
International Journal of Computer Applications (0975 – 8887)

Volume78– No.1, September 2013

30

Object Oriented Metrics Evaluation

S. Pasupathy1 and R. Bhavani2, Ph.D

1.
 Associate Professor, Dept. of CSE, FEAT, Annamalai University, Tamil Nadu, India.

2.
Associate Professor, Dept. of CSE, FEAT, Annamalai University, Tamil Nadu, India.

ABSTRACT
This paper presents the results derived from the survey on

metrics used in object oriented environments. The survey

includes a small set of the most well known and commonly

applied traditional software metrics which could be applied to

object oriented programming and a set of object oriented

metrics. In short, the metrics based assessment of a software

system and measures taken to improve its design differ

considerably from tool to tool. To support the case, we

conducted an experiment with a number of commercial and

free metrics tools. We calculated metrics values using the

same set of standard metrics for three software systems of

different sizes. These metrics were evaluated using object

oriented metrics tools for the purpose of analyzing quality of

the product, encapsulation, inheritance, message passing,

polymorphism, reusability and complexity measurement. It

defines a ranking of the classes that are most vital note down

and maintainability. The results can be of great assistance to

quality engineers in selecting the proper set metrics for their

software projects and to calculate the metrics, which was

developed using a sequential object oriented life cycle

process.

Index: Software development, Object oriented

programming, Object oriented metrics tool.

1. INTRODUCTION

Object-oriented design and development is becoming very

popular in today's software development environment. Object

oriented development requires not only a different approach to

design and implementation, it requires a different approach to

software metrics. Since object oriented technology uses

objects and not algorithms as its fundamental building blocks,

the approach to software metrics for object oriented programs

must be different from the standard metrics set. Some metrics,

such as lines of code and cyclomatic complexity, have

become accepted as "standard" for traditional functional/

procedural programs, but for object oriented, there are many

proposed object oriented metrics in the literature [1]. The

question is, "Which object oriented metrics should a project

use, and can any of the traditional metrics”. This paper

presents the possibility of using object-oriented software

metrics for the automatic detection of a set of design

problems.

It will illustrate the efficiency of this approach by discussing

the conclusions of an experimental study that uses a set of

three metrics for problem detection and applies them to three

projects. These three metrics are “touching” three main

aspects of object-oriented design, aspects that have an

important impact on the quality of the systems – i.e.

maintenance effort, class hierarchy layout and cohesion [2].

For each of these metrics we will present the design flaw that

it may detect together with some of our experimental

observations – and a possible redesign solution for that

problem. Object-oriented (OO) metrics are measurements on

OO applications used to determine the success or failure of a

process or person, and to quantify improvements throughout

the software process. These metrics can be used to reinforce

good OO programming techniques, which leads to more

reliable code.

One metric alone is not enough to determine any information

about an application under development. Several metrics must

be used in tandem to gain insight into improvements during a

software process [3]. There are several software packages that

can be used to determine the metrics on a software

applications.

2. TYPES OF METRICS

The metrics presented hereinafter have been selected from

metrics proposed specifically for object–oriented

measurements and cannot be applied to another programming

style. This is a small fraction of the most well-known metrics

analyzed in various real time applications. The categories

chosen to present the metrics are not defining a metrics

classification but used simply to ease the presentation and

sometimes a metric may fall in more than one category. The

metrics presented are: class related metrics, method related

metrics, encapsulation metrics, cyclometic complexity

measuremetnt,inheritance metrics, metrics measure coupling

and metrics measure general (system) software production

[4,5]. The types of metrics are shown in table 1.

Table 1: Types of Metrics

2.1 SIZE METRICS
This metrics is used to evaluate overall program size and

specify the module wide metrics. Each metrics has different

factors. The size oriented metrics are,

Lines of code (LOC): This measure provides a count of total

number of lines in the module. It includes source lines, blank

lines, comment lines.

Physical lines of code: This measure provides a count of total

number of source lines in the module.

S.NO Metrics Types

01 Size Metrics

02 Class Metrics

03 Encapsulation Metrics

04 Complexity Metrics

05 Inheritance Metrics

06 Polymorphism Metrics

07 Message Passing Metrics

08 Coupling Metrics

09 Reuse Metrics

10 Quality Measurement

International Journal of Computer Applications (0975 – 8887)

Volume78– No.1, September 2013

31

Number of statements: This measure indicates total number

of statements in the module. It includes if, else, switch, case,

while, do while, for statements.

