
International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.9, September 2013

30

A Message Digest System Using Key Concept and

Modulus Operations

Suman Deb

National Institute of Technology
Agartala, India

Gautam Rakshit
National Institute of Technology

Agartala, India

Pritam Rakshit
National Institute of Technology

Agartala, Indi

ABSTRACT
Message Digest is the promising methodology of data

integrity in the concerned areas of computer communication.

Different techniques of message digest are available and used

for checking the data integrity and indirectly used in digital

signatures for authentication of the transmitted information.

Several research works are going on to make the

computational process of message digest generation more

complex to the unauthorized users. This paper introduces the

procedure for generating message digest (Named as SGP-

MD) using key in its algorithms so that the digest itself can

directly act as a Message Authentication Code (MAC) and

hence removing the need of separate encryption/decryption

algorithm to create the MAC from the digest. The

implementation of the proposed algorithm suffices for both

data integrity and authentication purpose

Keywords

Data Authentication and Integrity, Data security, key stream,

Message Digest.

1. INTRODUCTION
Message digest is a fingerprint or the summary of the original

message whose size is much shorter than that of the original

message [1]. It is used to verify the integrity of the data (i.e. to

ensure that a message has not been tampered with, after it

leaves the sender but before it reach the receiver). Developing

a message digest system must meet with three basic

requirements as

i) Given a message it should be very easy to find its

corresponding message digest. Also for a given message

the message digest should always be the same.

ii) Given a message digest it should be very difficult to find

the original message for which the digest was created.

iii) Given any two messages if anybody calculate their

message digests, the two message digest must be

different.

If any two messages produce the same message digest then it

violates the basic principle of creating message digest, called

‘a collision’ .That is if two message digest collide [5] they

meet at the same digest.

Message digest algorithms usually produce a digest of length

ranging from 128 bits to 256 bits. Mathematically these

algorithms has a Hash function [10] that can map bit strings of

arbitrary finite length into strings of fixed length. A hash

value is generated by a function

h =H (M)

Where M is a variable-length message and H (M) is is the

fixed-length hash value. The purpose of a hash function is to

produce a fingerprint of a file, message or other block of data.

To be useful for message authentication, a hash function must

satisfy the following properties:

1- H can be applied to a block of data of any size.

2- H produces a fixed-length output.

3- H(x) is relatively easy to compute for any given input x.

4- One-way: for any given code h, it is computationally

infeasible to find x such that H(x) = h.

5- Strong collision resistance: it is computationally

infeasible to find any pair (x, y) such that H(y) = H(x).

The strength of a hash function against brute-force attacks [l]

depends only solely on the length of hash code produced by

the algorithm. Table I Summarizes the level of effort required

producing a birthday or square root attack (referred as

strength of hash code) for different types of hash functions,

assuming m-bit result.

Table I. Comparison of hash-code strength between

different types of hash function

Type of hash function Strength of hash function

One-way 2^m

Weak collision resistance 2^m

Strong collision resistance 2^(m/2)

Following figure shows the general structure of a typical

secure hash function.

Fig 1.The general structure of a typical secure hash

function

International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.9, September 2013

31

Where H=chaining variable, Xi = ith input block,

F=compression function, i =number of input blocks, n=length

of hash code, b=length of input block.

2. RELATED STUDIES
The study of some of the well known algorithms as noted in

[3][4][6][7][8][9] such as MD4, MD5, SHA-1, SHA-256 etc.

reveals that the strength of the algorithms lies in the fact that

the algorithms should provide as much of complexity and

randomness as possible to the algorithm, so that no two

message digests produced by the algorithm on any two

message are equal. In general all the message digest

algorithms have a property that every bit of the message

digest is some function of every bit in the input. Almost all

hash functions are iterative processes, which hash inputs of

arbitrary length by processing successive fixed-size blocks of

the input. The input X is padded to a multiple of the block

length and subsequently divided into t blocks X1 through Xt.

