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ABSTRACT 

In grid computing environment, the efficiency of computing 

node is affected by several factors such as node utilization, 

allocation of jobs etc. The incoming job is allocated to 

appropriate node in such a way that the node utilization is 

maximized and a well-balanced load across all the 

participating computing nodes that enhances the overall 

performance of grid computing. This paper presents an 

amended hybrid approach for scheduling sequential task. The 

proposed approach uses combination of first-come-first-

served (FCFS) and genetic algorithm (GA). A sliding-window 

technique is presented to initiate alteration between the FCFS 

and GA, to offers a rapid task assignment. For GA we initially 

generate random population and use straightforward 

encoding. The proposed method is evaluated in the terms of 

makespan value and node utilization with a varying set of 

simulation cases and parameters after then it is compared with 

a well design first-come-first-server (FCFS) and hybrid 

genetic algorithm (HGA). Experimental results have shown 

significant improvement compared to the both FCFS and 

HGA algorithms. The result gives minimized makespan value 

with increased node utilization for both homogeneous and 

heterogeneous types of nodes. 
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1. INTRODUCTION 
A grid computing environment consist aggregations of both 

homogeneous and heterogeneous resources and provide 

infrastructure for solving problems for any stand-alone 

machine. The main focus of grid computing is large-scale 

resource sharing, innovative application and, in some case 

high-performance orientation [1]. There are various 

computing application that requires high performance 

computing resources to process the job and lead to increase 

overall execution time for job and thus decreases the node 

utilization and overall system performance. A “task” is a 

small segment of program and it has equal probability to 

scheduled individually in any of the computing node. A 

computing node within a grid environment is a processor that 

receive tasks from a centralized queue. Different nodes have 

different task/job processing capabilities, different memory 

segment and because of heterogeneous nature of computing 

node a load imbalance exists between nodes therefore a 

special load balancing scheme is needed to manage this load 

imbalance effectively. The scheduling of jobs is primarily 

concerned for the proper functionality of a grid computing 

system. 

Genetic algorithms [3,4,8,9,10,13,14,16] are search heuristics, 

to find optimal solution job scheduling as compared to other 

search procedures. It is a method for solving optimization 

problems and based on process of natural genetics. 

The First-Come-First-Serve (FCFS) algorithm [4,5,10] is a 

simple job scheduling algorithm in which task executed 

according to their arrival pattern in the job queue and the job 

which arrived earlier will be executed first. Consider a grid 

environment consists of m computing nodes Ni given as: 

Ni = {N1, N2, N3, ……,Nm} . (1) 

Where each computing nodes has its own capability Ci to 

execute the task and given as: 

Ci = {C1, C2, C3, ……,Cm} . (2) 

Since each task require some memory segments (Ms), 

processing power (Pp), and input/output (Io) function, 

therefore the capacity of a node can be defined as a three tuple 

element given as: 

C = {Ms, Pp, Io} . (3) 

A group of  n task Tj which is executed on Pi is given as: 

Tj = {T1, T2, T3, ………, Tn} . (4) 

Since every task has a start time Ts, an end time Te, an arrival 

time Ta, and a computational duration Tx, therefore we can 

define a task as a group of 4 elements and given as: 

{Ts, Te, Ta, Tx) = {Tsj, Tej, Taj, Txj} . (5) 

A task can be scheduled to any of the node involve in grid 

system, so the execution time of the task is determined by the 

dividing the computational time of the task to the capacity of 

the computing node. 

Texe = Tx / c . (6) 

The final goal of FCFS is minimize the execution time of the 

task. i.e., 

Texe = min {Texe | ∀ Ni} . (7) 

This paper present an amended hybrid job scheduling 

approach [4] based on FCFS and genetic algorithm in 

distributed computing environment. We also design the FCFS 

and HGA approach for job scheduling and compare the 

proposed algorithm to these algorithm. The proposed 

algorithm contain traditional scheduling heuristics to generate 

a feasible solution by determining the status of computing 

node and their capability to execute the task. 

The rest of paper is structured into 6 section. Section 2 

presents the review of related work. The problem definition 

and system model are explained in Section 3. The proposed 

algorithm in detail are described in section 4. Section 5 

presents experimental result and analysis, finally section 6 

conclude the paper. 



International Journal of Computer Applications (0975 – 8887)  

Volume78– No.1, September 2013 

43 

2. RELETED WORK 
K. Q. Yan et al. [10] proposed a hybrid load balancing policy 

which integrated static and dynamic load balancing 

technologies to assist in the selection for effective nodes. 