Comment lines: This measure indicates total number of

comment lines in a module.

Blank lines: This measure indicates total number of blank

lines in a module.

Non-comment Non-blank (NCNB): This measure provides

count of all lines that are not comments and not blanks.

Executable Statements (EXEC): This measure provides a

count of executable statements regardless of number of

physical lines of code.

2.2 CLASS ORIENTED METRICS

Classes, which are the central points of every object oriented

language implement methods and define attributes. The class

metrics address thus this aspect: their complexity can be

expressed through methods and attributes and the way these

entities behave. HNL Hierarchy nesting level also called

depth of inheritance tree. The number of classes in superclass

chain of class. In case of multiple inheritances, count the

number of classes in the longest chain. Summarizes the

overall class metrics.

2.2.1 Number of Class Measurement

 NA Number of accessors, the number of get/set -

methods in a class.

 NAM Number of abstract methods.

 NC Number of constructors.

 NCV Number of class variables.

 NIA Number of inherited attributes, the number of

attributes defined in all superclasses of the subject

class.

 NIV Number of instance variables.

 NMA Number of methods added, the number of

methods defined in the subject class but not in its

superclass.

 NME Number of methods extended, the number of

methods redefined in subject class by invoking the

same method on a superclass.

 NMI Number of methods inherited, i.e. defined in

superclass and inherited unmodified.

 NMO Number of methods overridden, i.e. redefined

in subject class.

 NOC Number of immediate children of a class.

 NOM Number of methods, each method counts as 1.

NOM = NMA + NME + NMO.

 NOMP Number of method protocols. This is

Smalltalk - specific: methods can be grouped into

method protocols.

 PriA Number of private attributes.

 PriM Number of private methods.

 ProA Number of protected attributes.

 ProM Number of protected methods.

 PubA Number of public attributes.

 PubM Number of public methods.

 WLOC Lines of code, sum of all lines of code in all

method bodies of the class.

 WMSG Number of message sends, sum of number

of message sends in all method bodies of class.

 WMCX Sum of method complexities.

 WNAA Number of times all attributes defined in the

class are accessed.

 WNI Number of method invocations, i.e. in all

method bodies of all methods.

 WNMAA Number of all accesses on attributes.

 WNOC Number of all descendants, i.e. sum of all

direct and indirect children of a class.

 WNOS Number of statements, sum of statements in

all method bodies of class.

2.2.2 Methods present in the class:

Methods can be seen as a flow of instructions which take

input through parameters and which produce output. Methods

can invoke other methods or access attributes. The method

metrics are defined in this context.

 LOC Lines of code in method body.

 MHNL Hierarchy nesting level of class in which

method is implemented.

 MSG Number of message sends in method body.

 NI Number of invocations of other methods in

method body.

 NMAA Number of accesses on attributes in method

body.

 NOP Number of parameters which the method

takes.

 NOS Number of statements in method body.

 NTIG Number of times invoked by methods non-

local to its class, i.e. from methods implemented in

other classes.

 NTIL Number of times invoked by methods local to

its class, i.e. from methods implemented in the same

class.

2.2.3 Attributes present in the class:

Attributes are properties to classes. Their main function is to

return their value when accessed by methods. The attribute

metrics are defined in such a context.

 AHNL Hierarchy nesting level of class in which

attribute is defined.

 NAA Number of times accessed. NAA = NGA +

NLA.

 NCM Number of classes having methods that

access it.

 NGA Number of times accessed by methods non-

local to its class.

 NLA Number of times accessed by methods local to

its class.

 NM Number of methods accessing it.

International Journal of Computer Applications (0975 – 8887)

Volume78– No.1, September 2013

32

2.3 ENCAPSULATION METRIC
The encapsulation metrics evolves packaging (or binding

together) of a collection of items.

 Low-level examples of encapsulation include

records and arrays.

 Subprograms (e.g., procedures, functions,

subroutines, and paragraphs) are mid-level

mechanisms for encapsulation.

 In object-oriented (and object-based) programming

languages, there are still larger encapsulating

mechanisms, e.g., C++'s classes, Ada's packages,

and Modula 3's modules. [Figure 6] Summarizes
the Encapsulation metrics.