The overall structure of a typical secure hash function is

indicated in Fig.1. The hash function h can then be described

as follows:

H0 = initial n-bit value

H (i) = F (Hi-1, Xi), 1<i<t, H(X) = H (t).

The first constructions for hash functions were based on block

ciphers (such as DES).Although some trust has been built up

in the security of these proposals, their software performance

is not very good, since they are typically from 2 to 4 times

slower than the corresponding block cipher. The most popular

hash functions, which are currently used in a wide variety of

applications, are the custom designed hash functions from the

family MD4 which was proposed by R.Rivest [3].

It is a very fast hash function tuned towards 32-bit processors.

Because of unexpected Vulnerabilities identified in [11][12]

(namely collisions for two rounds out of three), a strengthened

version of MD4 was designed which is called MD5 [4]. MD5

is slightly slower than MD4, but it is more conservative in

design. It was being implemented fast into products. MD5 is

probably the most widely used hash function, in spite of the

fact that the compression function of MD5 is not collision

resistant [10].

3. PROPOSED MESSAGE DIGEST

ALGORITHM
In this paper, a new idea of incorporating key in generating a

message digest is provided so that the message digest itself act

as MESSAGE AUTHENCATION CODE (MAC). Here two

integers are considered as the first level key K1 that is to be

communicated between the sender and the receiver through

some secret channel. From this K1 the second level key is

produced which is a list of 32 byte. These 32 byte list is

created and stored in an intermediate array which will be

used as a storage of intermediate results throughout the

algorithm and also stores the final result (message digest). The

algorithm has fixed the maximum input message size less than

2^64 bits length[3][4]. The output is a message digest of 256

bits in length.

3.1 Procedure to generate the second level
key
[The algorithms implemented by considering byte as a

positive number from 0 to 255 (as c# language specification)]

Input: i) Key k1, a set / array of two unsigned integers.

K1 = {65, 267}

 ii) Intermediate Byte array namely Inter [] of size 32.

Output: Filling the intermediate array Inter [32] with 32

different byte values using key1 .These bytes will be used for

triggering the message digest algorithm.

 Steps:

Step 1. Let Inter [0] = (key1 [0] %256.

Step 2 Let Integer variable K=key1 [1]

Step 3.Let Integer Variable R=0

Step 4.Repeat through step 8 for I=1 to 31

Step 5.R=K+ Inter [I-1]

Step 6.If (R>256)

Step 7.R=R%256

Step 8.Inter[i] = Convert To Byte(R)

Step 9.Repeat through step15 for I=0 to 7

Step10.Byte Variable P= Convert to Byte ((Inter[i*4] AND

Inter[i*4+1]) XOR ((NOT(Inter[i*4+2])) AND Inter[i*4+3]))

Step 11. Repeat through step 15 for J=0 to 3

Step 12.R=Inter[i*4+j] + P

Step 13.If (R>256)

Step 14.R=R%256

Step15.Inter [i*4+j]=Convert To Byte(R)

Step 16. Stop

3.2 Procedure to generate the message

digests
Input: a.) Intermediate Inter [32] initialized with second

level key using procedure of 3.1.

 b) An input message maximum size less than2^64

 c)A Temporary integer array of size 32. let its name be

Temp [32]

d) A process P of type Byte. This will be

Output: Message digest of length 256 bits.

Steps

Step1.The original message is padded such that the length of

the message bits is 64 bits less than a multiple of 256 bits.

Then append length of the original message excluding the

padding at end of the padded message as 64 bit block. The

padding consists of as many bytes as required and this bytes

are supplied repeatedly from the first time initialized Inter

[32] list. Note that padding is always added even if the

message is already 64 bits less than multiple of 256.

Step 2.Read 32 bytes (256 bits) at time and store it in temp

array for each 32 bytes Repeat through step x.

