
International Journal of Computer Applications (0975 – 8887)

Volume78– No.1, September 2013

38

Performance Analysis of Floating Point MAC Unit

Sonali Mehta
Centre for Development of

Advanced Computing,Mohali

Balwinder singh
Centre for Development of

Advanced Computing, Mohali

Dilip Kumar, Ph.D
Centre for Development of

Advanced Computing, Mohali

ABSTRACT
In order to meet the requirements in real time DSP

applications MAC unit is required. The speed of the MAC

unit determines the overall performance of the system. MAC

unit basically consists of Multiplier, adder and an accumulator

unit. In most of the cases floating point adder/subtractor and a

multiplier are presented in IEEE-754 format for single

precision format. In this research work MAC unit is proposed.

Various floating point multipliers are designed with the help

of adders such as Carry look ahead, Carry save, Carry skip

and then their individual performance analysis is done on the

basis of power, speed, and area. Finally MAC unit is made

with the help of different floating point multiplier

architectures to obtain the best results in terms of area, speed

and power. Various floating point multiplier architectures

used in MAC unit are pipelined floating point multiplier;

carry save, carry look ahead and ripple carry multipliers. All

the results are calculated in Xilinx ISE 12.4 design suite.

KEYWORDS
Area, Speed, Power, MAC, Floating point, Delay

1. INTRODUCTION
DSP applications involve many critical operations usually

multiplications and accumulations. In real time signal

processing applications high throughput MAC unit is always

required to achieve a high performance in DSP applications .It

is because in real time DSP applications speed and throughput

are the major concerns. Floating point numbers represent an

approximation to real numbers in a way that can support a

wide range of values. The main goal of this paper is designing

of floating point MAC unit. Representing real numbers in

binary format requires floating point numbers .In this paper

floating point numbers are represented according to IEEE 754

standard format. In single precision, a Floating Point number

consists of a 32-bit word divided in 1 bit for sign, 8 bits for

exponent that constitutes a 127 bias, and 23 bits for the

significand. This standard supports two types of formats

binary interchanges format and decimal interchange format. In

many applications computation is done using floating point

arithmetic. Earlier floating point operations were mainly

implemented as software while for main stream general

purpose processor hardware implementation was an option

because cost of the hardware was not reasonable. Today every

microprocessor is hardware specific for handling various

floating point operations. In real time signal processing

applications floating point MAC unit is required in order to

achieve desired performance. But because of the

advancements in reconfigurable logic now these Mac units

can be implemented on FPGA. The goal of this project is

FPGA implementation of floating point MAC unit for DSP

applications. Floating point number can be given by equation

(1):

 *(1*M) (1)

Equation 1 represents IEEE 32 bit single precision floating

point format. One very important requirement of the IEEE-

754 representation is that the number should be represented

with it closest equivalent for the precision chosen, which

means that it is assumed that any operation is performed with

infinite precision Any floating point number is first of all

converted into this format (1) and further operations are

performed. Floating-point (FP) addition is based on sequence

of mantissa operations swap, shift, add, normalize, and round.

A floating point adder first compares the exponents of the two

input operands, swaps and shifts the mantissa of the smaller

number to get them aligned. The number has to be adjusted if

the incoming number is negative. Finally, the sum is

renormalized, Exponents are adjusted accordingly, and

resulting mantissas are truncated by an appropriate rounding

scheme. If extra speed is required then FP adders use leading-

zero anticipatory (LZA) logic to carryout pre-decoding for

normalization shifts in parallel with the mantissa addition.

Floating point multiplication basically involves xoring of the

signs, multiplication of significands and adding exponents of

both the numbers. After addition the exponent is called

tentative result exponent. Then we have to subtract bias from

added exponents. Result can be a normalised number if the

MSB is 1.In this paper various multipliers such as carry save,

carry look ahead, ripple carry are designed Then their

performance analysis is done on various parameters such as

area, speed and power. Then floating point MAC unit is

designed.MAC basically consists of adder, multiplier and an

accumulator certain values are used for special number

representation, as follows. If the exponent is 0 and mantissa is

0 then the number is a zero number. If the exponent is 0 and

mantissa is greater than 0 then the number is a subnormal

number. If the exponent lies in between 0 and 255 and

mantissa is greater than 0 then the number is a normal

number. If the exponent is 255 and mantissa is 0 then the

number is an infinite number. If the exponent is 255 and the

mantissa is greater than 0 then the number is not a number.