Essentially, a static load balancing policy is applied to select 

effective and suitable node sets. The task first divided into 

independent subtasks and after then minimum resource 

demand is taken. The execution of task are done according to 

value estimated by a value function. 

A task allocation algorithm based on multi-heuristic 

evolutionary approach for heterogeneous distributed system is 

presented in [16]. It manoeuvres on batches of unmapped 

tasks and tasks are dynamic and pre-emptive in nature. It 

operates dynamically, and allow each tasks for continuous 

execution. The main involvement is on-line estimation of 

resources where resources are varying in nature, dynamic 

model for task execution and the scheduling method with no 

prior knowledge. 

In the last few year genetic algorithm becomes very popular to 

solve load balancing problem. There are numerous studies on 

scheduling method for computational grid environment. 

Zomaya and Hwei [3] present a centralized methods for load 

balancing based on genetic algorithm. The number of tasks 

are fixed and  allocation of task to the node is done when a 

predefine criteria is met. Also they suppose that there are 

always adequate task in the waiting queue ready to process 

and the characteristics of task is known earlier before 

scheduling it. 

Yajun Li et al. [4] address the load balancing problem by 

presenting a hybrid approach to the load balancing of 

sequential tasks under grid computing environments. Two 

policy that are used for scheduling is FCFS and genetic 

algorithm and tasks are scheduled according to policy used. In 

centralized queue, when number of task becomes equal to 

sliding window size the genetic algorithm start its functioning. 

The results are compared with the FCFS and dynamic GA 

with improvement in terms of makespan, mean deviation and 

node utilization. 

Junwei Cao et al. [5] demonstrates that AI techniques can be 

utilized to achieve effective workload and resource 

management. A combination of intelligent agents and multi-

agent approaches is applied to both local grid resource 

scheduling and global grid load balancing. The grid agents are 

controlled by a centralized mechanism and each agent have 

previous knowledge of all other agents. 

Zomaya et al. [8] present a genetic algorithm based solution 

for the problem of task scheduling. There is no need to apply 

any problem specific assumptions such is the case when using 

heuristics. The tasks are dependent in nature i.e., precedence 

constraints exists between tasks and a priority is assigned to 

each task before they added to a list of waiting tasks. 

A grid system can be affected by various factors such as 

system failures, node availability, and communication delay. 

Shanshan Song et al. [9] models the risk and insecure 

conditions in Grid job scheduling and propose six risk-

resilient scheduling algorithms to assure secure Grid job 

execution under different risky conditions. The encoding 

methods for GA is based on the messy encoding concept and 

the initial population is based on the prior solution.  A job 

failure model is also developed including three risk springy 

methods such as pre-emptive, delay tolerant, and replication 

for scheduling of grid jobs. 

3. SYSTEM MODEL 
In this Section, we first present the system model, followed by 

the OMNeT++ simulation model. 

3.1 System Model 
The system model assumed in this paper consists of n 

computing nodes where each node has its own capacity Ci. 

Nodes are connected to each other through a communication 

channel. we also assume that there exist a centralized 

scheduling scheme, in which all the task arrive at a central 

queue, at the scheduler. The tasks coming from the grid users 

are first placed in a task queue and the task scheduler schedule 

the task according to the policy used such as FCFS or genetic 

algorithm. The scheduler makes sure that queue is filled with 

a minimum number of tasks for execution (in case of genetic 

algorithm). 

A near-optimal schedule based on genetic algorithm is 

determined by the scheduler. The  task scheduler schedule the 

job to appropriate node. The scheduling model is given in 

fig.1. The scheduling algorithm has full knowledge about the 

available computing node or resources and current workload, 

when making decision to schedule the current task. A 

scheduling agent is able to estimate all statistics information 

and responsible to provide all necessary information to task 

dispatcher to make the scheduling decision. Because of 

limited availability of network resources (nodes), nodes does 

not contain a waiting queue for tasks. 

Grid

User

Waiting Queue

Scheduling

Policy
Scheduling

Agent Resources

Task Generator Computing Nodes

Dispatcher

Scheduling Information

Fig 1: System Model 

The waiting queue consists of a large number of unscheduled 

tasks. If all of tasks available in waiting queue scheduled at 

once, it take a long time to proceed as well as find an efficient 

schedule, thus it increase the overall processing time of the 

system and give the chance to the computing node to become 

in ideal state. To minimize and eliminate this condition we 

only consider a small subset of these waiting tasks, hence a 

sliding window mechanism is used. 