Step 3.Repeat through step 3.3 for I =0 to 31

Step3.1.Temp [I] =Temp [I] + Inter [I];

Step 3.2. If Temp [I]>256 then.

International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.9, September 2013

32

Step 3.3.Temp [I]=Temp[I]%256.

Step 4.Perform a special swap operation on the Temp array to

add randomization. Following figure shows the pattern.

Step 4.1.Let Variable F=0, Variable R=31

Step 4.2.Repeat through step 4.6 for I = 0 TO 15

Step 4.3.T=Temp [F].

Step 4.4.Temp [F] =Temp[R].

Step 4.5.Temp[R] =T.

Step 4.6.F=F+1 and R=R-1.

Step 5

Consider the Temp array and the Intermediate array Inter []

into a group/block of 8 each of size 4 bytes.

Step 6

Repeat through step 11 for each group I=0 to 7.

 Step 7

Repeat through step 11 for each round J=0 to 3.

 Step 8

If (J=0) then

 P = (Temp [I*4+0] AND Temp [I*4+1])OR

(NOT (Temp [I*4+2]) AND (Temp [I*4+3]))

If (J=1) then

P= (Temp [I*4+1] XOR Temp [I*4+2] XOR Temp [I*4+3])

OR Inter [I*4+0].

If J=2 then

 P=(Temp[I*4+1] AND Temp[I*4+2])OR(Temp[I*4+1]

AND Inter[I*4+3])OR(Temp[I*4+2]AND Temp [I*4+3])).

If J=3 then

P=Inter [I*4+1] XOR Temp [I*4+2] XOR Temp [I*4+3])).

Step 9

Repeat through step 11 for K=0 to 3

Step 10

Temp [I*4+K] =Temp [I*4+K] +P

Step 11

If Temp [I*4+K]>256 then

 Temp [I*4+K] =Temp [I*4+K] %256

Step 12 Repeat through step 13 for I =0 to 31

Step 13 Inter [I] =Temp [I]

Step 14 Stop

4. KEY STRENGTH ANALYSIS

4.1 Analysis for Brute-force attack
1. First level key (K1) comprises of two unsigned integers

each occupying 4 bytes. Therefore K1 have total bit length of

64 (32+32) bits. Here key2 is not considered in strength

analysis as the second level key generation algorithm is open.

But even then the hacker has to find the correct key2.Total

numbers of possible keys having key size of 64 bits are as

follows:

2^64 = 18.446744073709551616 x 10^18 possible keys.

Now assume that a hacker have a very fast computer using

which he/she can execute the decryption algorithm in 1 micro

second for all possible key trials. Even if he tries half the set

of keys then also he is quite successful in decrypting.

But then also the hackers require more than one year

decrypting the cipher text which is shown as below:

In one second = 1000000 possible key trials

In one hour = 36 x 10^8 possible key trials

In one day = 864 x 10^8 possible key trials

In one year = 3.1536 x 10 ^13 possible key trials (less than

half of the total key set).

The Intermediate array Inter [] is analogous to the chaining

variables used in some of the well known algorithms such as

MD5, SHA-1, SHA-256 etc. But all these algorithms initialize

the chaining variables with predefined constants to start the

algorithm. But in this proposed paper the intermediate array is

never initialized with predefined constants. The initialization

takes place in a random basis using level one key

key1[X,Y].Following table shows some of the outputs of

algorithm of III(A) on some closely related keys of level one

key key1[X,Y]. It can be observer from the table that for a

slight difference in any two keys the algorithm III(A)

produces a vastly different and random Inter[] list. Compare

first three rows of the table as one class of closely related keys

and the last two as another class of closely related keys. It is

clear that even a single bit change in two values(X,Y) of K1

the respective derived Inter[] list differs with a great extent.

The Inter [] list is the implicit second level key derived from

level one key1[X, Y].