Table 1. Special Numbers

This paper has 4 sections: section II explains Related Work.

Section III describes standard IEEE 754 format. Section IV

explains organisation of work which has three subsections

floating point adder, floating point multiplier, floating point

MAC unit. Section V describes results.

2. RELATED WORK
Guillermo Marcus [2] presents a multiplier and an

adder/subtractor for single precision floating point numbers in

IEEE format. They have pipelined architecture which are

implemented in VHDL. Mohamed Al-Ashrafy [1] presents a

floating point multiplier In IEEE single precision floating

S.No. Exponent Mantissa output

1 =0 =0 Zero

2 =0 >0 subnormal

3 0<E<255 >0 normal

4 =255 =0 infinity

5 =255 =0 NAN

http://en.wikipedia.org/wiki/Real_number

International Journal of Computer Applications (0975 – 8887)

Volume78– No.1, September 2013

39

point format. The multiplier does not implement rounding and

it just presents the significand multiplied result. Carlos

Minchola [11] has presented FPGA implementation of a

Decimal Floating Point (DFP) Adder/Subtractor. The design

performs addition and subtraction on 64-bit operands that use

the IEEE 754-2008 decimal encoding of DFP numbers and is

based on a fully pipelined circuit. The design can operate at a

frequency of 200 MHZ on a Virtex-5 with a latency of 8

cycles. Lamiaa S. A. Hamid [10] has presented a high speed

generic Floating Point Unit (FPU) consisting of a multiplier

and adder/Subtractor units is proposed. A novel multiplication

algorithm is proposed and used in the multiplier

implementation.

3. ORGANISATION OF WORK
In this section IEEE 754 single precision format, floating

point adder, Floating point multiplier and floating point MAC

unit are explained. MAC consists of a multiplier and an

accumulator unit. Multiplier will multiply two numbers and

result will be added to the number already stored in the

accumulator.

3.1 STANDARD IEEE 754 FORMAT
The standard binary floating point format was issued by IEEE

in 1985 [6]. It covers different types of floating-point formats

(e.g. single, double), special coding representations (e.g. 0,

+∞, −∞), rounding mechanisms, arithmetic operations, etc.

The standard radix-2 binary floating-point representation can

be written as in equation1 with s as the sign bit, M as the

mantissa or fraction.

 32 31 23 0

Figure 1. IEEE single precision floating point format

3.2 FLOATING POINT ADDER
Given two floating point numbers p1, p2 their sum can be

denoted as p

P= p1+p2

 =

 =

 = (2)

The above equation describes addition of two floating point

numbers. Figure 3 describes diagram of a floating point adder

[2]. Adding two floating point numbers involves aligning both

the numbers to bigger exponent and then adding aligned

significands. The input exponents are subtracted and the result

is used as tentative result exponent. The difference is used as

amount of shift required to align both the mantissas. In

significand processing preparation execution and

normalization stages are basically involved. Preparation

involves selecting the significand of the smaller exponent and

aligning it to bigger one. In this stage if required one of the

significands can be complemented this is actually done by

inverting the selected significand and setting a carry-in in the

adder. In execution stage actual addition of significands is

realized. The normalization stage basically involves

normalization, rounding and final normalization. The first

normalisation is a single bit right shift or it can be n bit left

shift that depends on the number of leading zeroes of the

tentative result significand. The round and final normalisation

are same as that in floating point multiplier. The resultant sign

is obtained by xoring the sign bit of the two numbers. Finally

output sign, mantissas and significand are obtained.

