

9. Replace old population by a new population

10. Endfor

11. Return the best offspring as final solution

End.

4.1.1 Sliding Window
The initiation of GA follow the Sliding windows technique

[3,4]. The size of window is fixed and when number of task

reaches sliding window size GA start its execution. The

window is updated when the task is assigned to appropriate

computing node.

4.1.2 Initial Population
Since there is a need of initial population for evolution, a

random population is generated to solve the problem. Fig. 4

(a) show the generated initial population and (b) shows the

allocation of task to node. It consist a combination of tasks

and computing nodes. Instead of taking random task, a

sequential order is followed. A mapping is done between

these node and task. The AHGA algorithm use the population

of 10 individual. In figure 4 (a) task T1 is assigned to node

N1, T2 to N4 and so on. The order of task are taken sequential

weather the order of node is generated using a random policy.

International Journal of Computer Applications (0975 – 8887)

Volume78– No.1, September 2013

45

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

N1 N4 N3 N2 N1 N5 N1 N5 N3 N2

Task

Node

(a) Population

T1 T5 T7

N1

T4 T10 T3 T9 T2 T6 T8

N2 N3 N4 N5

(b) Task Allocation

Fig 4: Chromosome Representation

4.1.3 Encoding
Since strings are encoded using decimal numbers instead of

the traditional simple binary vectors, each task has a unique

task-id and the task schedule of independent tasks is

represented by a chromosome. Figure 4 show an example of

chromosome used in proposed algorithm. The chromosome

shows the execution order of all task on computing nodes.

4.1.4 Fitness Function
Every individual in the population is assigned, by means of a

fitness function, a measure of its performance with respect to

the problem. It is most important factor or component to

evaluate quality of solution. The main objective of fitness

function is to minimize the makespan as well as minimize the

execution time of the task. A chromosome is evaluated using

its fitness value and the value of fitness is derived from the

fitness function. The accuracy of the fitness function is vital

for the quality of the results formed by the GA. In this

proposed algorithm the fitness function is related to the

primary objective function and determined as follow:

Ft(x) = α * executionTime + β * Makespan(x) . (10)

Where x represents individual of the chromosome, ∝ and β

are the positive real constant such that α + β = 1

The objective function is defined as follows:

The Makespan is the largest completion time among all the

computing nodes involve in the system. For a computing

node, node utilization (Putil) is given as the sum of completion

time of all task divided by the makespan value.

1

Completion Time ./
Jn

util makespanP

(11)

Where Jn is the total number of task executed on a given node.

The average node utilization Pavg is given as:

1

Putil. / .
m

avg
P m

(12)

Where m is the total number of computing node.

Node Completion Time

4 19 2

6 18

5 14

13 11

9 13

P1

P2

P3

P4

P5

25

24

22

24

19

Fig 5: Gantt Chart for Schedule

Consider a schedule S of 10 task Ti, (1≤ i ≤ 12). Let the

completion time of the these task Ti are { 4, 13, 5, 6, 19, 9, 2,

13, 14, 18 } respectively. According to the schedule given in

figure 4, the Gantt chart is shown in fig. 5. According to Gantt

chart, the makespan value of the given schedule is 25 and

therefore the node utilization (individual) for all computing

nodes is given as follows:

Putil(N1) = 25/25 = 1.0 Putil(N2) = 24/25 = 0.96

Putil(N3) = 19/25 = 0.76 Putil(N4) = 24/25 = 0.96

Putil(N5) = 22/25 = 1.0

The node utilization (Average) is given as:
Pavg = 0.930.

4.1.5 Reproduction
To select the better individual the reproduction is used from a

population of large generation. It form a new population of

individual by selecting values from the previous population

based on their fitness value. The larger value of fitness has

more chance to survive in the next generation. For selection of

individuals to the population “survival of fittest” mechanism

is used. Following steps are taken for the reproduction:

Begin

1. For every individual in chromosome Do

2. Calculate fitness value Ft(x) of chromosome.

3. For every individual t the probability of selection is

calculated as:

1

/ .
n

t t t

i

SP f x f x

(13)

Where n is number of generation.