Table 1 Test Result of algorithm III (A)

Key1[X,Y] Intermediate Inter[] first time values for

different values of key1(some Test results)

K1[65,267] 161 ,172 ,183 ,98 ,209 ,220 ,231 ,142 ,41 ,52

,63 ,186 ,169 ,180 ,191 ,230 ,209 ,220 ,231

International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.9, September 2013

33

,18 ,33 ,44 ,55 ,62 ,169 ,180 ,191 ,106 ,137

,148 ,159 ,150 .

K1[61,267] 65 ,76 ,87 ,98 ,73 ,84 ,95 ,106 ,41 ,52 ,63 ,74

,161 ,172 ,183 ,194 ,209 ,220 ,231 ,242 ,41

,52 ,63 ,74 ,169 ,180 ,191 ,202 ,209 ,220 ,231

,242 .

K1[62,267] 65 ,76 ,87 ,98 ,213 ,224 ,235 ,246 ,41 ,52 ,63

,74 ,165 ,176 ,187 ,198 ,209 ,220 ,231 ,242

,37 ,48 ,59 ,70 ,169 ,180 ,191 ,202 ,213 ,224

,235 ,246 .

K1[61,62] 188 ,250 ,56 ,118 ,180 ,242 ,48 ,110 ,156

,218 ,24 ,86 ,164 ,226 ,32 ,94 ,124 ,186 ,248

,54 ,116 ,178 ,240 ,46 ,92 ,154 ,216 ,22 ,68

,130 ,192 ,254 .

K1[61,60] 182 ,242 ,46 ,106 ,150 ,210 ,14 ,74 ,118 ,178

,238 ,42 ,86 ,146 ,206 ,10 ,182 ,242 ,46 ,106

,150 ,210 ,14 ,74 ,118 ,178 ,238 ,42 ,86 ,146

,206 ,10 ,

K1[61,63] 185 ,248 ,55 ,118 ,177 ,240 ,47 ,110 ,169

,232 ,39 ,102 ,161 ,224 ,31 ,94 ,153 ,216 ,23

,86 ,145 ,208 ,15 ,78 ,137 ,200 ,7 ,70 ,129

,192 ,255 ,62 .

5. ALGORITHM STRENGTH

ANALYSIS
The proposed Message digest fulfills the following

requirements and hence justifies its strength:

1.The message digest is irreversible i.e. from a given digest it

is hard to derive the original message, mathematically it is not

possible because the process P operations are irreversible and

more over modulus operation make the message digest harder

to be reversible.

2. The algorithm also has sufficient complexity and

randomness like other standard algorithms. Swapping is

introduced before the process P operations. Here in this

message digest system initialization of intermediate list Inter

[] (analogous to chaining variables as in [3][4][6][7]) takes

place in a random basis using level one key k1[X, Y] while it

is initialized by some predefined constants in MD4, MD5,

SHA-1, SHA-256 .This adds authentication to the message

digest and hence by passing the requirement of separate

encryption/decryption algorithm for creating MAC(Message

authentication code).Here the message digest itself acts as

MAC.

3. The heart of the message digest algorithm starts from step

8.From step 8 onwards 128 iterations are performed on the

total block of 256 bits. .

4. The possibility that two messages produce the same

message digest is in the order of 2^64 operations.

5. Given a message digest to find the original message can

lead up to 2^256 operations.

Some of the test results are shown in the following table. To

show the testing here Key1[X, Y] =K1 [61][63] is considered

here for all the test cases. It is here considered that the input

messages are already padded message.

6. The bitwise circular shift operation as noted in [3][4][6][7]

has been removed here for faster execution because circular

shift consumes good number of swapping operations.

 Table 2: Test results of the message digest algorithm.