3.3 FLOATING POINT MULTIPLIER
Given two floating point numbers n1, n2 and after

multiplication the result is n.

n=n1*n2

 =

 = (3)

In Figure 2 we present a general multiplier block diagram

[2].The sign, exponent and mantissas are extracted from both

the numbers respectively. Pipelining has been used for

designing multiplier. The sign bits of both the numbers are

xored. The 8 bit exponents are added and then bias is

subtracted from it. Subtraction is easily achieved by adding

carry in to the sum and then subtracting 128 from it by

complementing most significant bit. For multiplying

significands 48 bit multiplier is used. The 28 bits are

considered as the most significand bits out of which 24 bits

are the mantissa bits, 3 bits are for proper rounding, 1 bit is

for range overflow. The result is then normalized for proper

approximation to closest value. The approximation consists of

a possible single bit right shift and corresponding exponent is

incremented depending on b1 bit. The resultant sign,

exponent and mantissas are obtained. The resultant sign,

exponent and mantissas are then obtained. The figure shown

below is simple floating point multiplier. In this paper three

floating point multipliers have been designed using carry

save, carry look ahead, ripple carry adder. Same flow is used

for all of them .only for addition of exponents different adders

are used.

Figure 2. Block diagram of floating point multiplier

sign Exponent Mantissa

International Journal of Computer Applications (0975 – 8887)

Volume78– No.1, September 2013

40

Figure 3. Block diagram of floating point adder

3.4 FLOATING POINT MAC UNIT
basically composed of adders, multiplier and an accumulator.

The inputs which are given to the MAC are fetched from

memory location and fed to the multiplier of block of MAC

which performs multiplication and gives the result back to

adder which will accumulate the result and store it in a

memory location. Complete process is achieved in a single

cycle. The design consists of 32 bit floating point adder and 1

register for memory location. A typical MAC unit consists of

multiplier, adder and accumulator. The most important feature

that differentiates general processor from digital signal

processor is it’s multiply and accumulate unit. Each DSP

algorithm would require some form of Multiplication and

accumulation system. This one is the most important block in

DSP systems. Usually adders that are used are carry save,

carry select, ripple carry adders because of their speed. The

inputs of MAC are supposed to be fetched from memory

location and then they are fed to the multiplier. Multiplier will

multiply the inputs and it will give the results back to the

adder and then the results of the multiplier are added to the

previously accumulated results. Computation of most

important formula i.e. b (n) x (n-k) is easily solved by this

operation.

Figure 4. Block diagram of floating point MAC unit

4. RESULTS
The proposed Mac unit is implemented on Xilinx ISE design

suite 12.4. Floating point adder is designed and then floating

point multiplier is designed by using different adders such as

carry save, ripple carry and carry look ahead and then

performance analysis is done based on various parameters. In

this paper pipelined multiplier, ripple carry multiplier, carry

save multiplier, carry look ahead multiplier are designed. All

the four multipliers are compared on the basis of power,

thermal properties for commercial as well as Industrial

applications. Then comparison is done on the basis of speed,

area.

Table 1. Comparison of delay and area for floating point

adders

Adders Floating point

adder(single

cycle)

Floating point

adder(pipelined)

No. of LUT FF NA 292

Slice registers 501 292

No. of I/O 98 98

Speed 31.4 MHz 123.433MHz

Table describes the comparison for the following parameters

such as LUT Flip flops, slice registers, No. of I/O, speed.

Slice registers are 501 in single cycle and 292 in pipelined and

I/O are same, speed of pipelined is more as compared to

single cycle.

Table2. Power consumed by floating point adder

Commercial

power

Floating point

adder

Dynamic 5.47

Quiescent 555.46

 Total 560.92

International Journal of Computer Applications (0975 – 8887)

Volume78– No.1, September 2013

41

Table 3. Power consumed for different floating point

multipliers

Floating point

multipliers/power

quiescent

(mW)

Dynamic

(mW)

Total

(mW)

Ripple carry 736.21 173.89 562.32

Carry save 460.87 163.90 296.91

Carry look ahead 612.26 170.72 441.54

Pipelined 582.67 21.99 560.60

Table describes the comparison of various floating point

multipliers such as ripple carry, carry save, carry look ahead

and pipelined.

Table 4.Comparison of speed/area for various floating

point multipliers

Table describes the comparison of various floating point

multipliers such as ripple carry, carry save, carry look ahead

and pipelined. Slices are highest for carry look ahead and

speed is maximum for pipelined floating point

Table 5.Power consumed for simple MAC unit.

Power Quiescent Dynamic Total

MAC 586.50 25.77 560.73

Table 6. Delay and Area for MAC unit.

Parameters Delay Area

MAC 31.4 MHz 501 out of 28800

Table 7. Speed and Area for MAC unit with different

floating point multipliers.