4. The additive selection probability of chromosome is

calculated as:

1

.
t

s t
ASP SP

(14)

Where t is total no of individuals in the chromosome.

5. Until population size achieved

End.

4.1.6 Crossover
To generate the new string (offspring) for the next generation

crossover operation is performed. In crossover operation first

2 parent for crossover are selected and then select a random

crossover point and perform crossover operation with a given

crossover probability to create the new string. The principle

behind crossover is: “by mating 2 individuals with different

but desirable features, an offspring is produced which

combines both of those features”.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Chromosome 1

Offspring 1

P1 P4 P3 P2 P1 P5 P1 P5 P3 P2

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

P1 P4 P3 P2 P2 P1 P4 P3 P3 P5

T8 T5

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Chromosome 2

P2 P4 P1 P5 P3 P1 P4 P2 P3 P5

T8 T5 Swap Value

Offspring 2
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

P2 P4 P1 P5 P5 P5 P1 P1 P3 P2

Crossover Point (cp)

Fig 6: Crossover Operator

Fig. 6 Shows the example of crossover operator. We select a

random crossover point and also select a random task (say T7)

from parent string. And replace the value of task just after

crossover point to T7 and vice-versa for both parent string.

4.1.7 Mutation
After the crossover, each of the individual of the

chromosomes will be mutated to any one of the codes with a

given mutation probability. It is a local optimization

International Journal of Computer Applications (0975 – 8887)

Volume78– No.1, September 2013

46

procedures and create a new individual by applying a random

variation between arbitrarily selected individuals. The goals

with adaptive probabilities of crossover and mutation are to

maintain the genetic diversity in the population and prevent

the genetic algorithms to converge prematurely to local

minima [13]. An example of mutation operator is given in

figure 7. We randomly select 2 task and swap their position

and corresponding node value is replaced by previous node

value.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Parent

String

Child

String

Exchange

 Value

P1 P4 P3 P2 P1 P5 P1 P5 P3 P2

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

P1 P1 P3 P2 P1 P5 P5 P5 P3 P2

Fig 7: Mutation Operator

4.1.8 Termination
The algorithm upholds the finest solution found so far in the

population since reproduction is used for selection. The

algorithm terminates when generations are completed. A fixed

or predefined number of generations are used as the stopping

condition because the proposed method includes a problem-

precise heuristic and it can search the design space in a small

number of assessments. The results are obtained by applying

the heuristic to the first chromosome. By applying this

heuristic to a new set of population differing slightly from the

original population for a fixed number of times results in the

best solution.

5. EXPERIMENTAL RESULT AND DIS-

CUSSION
This section describes the experimental results and then these

results are analyzed based on different comparison matrix.

The performance evaluation of proposed AHGA algorithm

and the comparison study with FCFS and HGA algorithms for

task scheduling have been done on OMNeT++.

6. PARAMETERS
The various parameters are used for performance measurem-

ent of proposed AHGA algorithm. The value of all parameters

with their initial value and their performance matrix in given

in table 1.

Table 1. Simulation Parameters

Parameter Value

Window size 10

Total No. of Task 100-500

Total no. of Node 5

Crossover Probability 0.7

Mutation Probability 0.3

Maximum No. of Generation 25

Mean Computational Length χ 5s-10s

Task Arrival rate λ 1s

Service Time τ (FCFS) 0.1

Service Time τ (GA) 4

Coefficient α 0.6

Coefficient β 0.4

All input parameters describe in table 1 read at runtime and

are specified in the omnetpp.ini file. The assumption used for

simulation environment is given as follows:

 The computational length of the task follow the

exponential distribution χ.

 The arrival pattern of the task follow the Poisson

distribution with the arrival rate of λ.

 The service time for the task dispatcher is given as τ

6.1 Performance Measurements
To check the accuracy, the proposed algorithm is compare

with a well design first-come-first-served and HGA algorithm.

The comparison is done for both heterogeneous and

homogeneous environment. Five computing nodes are used

to simulate the grid system and a set of independent task with

no data dependency. For homogeneous scenario the capacity

of all computing nodes is taken as 1, since each node has

equal capacity while for heterogeneous scenario, two

computing nodes are randomly selected and after than we

double their capacity.