3.2 OMNeT++ Model 
OMNeT++ (Objective Modular Network Testbed in C++) 

[6,7] is an public source, component based,  modular and 

open-architecture event discrete simulation environment used 

by various research groups for communication network 

performance evaluation. Because of its generic and flexible 

architecture, it has been successfully used in other areas like 

the simulation of IT systems, queuing networks, hardware 

architectures and business processes as well [15]. An 

OMNeT++ model consists of the following parts: 

 Message definitions files (with .msg suffix) 

represent job or task to be scheduled. 

 Network Description files (with .ned suffix) shows 

the components of the simulated network in a 

graphical manner. 

 Simple modules implementation (with .cc suffix). 

 Configuration files (with .ini suffix) consists of 

Configuration and input data for the simulation. 
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Fig 2: Flow Chart for Simulation using OMNeT++ 

The flow chart for OMNeT++ simulation for our proposed 

algorithm is given in fig. 2. There are 4 modules of  

simulation model given as: 

 Task generator 

 Grid agent 

 Dispatcher 

 Computing node 

The Task generator produces the task and these tasks are 

stored in a centralized task queue. The task generated by task 

generator are mutually independent i.e., there is no precedence 

constraint exists between the task.  

If tasks are arriving in the queue at the exponentially 

distributed rate λ, then the probability that there will be n 

tasks after time t is given as:  
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n
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P t e

n

 
  

 

(8) 

The inter-arrival time,  , is the average time between task 

arrivals, measured in time per task and given as: 

   = 1 / λ . (9) 

The dispatcher schedule the task to an appropriate node. To 

make enhanced scheduling decision, grid agent collects all the 

pertinent information such as node capacity and provide it to 

the dispatcher. The dispatcher module consist all 3 algorithm: 

first-come-first-served (FCFS), hybrid genetic algorithm 

(HGA), and proposed amended hybrid genetic algorithm 

(AHGA). The task get schedule to appropriate node according 

to the policy used. More precisely, proposed approach for task 

scheduling is to divide-the scheduling function into 2 phase. 

In first phase the task get scheduled according to the FCFS 

policy. The second phase start when the number of task in 

sliding window reaches its size and it start the GA. Again we 

emphasize that the grid agent has adequate knowledge about 

the characteristics of task placed in waiting queue, available 

nodes and system that help to make an impeccable scheduling 

decision. The process of scheduling in grid can be categorized 

in two parts: static or deterministic and dynamic or stochastic. 

This paper presents a deterministic scheduling approach in 

which, the arrival times of tasks are known earlier. 

4. PROPOSED ALGORITHM 
This section describe the proposed algorithm with a brief 

introduction. 

4.1 Genetic Algorithm 
In past some year GA gain very popularity to solve load 
balancing problem. This technique requires a coding scheme 
that can represent all legal solutions to the optimization 
problem [4]. The general schema of genetic algorithm is given 
in fig. 3. The algorithm is started with a set of solutions called 
population and represented by chromosomes. 

 

Population

Parents

Child

Crossover

Mutation

Initialization

Termination

Parent Selection

Survivor Selection
 

Fig 3: General schema of genetic algorithm 

To form a new population, solutions (offspring) from one 

population are taken and used. Solutions which are selected to 

form a new offspring, are selected according to their fitness 

value. The outline of the genetic algorithm is given below: 

Begin 

1. Create an random initial population P of individuals of 

size N as parent 1(N=10) 

2. Evaluate all individuals in the population P using fitness 

function 

3. For generation = 1 to maximum generation Do 

4.        For each individual in population P Do 

5. Select a mate for individual as parent 2 

(Reproduction) 

6. Generate offsprings (Childs) using genetic 

crossover and mutation operator with appropriate 

crossover and mutation rate 

7. Appraise fitness of offspring using fitness function 

8.        Endfor 

9. Replace old population by a new population 

10. Endfor 

11. Return the best offspring as final solution 

End. 

4.1.1 Sliding Window 
The initiation of GA follow the Sliding windows technique 

[3,4]. The size of window is fixed and when number of task 

reaches sliding window size GA start its execution. The 

window is updated when the task is assigned to appropriate 

computing node. 