Message(1) 126, 186, 250, 57, 120, 183, 246, 53, 116,179, 242,

49, 112, 175, 238, 45, 108, 171, 234, 41, 104, 167,

230, 37, 100, 163,226,

33,96,159,222,32,171,234,41,104, 167, 230, 37,

100, 163, 226,242, 49, 112, 175, 238, 45, 108, 171,

234, 41, 104, 167, 230, 37, 100, 163, 226, 33, 96,

159, 222,32

Digest1 234 ,35 ,99 ,162 ,225 ,32 ,95 ,158 ,25 ,88 ,151 ,214

,177,240 ,47 ,110 ,201,8 ,71 ,134 ,116 ,179 ,33 ,96

,233 ,40 ,103 ,166 ,112 ,175 ,238 ,48 .

Message(2) 127, 186, 250, 57, 120, 183, 246, 53, 116,179, 242,

49, 112, 175, 238, 45, 108, 171, 234, 41, 104, 167,

230, 37, 100, 163,226,

33,96,159,222,32,171,234,41,104, 167, 230, 37,

100, 163, 226,242, 49, 112, 175, 238, 45, 108, 171,

234, 41, 104, 167, 230, 37, 100, 163, 226, 33, 96,

159, 222,32

Digest2 243 ,43 ,107 ,170 ,225 ,32 ,95 ,158 ,25 ,88 ,151

,214 ,177 ,240 ,47 ,110,201,8 ,71 ,134 ,116 ,179

,33 ,96 ,233 ,40 ,103 ,166,179,242 ,49 ,115 .

Message(3) 127, 186, 250, 60, 133, 183, 246, 53, 116,179, 242,

49, 112, 175, 238, 45, 108, 171, 234, 41, 104, 167,

230, 37, 100, 163,226,

33,96,159,222,32,171,234,41,104, 167, 230, 37,

100, 163, 226,242, 49, 112, 175, 238, 45, 108, 171,

234, 41, 104, 167, 230, 37, 100, 163, 226, 33, 96,

159, 222,32

Digest3 243 ,43 ,107 ,170 ,62 ,112 ,175 ,238 ,25 ,88 ,151

,214 ,177 ,240 ,47 ,110 ,201 ,8 ,71 ,134 ,116 ,179

International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.9, September 2013

34

,33 ,96 ,77 ,140 ,203 ,10 ,179 ,242 ,49 ,115 .

Message(4) 127, 187, 250, 60, 255, 183, 246, 53, 116,179, 242,

49, 112, 175, 238, 45, 108, 171, 234, 41, 104, 167,

230,37,100,163,226,33,96,159,222,32,171,234,41,

104, 167, 230, 37, 100, 163, 226,242, 49, 112, 175,

238, 45, 108, 171, 234, 41, 104, 167, 230, 37, 100,

163, 226, 33, 96, 159, 222,32

Digest4 124 ,180 ,244,54,56 ,240,47 ,110 ,25 ,88 ,151 ,214

,177 ,240 ,47 ,110 ,201 ,8 ,71 ,134 ,116 ,179 ,33

,96 ,89 ,152 ,215 ,22 ,79 ,142 ,205 ,15

The message(1) and the digest1 can be set as a reference

point. The other three messages and their corresponding

digests are generated after making slight changes in the

reference message(1) to observe how much the digest differs

from the reference digest...The message(2) differs from

reference message(1) by a single bit (126 i.e. (01111110) and

127 i.e. (01111111) differs by a single bit) though the digest2

differs by 8 bytes (more than one bits) from digest1.This

strengthen the fact that even a small change in the message

results in drastic change in its message digest.

Similarly it can be observed in message(3) that for a change

of 3-bits a total of 16 bytes differ from the reference message

digest digest1.Another strength of the algorithm is that the

change in the output message digest from a reference point is

not related to change in the number of bit in the message from

a reference message. This fact can again be proved from the

message(4) and its digest4.It can be observed that for a chance

of 8-bits in the message(4) with respect to the reference

message(1) the message digest4 differs by 16 bytes same as

the case of message(3).

Following is a comparison of the proposed algorithm with

different versions of SHA.