6.2 Performance under homogeneous

scenario
For homogeneous scenario it is assumed that all the nodes

have the equal capability to execute the task and then simulate

the algorithm. For simulation, a varying number of tasks are

taken and vary the mean computational length χ between 5s to

10s and then analyse the result.

Fig 8: Makespan Value

Fig. 8 show the comparative analysis of makespan value and

number of task. The figure shows that as the number of task

increase, the value of makespan is also increase. For FCFS

algorithm makespan value vary from 150-900.

Table 2. Performance measurement for homogeneous

nodes

Total Task
Makespan Value

AHGA HGA FCFS

100 131.12 136.59 177.49

150 203.74 212.22 275.11

200 270.09 281.34 354.37

250 328.93 342.63 409.52

300 397.01 414.01 530.60

350 505.65 526.72 584.01

400 562.04 585.46 655.60

450 651.07 678.20 744.26

500 700.71 747.20 868.92

International Journal of Computer Applications (0975 – 8887)

Volume78– No.1, September 2013

47

Similarly for HGA and AHGA it vary from 100-800 and 100-

700 respectively. The result shows that the proposed AHGA

algorithm minimize the makespan value significantly better

than FCFS and HGA approach. Table 2 show the performance

list of makespan value for homogeneous nodes with variation

in mean computational length χ for FCFS, HGA and our

AHGA algorithm respectively. We vary the number of task

from 100 to 500, and also vary the mean computational length

χ from 5s to 10s. The table shows that the proposed AHGA

algorithm minimizes makespan value better for each number

of tasks.

Fig 9: Average Node Utilization

A comparison between average node utilization and number

of task is given is fig. 9. As the number of task increase the

node utilization very. For HGA and AHGA it remain same up

to 450 task and range between 0.95-1. As show in graph as

number of task increases than 450 the AHGA maximize the

average node utilization value than HGA approach.

Fig 10: Makespan Value Vs. Average Node Utilization

Fig. 10 gives the comparison between makespan value and

average node utilization. For FCFS, the node utilization (avg.)

initially very low and as the value of makespan increases

average node utilization also increase but limited to 0.9. As

compare to HGA and AHGA value of average node

utilization is same for 450 task but as task value increases

AHGA increase the value of average node utilization.

6.2.1 Performance under heterogeneous scenario
For heterogeneous scenario we assume that all computing

nodes has its own processing capability and different with

each other. For heterogeneous nodes we change the capacity

of two randomly selected nodes. For this we double the

capacity of selected node as given in homogeneous scenario.

To obtain performance matrix, mean computation length is

varied between 5s to 10s.

The comparative analysis of makespan value and number of

task for heterogeneous nodes is given in fig. 11. The value of

makespan increases constantly for the FCFS and lies in the

interval [100-800]. As the number of task increase the value

of makespan for HGA and AHGA lies between interval [100-

500]. The AHGA performed better as compare to FCFS and

also provide enhanced and minimized makespan values than

HGA.

Table 1. Performance measurement for heterogeneous

nodes

Total Task
Makespan Value

AHGA HGA FCFS

100 93.83 97.06 136.81

150 150.32 159.49 221.77

200 192.67 201.92 302.11

250 236.49 246.35 379.32

300 288.91 294.13 471.33

350 357.01 371.88 536.40

400 407.43 424.41 617.74

450 456.96 476.00 681.67

500 521.16 542.87 768.30

Table 2 show the performance list of makespan value for

heterogeneous nodes with variation in mean computational

length χ for all three algorithms. The number of task are

varied from 100 to 500, and similarly the mean computational

length χ is varied from 5s to 10s for every set of task.

Fig 11: Makespan Value

A comparison between average node utilization and number

of task for heterogeneous nodes is given is fig. 12. The result

shows that, as the number of task increase the makespan value

is increases. For FCFS, as the value of makespan increases the

value of average node utilization vary between 0.75 and 8. For

HGA and HGA it lies between 0.9 and 1.0.