2.3.1 Objects Encapsulate

 knowledge of state, whether statically maintained,

calculated upon demand, or otherwise,

 advertised capabilities (sometimes called

operations, method interfaces, method selectors, or

method interfaces), and the corresponding

algorithms used to accomplish these capabilities

(often referred to simply as methods),

 [in the case of composite objects] other objects,

 [optionally] exceptions,

 [optionally] constants, and

 [Most importantly] concepts.

In many object-oriented programming languages,

encapsulation of objects (e.g., classes and their instances) is

syntactically and semantically supported by the language. In

others, the concept of encapsulation is supported

conceptually, but not physically.

Encapsulation has two major impacts on metrics:

 the basic unit will no longer be the subprogram, but

rather the object, and

 we will have to modify our thinking on
characterizing and estimating systems.

2.3.2 Information Hiding is the suppression

(or hiding) of details.
 The general idea is that we show only that

information which is necessary to accomplish our

immediate goals.

 There are degrees of information hiding, ranging

from partially restricted visibility to total

invisibility.

 Encapsulation and information hiding are not the

same thing, e.g., an item can be encapsulated but

may still be totally visible.

Information hiding plays a direct role in such metrics as object

coupling and the degree of information hiding.

2.4 COMPLEXITY METRICS
Complexity is everywhere in the software life cycle:

requirements, analysis, design, and of course, implementation

is usually an undesired property of software because

complexity makes software harder to read and understand,

and therefore harder to change; also, it is believed to be one

cause of the presence of defects. Summarizes the Complexity

measurement metrics. In a use net debate

surrounding Intelligent Design, the issue of measuring

complexity kept coming up. Are there any good objective

metrics for "complexity"? The complexity measured output

shown in Figure 2.

The types of complexity metrics are shown in table 2.

Table 2: Types Of Complexity Metrics.

METRIC OBJECTIVE

Cyclomatic Complexity Low

Lines of Code/Executable Statements Low

Comment Percentage ~ 20 – 30 %

Weighted Methods per Class Low

Response for a Class Low

Lack of Cohesion of Methods Low

Cohesion of Methods High

Coupling Between Objects Low

Depth of Inheritance Low (trade-off)

Number of Children Low (trade-off)

http://c2.com/cgi/wiki?IntelligentDesign

International Journal of Computer Applications (0975 – 8887)

Volume78– No.1, September 2013

33

Figure 1: All Methods Available in Java Program and calculate Metrics Factor

Figure 2: Complexity Measurement for Java program

2.5 INHERITANCE METRICS
The mechanism supports the class hierarchy design and

captures the IS-A relationship between a super class and its

subclass.

2.5.1 Types Available For Corresponding Metrics

 Dynamic inheritance

 Multiple inheritance

2.5.2 Types of Internal Metrics

 Average Degree of Understandability (AU) Metric

 Average Degree of Modifiability (AM) Metric

 Average Inheritance Depth (AID)

 Derive Base Ratio Metric (DBRM)

 Average Number of Direct Child (ANDC) Metric

 Average Number of Indirect Child (ANIC) Metric

2.6 MESSAGE PASSING METRICS

Message passing describes the act of communication between

two or more computer processes (in the form of "messages").

A metric is a numerical value computed from a collection of

data. Message Passing metrics deal with the measurement

of Number of Message passing Iterations involved in

software product or a process by which it is developed. A

software product can be viewed as an abstract object that

evolves from an initial statement of need to a finished

software system, including source and executable code and

the various forms of documentation produced during

development. Ordinarily, the measurements of the software

products and processes are studied and developed for use in

modeling the development process [6]. In this Work two

algorithms for estimation and Measurement of Messing

passing, their metrics are then used to estimate/predict product

costs and schedules and to measure productivity and product

quality. Information gained from metrics can then be used in

the management and control of the development process in

order to improve results. Summarizes the overall method

metrics.

2.7 REUSE METRICS
Reuse Ratio (U):

The reuse ratio (U) is given by U=number of super class/total

number of class.

Specialization Ratio(S):

 This ratio measures the extent to which a super class has

captured abstraction. S=number of subclass/number of super

class.

International Journal of Computer Applications (0975 – 8887)

Volume78– No.1, September 2013

34

Average Inheritance Depth:

The inheritance structure can be measured in terms of depth of

each class with in its hierarchy. Average inheritance depth

=sum of depth of each class/number of class. Figure 3 and 4

represents class oriented metrics also specifies each selected

class metrics.

2.8 QUALITY METRICS

Reusability: Reusability means reflects the presence of OO

Design characteristics that allow a design to be reapplied to

new problem without significant. Reusability formula= (-

0.25*coupling) + (0.25*cohesion) + (0.5*messaging) +

(0.5*design size).