Table 3 Comparison of SGP-MD vs. SHA

Parameter SHA-

1

SHA-

256

SHA-

384

SHA-

512

SGP-

MD

Message

Digest size(in

bits)

160 256 384 512 256

Message

Size(in bits)

<2^64 <2^64 <2^12

8

<2^1

28

<2^64

Block size (in

bits)

512 512 1024 1024 256

Word size (in

bits)

32 32 64 64 32

Iterations 80 64 80 80 128

From the above table it is inferred that SGP-MD imposes

more iterations on lesser block size and word size. Therefore

it adds more complexity and randomness to the algorithm.

6. CONCLUSION
In general message digest purely solves the integrity issue of

security. In order to add authentication with it one have to

encrypt the message digest before transmitting it .This

technique is known as MAC(Massage Authentication

Code).To achieve this MAC apart from message digest

algorithm, which itself is a complex algorithm one extra

algorithm needs to be used i.e. encryption /decryption. To

reduce this extra over head it is proposed here to create a

message digest using a key keeping message digest properties

intact and this will ultimately save lot of computational

overheads. Hence the proposed message digest system can be

very useful in modern integrity sustaining practices as well as

for authentication .The level one key key1 is used to generate

the random chaining variables which are used in the creation

of message digest. The algorithm performs 128 operations on

a block of 256 bits. Which is quite complex and adds

randomness. The possibility that two messages produce the

same message digest is in the order of 2^64 operations. Given

a message digest to find the original message can lead up to

2^256 operations.

7. REFERENCES
[1]. Atul Kahate: “Cryptography and Network security”

Tata McGraw Hill Education Pvt. Ltd (2nd edition 2003).

[2].Stallings, W.: ‘Cryptography and Network Security:

Principles and Practice’ (Prentice Hall Inc., 2ndedn.1999).

[3]. Rivest,R. L.: ‘The MD4 message-digest algorithm’. Proc.

Crypto’90,LNCS 537, 1991, pp. 303-311 [4]. NIST,

“Secure Hash Standard,” FIPS PUB 180, May. 1993.

[4]. R.L. Rivest.: ‘The MD5 Message Digest Algorithm’. RFC

1321, 1992.

[5]. X. Wang, H. Yu and Y. L. Yin “Efficient Collision

Search Attacks on SHA-0” eprint 2005,

http://eprint.iacr.org/2005/391.pdf

[6]. Federal Information Processing Standard (FIPS):

‘Publication 180-1, Secure Hash Standard (SHS)’, U.S.

Doc/NIST, April 1995.

[7]. Federal Information Processing Standard (FIPS):

‘Publication 180-2, Secure Hash Standard (SHS)’, U.S.

Doc/NIST, May 2001.

International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.9, September 2013

35

[8]. Integrity Primitives for Secure Information Systems: Final

Rep. of RACE Integrity Primitives Eval. RIPE-RACE

1040, LNCS 1007, 1995Rump Session, Aug. 2004.

[9]. Zheng,Y., Pieprzyk, J. and Sebery,J.: ‘HAVAL -A One-

Way Hashing Algorithm with Variable Length of

Output’. Proc. Auscrypt’92, LNCS 718, 1993, pp. 83-

104.

[10]. Abdul Hamid M.Ragab, Nabil A. Ismail, Senior Member

IEEE, and Osama S. FaragAllah “An Efficient Message

Digest Algorithm for Data Security”.

[11]B. den Boer, A. Bosselaers, "An Attack on the Last Two

Rounds of MD4," Advances in Cryptology, proc.

Crypto'91, LNCS 876, J. Feigenbaum, Ed, Spriager-

Verlag, 1992, pp. 194-203.

[12] H. Dobbertin,"Cryptanalysis of MD4,"Fast Software

Encryption, LNCS 1039, D. Gollmann, Ed., Springer-

Verlag, 1996.

IJCATM : www.ijcaonline.org