International Journal of Computer Applications (0975 – 8887)

Volume78– No.1, September 2013

48

Fig 12: Average Node Utilization

Fig. 13 gives the comparison between makespan value and

average node utilization. The result shows that our proposed

algorithm work outstanding than FCFS and as compare to

HGA, it provide quite better and nearby result.

Fig 13: Makespan Value Vs. Average Node Utilization

7. CONCLUSION
With the rapid development of technology, grid computing

have increasingly becomes an attractive computing platform

for a variety of applications. In this paper a hybrid method for

job scheduling based on genetic algorithm to schedule the

sequential and heterogeneous task for grid computing

environment is presented. The performance of proposed

method is measured for both homogeneous and heterogeneous

scenario and the result shows that proposed AHGA algorithm

is improved than first-come-first-served and HGA methods

and provide near optimal schedule. The future plan is to

perform a broad assortment of experiments to improve the

performance, efficiency and integrating our algorithm with

existing ideas.

8. REFERENCES
[1] I. Foster, C. Kesselman, and S. Tuecke, The anatomy of

the grid: Enabling scalable virtual organizations, The

International Journal of High Performance Computing

Applications, 15 (3), 200-222. (2001)

[2] Rajkumar Buyya, and Srikumar Venugopal, A Gentle

Introduction to Grid Computing and Technologies,

Computer Socity of India, CSI Communication, July

(2005).

[3] Albert Y. Zomaya, Yee-Hwei, Observations on Using

Genetic Algorithms for Dynamic Load-Balancing, IEEE

Transections on Parallel and Distributed System, Vol. 12,

No. 9, 899-911. (2001)

[4] Yajun Li, Yuhang Yang, Maode Ma, and Liang Zhoy, A

hybrid load balancing strategy of sequential tasks for grid

computing environments, Future Generation Computer

Systems, 25, 819-828. (2009)

[5] Junwei Cao, Daniel P. Spooner, Stephen A. Jarvis,

Graham R. Nudd: Grid load balancing using intelligent

agents, Future Generation Computer Systems 21, 135–

149. (2005)

[6] The OMNeT++ Discrete Event Simulation System.

http://www.omnetpp.org/. (2012)

[7] OMNeT++ User Manual,

http://www.omnetpp.org/doc/omnetpp/manual/usman.ht

ml. (2012)

[8] Albert Y. Zomaya, Chris Ward, and Ben Macey:

Genetic Scheduling for Parallel Processor Systems:

Comparative Studies and Performance Issues, IEEE

Transections on Parallel and Distributed System, Vol. 10,

No. 8, 795-812. (1999)

[9] Shanshan Song, 0.6Kai Hwang, and Yu-Kwong Kwok:

Risk-Resilient Heu0.4ristics and Genetic Algorithms for

Security-Assured Grid Job Scheduling, IEEE

Transections on Computers, Vol. 55, No. 6, 703-719.

(2008)

[10] K. Q. Yan, S.C. Wang, C.P. Chang, J.S. Lin: A hybrid

load balancing policy underlying grid computing

environment, Computer Standards & Interfaces 29, 161–

173. (2007)

[11] Kuo-Qin Yan, Shun-Sheng Wang, Shu-Ching Wang,

Chiu-Ping Chang: Towards a hybrid load balancing

policy in grid computing system, Expert Systems with

Applications 36, 12054–12064. (2009)

[12] A. Varga, and R. Hornig, An Overview of the

OMNeT++ Simulation Environment. In the Proceedings

of First International Conference on Simulation Tools

and Techniques for Communications, Networks and

Systems (SIMUTools 2008), Marseille, France. (2008)

[13] S.N.Sivanandam, and S.N.Deepa: Introduction to

Genetic Algorithm, Springer-India. (2008))

[14] R. L. Haupt, and S. E. Haupt: Practical Genetic

Algortihms, John Wiley & Sons. (2004)

[15] INET Framework Documentation,

http://www.omnetpp.org/doc/INET. (2012)

[16] Andrew J. Page, Thomas M. Keane, Thomas J.

Naughton: Multi-heuristic dynamic task allocation using

genetic algorithms in a heterogeneous distributed system,

Journal of parallel and distributed computing, 70, 758–

766. (2010).

IJCATM : www.ijcaonline.org