Flexibility: Characteristics that allow the incorporation of

change in a design. The ability of a design to be adapted to

provide Functionality related capabilities. Flexibility formula=

(0.25*encapsulation)-

(0.25*coupling)+(0.5*composition)+(0.5*polymorphism).

Understandability: The properties of the design that enable it

to be easily learned and comprehend. Understandability

formula= (-0.33*abstraction) + (0.33*encapsulation)-

(0.33*coupling) + (0.33*cohesion)-(0.33*polymorphism)-

(0.33*complexity)-(0.33*design size).

Functionality: The responsibilities assigned to the classes of

design, which are made available by the classes through their

public interfaces. Functionality formula= (0.12*cohesion) +

(0.22*polymorphism) + (0.22*messaging)+ (0.22*design

size) + (0.22*hierarchies)

Extendibility: It refers to the presence and usage of

properties in an existing design that allow for the

incorporation of new requirements in the design. Extendibility

formula = (0.5*Abstraction)-(0.5*coupling) +

(0.5*inheritance) + (0.5*polymorphism).

Effectiveness: It refers to a design's ability to achieve the

desired functionality and behavior using OO Design concepts.

Effectiveness formula= (0.2*abstraction)

+(0.2*encapsulation) + (0.2*composition) + (0.2*inheritance)

+ (0.2*polymorphism).

2.9 COUPLING METRICS

Coupling in software has been linked with maintainability and

existing metrics are used as predictors of external software

quality attributes such as fault-proneness, impact analysis,

ripple effects of changes, changeability, etc. Many coupling

measures for object-oriented (OO) software have been

proposed, each of them capturing specific dimensions of

coupling. This paper presents a new set of coupling measures

for OO systems – named conceptual coupling, based on the

semantic information obtained from the source code, encoded

in identifiers and comments. A case study on open source

software systems is performed to compare the new measures

with existing structural coupling measures. The case study

shows that the conceptual coupling captures new dimensions

of coupling, which are not captured by existing coupling

measures; hence it can be used to complement the existing

metrics.

2.9.1 Object Oriented Programming

Coupling

Coupling between objects (CBO)

1) coupling = class x is coupled to class y iff x uses y’s

methods or instance variables (includes inheritance

related coupling).

2) CBO for a class is a count of the number of other

classes to which it is coupled.

3) High coupling between classes means modules

depend on each other too much.

4) Independent classes are easier to reuse and extend.

5) High coupling decreases understandability and

increases complexity.

6) High coupling makes maintenance more difficult

since changes in a class might propagate to other

parts of software.

7) Coupling should be kept low, but some coupling is

necessary for a functional system.

2.9.2 COUPLING VERSUS COHESION

 Coupling and Cohesion are the two terms which very

frequently occur together. Together they talk about the

quality a module should have. Coupling talks about the

inter dependencies between the various modules while

cohesion describes how related functions within a

module are. Low cohesion implies that module performs

tasks which are not very related to each other and hence

can create problems as the module becomes large.

3. SOFTWARE ENGINEERING METRICS

ESTIMATION
In software estimation process involved various

domains. Here are some observations [7,8,9]:

 A single software engineering metric in isolation is

seldom useful. However, for a particular process,

product, or person, 3 to 5 well-chosen metrics seems

to be a practical upper limit, i.e., additional metrics

(above 5) do not usually provide a significant return

on investment.

 Although multiple metrics must be gathered, the

most useful set of metrics for a given person,

process, or product may not be known ahead of

time. This implies that, when it is first begin to

study some aspect of software engineering, or a

specific software project, we will probably have to

use a large (e.g., 20 to 30, or more) number of

different metrics. Later, analysis should point out

the most useful metrics.

 Metrics are almost always interrelated. Specifically,

attempts to influence one metric usually have an

impact on other metrics for the same person,

process, or product[10].

 To be useful, metrics must be gathered

systematically and regularly -- preferably in an

automated manner.

 Metrics must be correlated with reality. This

correlation must take place before meaningful

decisions, based on the metrics, can be made[11].

 Faulty analysis (statistical or otherwise) of metrics

can render metrics useless, or even harmful.

 To make meaningful metrics-based comparisons,

both the similarities and dissimilarities of the

http://en.wikipedia.org/wiki/Cohesion_(computer_science)

International Journal of Computer Applications (0975 – 8887)

Volume78– No.1, September 2013

35

people, processes, or products being compared must

be known.