Table describes Speed and area for various floating point

MAC unit. Speed and area for various floating point MAC

units is described. Speed is highest for carry save MAC

5. CONCLUSION
A FP adder and a FP multiplier are presented in this paper.

Both are available in pipeline architectures and they are

implemented in VHDL, are fully synthesizable with

performance comparable to other available high speed

implementations. Here in this paper three floating point

multipliers are designed such as carry save, carry look ahead,

ripple carry. Then pipelined floating point multiplier, carry

save, carry look ahead, ripple carry are compared with each

other and then results are analysed on the basis of area, delay,

power. Then a complete MAC unit is designed based on

above results and its FPGA implementation is done.

6. ACKNOWLEDGMENT
The author wants to express heartiest gratitude to Centre for

Development of Advanced Computing (CDAC) Mohali faculty

and staff members for their confidence in my efforts and the

project. The author also wants to thank CDAC for providing

equipments and laboratory to support this work.

 7. REFERENCES
[1] Mohamed Al-Ashrafy, Ashraf Salem and Wagdi Anis,

“An Efficient Implementation of Floating Point

Multiplier, “proceeding of 2011 IEEE.

[2] Guillermo Marcus, Patricia Hinojosa, Alfonso Avila and

Juan Nolazco-Flores, “A Fully Synthesizable Single-

Precision, Floating-Point Adder/Subtractor and

Multiplier in VHDL for General and Educational Use”,

Proceedings of the Fifth IEEE International Caracas

Conference on Devices, Circuits and Systems,

Dominican Republic.

[3] Xilinx Inc, ISE, at http://www.xilinx.com.

[4] Behrooz Parhami, Computer Arithmetic: Algorithms and

Hardware Designs, 1st ed. Oxford: Oxford University

Press, 2000

[5] John G. Proakis and Dimitris G. Manolakis (1996),

“Digital Signal Processing: Principles. Algorithms and

Applications”, Third Edition.

[6] Patterson, D. & Hennessy, J. (2005), Computer

Organization and Design: The Hardware/software

Interface, Morgan Kaufmann.

[7] Mentor Graphics Inc, FPGA Advantage, at

http://www.mentor.com/fpgaadvantage.

[8] IEEE Standards Board, IEEE-754, IEEE Standard for

Binary Floating-Point Arithmetic, New York: IEEE,

1985.

[9] Lamiaa S.A.Hamid, Khaled A.Sheata, Hassan El-

Ghitani, Mohamed Elsaid (2010),“ Design of Generic

Floating Point Multiplier and Adder/Subtractor Units”, in

proceedings of the 12th IEEE international Conference on

computer modeling and Simulation.

[10] Carlos Minchola, Martin Vazquez, Gustavo sutter

(2011),”A FPGA-754-2008 DECIMAL64 Floating point

adder/subtractor” , “proceeding of 2011 IEEE.

[11] S.V.Siddamal, R.M.Banakar and B.C.Jinaga, “Design of

high speed multiplier,” 4th IEEE International

symposium on Electronic Design, test and Application,

pp.285-289, 2013.

[12] Michael Nachtigal, Himanshu Thapliyal and Nagarajan

Ranganathan,, “Design of a Reversible Floating-Point

Adder Architecture,” proceeding of the 2011 11th IEEE

International Conference on Nanotechnology Portland

Marriott August 15-18, Portland, Oregon, USA, pp.451-

456,2011.

[13] Rajit Ram Singh,Vinay Kumar Singh and Geetam S

Tomar,(2011) “VHDL environment for Floating point

Arithmetic Logic Unit – ALU design and Simulation,” in

proceeding of International Conference on

Communication Systems and Network Technologies, pp

469-472,2011.

Multipliers Speed(MHz) No. of slices

No. of

bonded

I/O B’s

Ripple carry 23.2 858 96

Carry save 44.72 776 96

Carry look

ahead

24.54 1201 96

pipelined 151.284 126 96

MAC Speed Area

Carry look ahead MAC 114.549MHz 313

Carry save MAC 115.955MHz 291

Ripple carry MAC 114.549MHz 291

IJCATM : www.ijcaonline.org

http://www.xilinx.com/
http://www.mentor.com/fpgaadvantage