4.1.2 Initial Population 
Since there is a need of initial population for evolution, a 

random population is generated to solve the problem. Fig. 4 

(a) show the generated initial population and (b) shows the 

allocation of task to node. It consist a combination of tasks 

and computing nodes. Instead of taking random task, a 

sequential order is followed. A mapping is done between 

these node and task. The AHGA algorithm use the population 

of 10 individual. In figure 4 (a) task T1 is assigned to node 

N1, T2 to N4 and so on. The order of task are taken sequential 

weather the order of node is generated using a random policy. 
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T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

N1 N4 N3 N2 N1 N5 N1 N5 N3 N2

Task

Node

(a) Population

T1 T5 T7

N1

T4 T10 T3 T9 T2 T6 T8

N2 N3 N4 N5

(b) Task Allocation

Fig 4: Chromosome Representation 

4.1.3 Encoding 
Since strings are encoded using decimal numbers instead of 

the traditional simple binary vectors, each task has a unique 

task-id and the task schedule of independent tasks is 

represented by a chromosome. Figure 4 show an example of 

chromosome used in proposed algorithm. The chromosome 

shows the execution order of all task on computing nodes. 

4.1.4 Fitness Function 
Every individual in the population is assigned, by means of a 

fitness function, a measure of its performance with respect to 

the problem. It is most important factor or component to 

evaluate quality of solution. The main objective of fitness 

function is to minimize the makespan as well as minimize the 

execution time of the task. A chromosome is evaluated using 

its fitness value and the value of fitness is derived from the 

fitness function. The accuracy of the fitness function is vital 

for the quality of the results formed by the GA. In this 

proposed algorithm the fitness function is related to the 

primary objective function and determined as follow: 

Ft(x) = α * executionTime + β * Makespan(x) . (10) 

Where x represents individual of the chromosome, ∝ and β 

are the positive real constant such that α + β = 1 

The objective function is defined as follows: 

The Makespan is the largest completion time among all the 

computing nodes involve in the system. For a computing 

node, node utilization (Putil) is given as the sum of completion 

time of all task divided by the makespan value. 

 
1

Completion Time ./
Jn

util makespanP    
 

(11) 

Where Jn is the total number of task executed on a given node. 

The average node utilization Pavg is given as: 

  
1

Putil. / .
m

avg
P m   

 

(12) 

Where m is the total number of computing node. 

Node Completion Time

4 19 2

6 18

5 14

13 11

9 13

P1

P2

P3

P4

P5

25

24

22

24

19

 

Fig 5: Gantt Chart for Schedule 

Consider a schedule S of 10 task Ti, (1≤ i ≤ 12). Let the 

completion time of the these task Ti  are { 4, 13, 5, 6, 19, 9, 2, 

13, 14, 18 } respectively. According to the schedule given in 

figure 4, the Gantt chart is shown in fig. 5. According to Gantt 

chart, the makespan value of the given schedule is 25 and 

therefore the node utilization (individual) for all computing 

nodes is given as follows:  

Putil(N1) = 25/25 = 1.0 Putil(N2) = 24/25 = 0.96 

Putil(N3) = 19/25 = 0.76 Putil(N4) = 24/25 = 0.96 

Putil(N5) = 22/25 = 1.0 

The node utilization (Average) is given as: 
Pavg = 0.930. 

4.1.5 Reproduction 
To select the better individual the reproduction is used from a 

population of large generation. It form a new population of 

individual by selecting values from the previous population 

based on their fitness value. The larger value of fitness has 

more chance to survive in the next generation. For selection of 

individuals to the population “survival of fittest” mechanism 

is used. Following steps are taken for the reproduction: 

Begin 

1. For every individual in chromosome Do 

2. Calculate fitness value Ft(x) of chromosome. 

3. For every individual t the probability of selection is 

calculated as: 

            
1

/ .
n

t t t

i

SP f x f x


   

 

(13) 

Where n is number of generation. 

4. The additive selection probability of chromosome is 

calculated as: 

          
1

.
t

s t
ASP SP  

 

(14) 

Where t is total no of individuals in the chromosome. 

5. Until population size achieved 

End. 

4.1.6 Crossover 
To generate the new string (offspring) for the next generation 

crossover operation is performed. In crossover operation first 

2 parent for crossover are selected and then select a random 

crossover point and perform crossover operation with a given 

crossover probability to create the new string. The principle 

behind crossover is: “by mating 2 individuals with different 

but desirable features, an offspring is produced which 

combines both of those features”. 