 Those gathering metrics must be aware of the items

that may influence the metrics they are gathering.

For example, there are the "terrible H's," i.e., the

Heisenberg effect and the Hawthorne effect.

 Metrics can be harmful. More properly, metrics can

be misused.

3.1 Object-oriented software engineering

metrics are units of measurement that are

used to characterize:

 object-oriented software engineering products, e.g.,

designs, source code, and test cases,

 object-oriented software engineering processes, e.g.,

the activities of analysis, designing, and coding, and

 Object-oriented software engineering people, e.g.,

the efficiency of an individual tester, or the

productivity of an individual designer. Summarizes
the overall Performance Evaluation.

Figure. 3: Methods Metrics for Selected Class

Figure. 4: Methods Metrics for Each Selected Class

International Journal of Computer Applications (0975 – 8887)

Volume78– No.1, September 2013

36

Figure. 5: Method Metrics for Different Parameters.

Figure.6: Encapsulation Object Oriented Metrics

5. CONCLUSION AND FUTURE SCOPE
The above results can be used in order to determine when and

how each of the above metrics can be used according to

quality characteristics a practitioner wants to emphasize.

Make sure the software quality metrics and indicators they

employ include a clear definition of component parts are

accurate and readily collectible, and span the development

spectrum and functional activities. Survey data indicates that

most organizations are on the right track to making use of

International Journal of Computer Applications (0975 – 8887)

Volume78– No.1, September 2013

37

metrics in software projects. For organizations which do not

reflect “best practices”, and would like to enhance their

metrics capabilities, the following recommendations are

suggested to Measure the “best practices” list of metrics more

consistently across all projects. Focus on “easy to implement”

metrics that are understood by both management and software

developers, and provide demonstrated insight into software

project activities.

6. REFERENCES
[1] A. Albrecht and J. Gaffney: Software Function, Source

Lines of Code, and Development Effort Prediction: A

Software Science Validation; in IEEE Trans. Software

Eng., 9(6), 2008, pp. 639-648.

[2] B. Bohem, Software Engineering Economics, Prentice

Hall, Englewood Cliffs, 1981 [Briand et al 94] L. Briand,

S. Morasca, V. Basili, Defining and Validating High-

Level Design Metrics, Tech. Rep. CS TR-3301,

University of Maryland, 2009.

[3] S. Chidamber, C. Kemerer, A Metrics Suite for Object

Oriented Design, IEEE Trans. Software Eng., 20/6),

2000, pp. 263-265.

[4] S. Morasca, Software Measurement: State of the Art and

Related Issues, slides from the School of the Italian

Group of Informatics Engineering, Rovereto, Italy,

September 2008.

 [5] J. Alghamdi, R. Rufai, and S. Khan. Oometer: A software

quality assurance tool. Software Maintenance and

Reengineering, 2009. CSMR 2009. 9th European

Conference on, pages 190{191, 21-23}, March 2010.

[6] H. Bsar, M. Bauer, O. Ciupke, S. Demeyer, S. Ducasse,

M. Lanza, R. Marinescu, R. Nebbe, O. Nierstrasz, M.

Przybilski, T. Richner, M. Rieger, C. Riva, A. Sassen, B.

Schulz, P. Steyaert, S. Tichelaar, and J. Weisbrod. The

FAMOOS Object-Oriented Reengineering Handbook,

Oct. 2006.

[7] A. Albrecht: "Measuring application development

productivity", in Proc. Joint SHARE/GUIDE/IBM

Applications Development Symposium, Monterey, CA,

2007.

[8] L. Briand, S. Morasca, V. Basili, Property-Based Software

Engineering Measurement, IEEE Trans. Software Eng.

22(1), 2000, pp. 68-85.

[9] S. Conte, H. Dunsmore, V. Shen, Software Engineering

Metrics and Models, Benjamin/Cummings, Menlo Park,

CA.

[10] J. Stathis, D. Jeffrey, An Empirical Study of Albrecht’s

Function Points, in Measurement for Improved IT

management, Proc. First Australian Conference on

Software Metrics, ACOSM 93, Sydney, 2002, pp. 96 -

117.

[11] Boehm, Barry W., as quoted by Ware Myers, “Software

Pivotal to Strategic Defense,” IEEEComputer, January

2001.

IJCATM : www.ijcaonline.org