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Chromosome 1

Offspring 1

P1 P4 P3 P2 P1 P5 P1 P5 P3 P2

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

P1 P4 P3 P2 P2 P1 P4 P3 P3 P5

T8 T5

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Chromosome 2

P2 P4 P1 P5 P3 P1 P4 P2 P3 P5

T8 T5 Swap Value

Offspring 2
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

P2 P4 P1 P5 P5 P5 P1 P1 P3 P2

Crossover Point (cp)  

Fig 6: Crossover Operator 

Fig. 6 Shows the example of crossover operator. We select a 

random crossover point and also select a random task (say T7) 

from parent string. And replace the value of task just after 

crossover point to T7 and vice-versa for both parent string. 

4.1.7 Mutation 
After the crossover, each of the individual of the 

chromosomes will be mutated to any one of the codes with a 

given mutation probability. It is a local optimization 
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procedures and create a new individual by applying a random 

variation between arbitrarily selected individuals. The goals 

with adaptive probabilities of crossover and mutation are to 

maintain the genetic diversity in the population and prevent 

the genetic algorithms to converge prematurely to local 

minima [13]. An example of mutation operator is given in 

figure 7. We randomly select 2 task and swap their position 

and corresponding node value is replaced by previous node 

value. 

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Parent

String

Child

String

Exchange

   Value

P1 P4 P3 P2 P1 P5 P1 P5 P3 P2

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

P1 P1 P3 P2 P1 P5 P5 P5 P3 P2
 

Fig 7: Mutation Operator 

4.1.8 Termination 
The algorithm upholds the finest solution found so far in the 

population since reproduction is used for selection. The 

algorithm terminates when generations are completed. A fixed 

or predefined number of generations are used as the stopping 

condition because the proposed method includes a problem-

precise heuristic and it can search the design space in a small 

number of assessments. The results are obtained by applying 

the heuristic to the first chromosome. By applying this 

heuristic to a new set of population differing slightly from the 

original population for a fixed number of times results in the 

best solution. 

5. EXPERIMENTAL RESULT AND DIS-

CUSSION 
This section describes the experimental results and then these 

results are analyzed based on different comparison matrix. 

The performance evaluation of proposed AHGA algorithm 

and the comparison study with FCFS and HGA algorithms for 

task scheduling have been done on OMNeT++.  

6. PARAMETERS 
The various parameters are used for performance measurem-

ent of proposed AHGA algorithm. The value of all parameters 

with their initial value and their performance matrix in given 

in table 1.  

Table 1. Simulation Parameters 

Parameter Value 

Window size 10 

Total No. of Task 100-500 

Total no. of Node 5 

Crossover Probability 0.7 

Mutation Probability 0.3 

Maximum No. of Generation 25 

Mean Computational Length χ 5s-10s 

Task Arrival rate λ 1s 

Service Time τ (FCFS) 0.1 

Service Time τ (GA) 4 

Coefficient α 0.6 

Coefficient β 0.4 

 

All input parameters describe in table 1 read at runtime and 

are specified in the omnetpp.ini file. The assumption used for 

simulation environment is given as follows: 

 The computational length of the task follow the 

exponential distribution χ. 

 The arrival pattern of the task follow the Poisson 

distribution with the arrival rate of λ. 

 The service time for the task dispatcher is given as τ 

6.1 Performance Measurements 
To check the accuracy, the proposed algorithm is compare 

with a well design first-come-first-served and HGA algorithm. 

The comparison is done for both heterogeneous and 

homogeneous environment. Five computing nodes are used  

to simulate the grid system and a set of independent task with 

no data dependency. For homogeneous scenario the capacity 

of all computing nodes is taken as 1, since each node has 

equal capacity while for heterogeneous scenario, two 

computing nodes are randomly selected and after than we 

double their capacity. 

6.2 Performance under homogeneous 

scenario 
For homogeneous scenario it is assumed that all the nodes 

have the equal capability to execute the task and then simulate 

the algorithm. For simulation, a varying number of tasks are 

taken and vary the mean computational length χ between 5s to 

10s and then analyse the result. 

 

Fig 8: Makespan Value 

Fig. 8 show the comparative analysis of makespan value and 

number of task. The figure shows that as the number of task 

increase, the value of makespan is also increase. For FCFS 

algorithm makespan value vary from 150-900. 

Table 2. Performance measurement for homogeneous 

nodes 

 

Total Task 
Makespan Value 

AHGA HGA FCFS 

100 131.12 136.59 177.49 

150 203.74 212.22 275.11 

200 270.09 281.34 354.37 

250 328.93 342.63 409.52 

300 397.01 414.01 530.60 

350 505.65 526.72 584.01 

400 562.04 585.46 655.60 

450 651.07 678.20 744.26 

500 700.71 747.20 868.92 
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Similarly for HGA and AHGA it vary from 100-800 and 100-

700 respectively. The result shows that the proposed AHGA 

algorithm minimize the makespan value significantly better 

than FCFS and HGA approach. Table 2 show the performance 

list of makespan value for homogeneous nodes with variation 

in mean computational length χ for FCFS, HGA and our 

AHGA algorithm respectively. We vary the number of task 

from 100 to 500, and also vary the mean computational length 

χ from 5s to 10s. The table shows that the proposed AHGA 

algorithm minimizes makespan value better for each number 

of tasks. 

 

Fig 9: Average Node Utilization 

A comparison between average node utilization and number 

of task is given is fig. 9. As the number of task increase the 

node utilization very. For HGA and AHGA it remain same up 

to 450 task and range between 0.95-1. As show in graph as 

number of task increases than 450 the AHGA maximize the 

average node utilization value than HGA approach. 

Fig 10: Makespan Value Vs. Average Node Utilization 

Fig. 10 gives the comparison between makespan value and 

average node utilization. For FCFS, the node utilization (avg.) 

initially very low and as the value of makespan increases 

average node utilization also increase but limited to 0.9. As 

compare to HGA and AHGA value of average node 

utilization is same for 450 task but as task value increases 

AHGA increase the value of average node utilization. 

6.2.1 Performance under heterogeneous scenario 
For heterogeneous scenario we assume that all computing 

nodes has its own processing capability and different with 

each other. For heterogeneous nodes we change the capacity 

of two randomly selected nodes. For this we double the 

capacity of selected node as given in homogeneous scenario. 

To obtain performance matrix, mean computation length is 

varied between 5s to 10s. 

The comparative analysis of makespan value and number of 

task for heterogeneous nodes is given in fig. 11. The value of 

makespan increases constantly for the FCFS and lies in the 

interval [100-800]. As the number of task increase the value 

of makespan for HGA and AHGA lies between interval [100-

500]. The AHGA performed better as compare to FCFS and 

also provide enhanced and minimized makespan values than 

HGA. 

Table 1. Performance measurement for heterogeneous 

nodes 

 

Total Task 
Makespan Value 

AHGA HGA FCFS 

100 93.83 97.06 136.81 

150 150.32 159.49 221.77 

200 192.67 201.92 302.11 

250 236.49 246.35 379.32 

300 288.91 294.13 471.33 

350 357.01 371.88 536.40 

400 407.43 424.41 617.74 

450 456.96 476.00 681.67 

500 521.16 542.87 768.30 
 

Table 2 show the performance list of makespan value for 

heterogeneous nodes with variation in mean computational 

length χ for all three algorithms. The number of task are 

varied from 100 to 500, and similarly the mean computational 

length χ is varied from 5s to 10s for every set of task. 

Fig 11: Makespan Value 

A comparison between average node utilization and number 

of task for heterogeneous nodes is given is fig. 12. The result 

shows that, as the number of task increase the makespan value 

is increases. For FCFS, as the value of makespan increases the 

value of average node utilization vary between 0.75 and 8. For 

HGA and HGA it lies between 0.9 and 1.0. 



International Journal of Computer Applications (0975 – 8887)  

Volume78– No.1, September 2013 

48 

Fig 12: Average Node Utilization 

Fig. 13 gives the comparison between makespan value and 

average node utilization. The result shows that our proposed 

algorithm work outstanding than FCFS and as compare to 

HGA, it provide quite better and nearby result. 

Fig 13: Makespan Value Vs. Average Node Utilization 

7. CONCLUSION 
With the rapid development of technology, grid computing 

have increasingly becomes an attractive computing platform 

for a variety of applications. In this paper a hybrid method for 

job scheduling based on genetic algorithm to schedule the 

sequential and heterogeneous task for grid computing 

environment is presented. The performance of proposed 

method is measured for both homogeneous and heterogeneous 

scenario and the result shows that proposed AHGA algorithm 

is improved than first-come-first-served and HGA methods 

and provide near optimal schedule. The future plan is to 

perform a broad assortment of experiments to improve the 

performance, efficiency and integrating our algorithm with 

existing ideas. 
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