
International Journal of Computer Applications (0975 – 8887)

Volume 77– No.7, September 2013

32

An Effective Load Balancing Task Allocation Algorithm

using Task Clustering

Poornima Bhardwaj
Research Scholar, Department

of Computer Science
Gurukul Kangri

Vishwavidyalaya,Haridwar,
India

 Vinod Kumar, Ph.d
Professor & Head, Department
of Computer Science, Gurukul

Kangri Vishwavidyalaya,
Haridwar, India

ABSTRACT
In Distributed Computing Systems (DCSs), a program is split

into small tasks and distributed among several computing

elements to minimize the overall system cost. Several

challenges have been posed by this mode of processing which

can be classified mainly into two broad categories. One class

belongs to the hardware oriented issues of building such

systems more and more effective while the other aims at

designing efficient algorithms to make the best use of the

technology in hand. The task allocation problem in a DCS

belongs to the later class. Intrinsically, task allocation problem

is NP- hard. To overcome this issue, it is necessary to

introduce heuristics for generating near optimal solution to the

given problem.

This paper deals with the problem of task allocation in DCSs

in such a way that the load on each processing node is almost

balanced. Further, the development of an effective algorithm

for allocating ‘m’ tasks to ‘n’ processors of a given distributed

system using task clustering by taking both Inter Task

Communication Cost (ITCC) and the Execution Cost (EC) is

taken into consideration.

General Terms
Distributed Systems, Task Allocation

Keywords
Distributed Computing Systems, Task Allocation, Static Load

Balancing, Execution Cost, Communication Cost.

1. INTRODUCTION
The potential of distributed computing exists whenever there

are several computers unified in some manner so that a

program or a procedure running on one machine can transfer

control to a procedure running on another. Distributed

computers can be best exemplified as geographically

dispersed logically and physically independent processors

with decentralized system – wide control on resources and co-

operative computation of programs. The task allocation

problem is a fundamental aspect of distributed computing. It

arises whenever the procedures or modules of a program are

distributed over several interconnected computers and the

program is active among processors as execution proceeds.

The allocation problem deals with the question of allocating

modules to the processors so as to minimize the cost of

running a program [2].

The task allocation problem has multiple dimensions. Various

aspects of the task allocation problem in a DCS have been

covered by researchers. This problem has been tackled with

various techniques through different allocation schemes

considering different aspects such as inter- processor

communication, reliability, load on the processors, memory

utilization, etc. The objective of the present study has been to

allocate tasks, constituting a distributed application, to

available processing elements to optimize one or more

measure(s) of effectiveness i.e. equalizing load on the

processors, minimization of inter – processor communication

(IPC), maximization of system reliability and minimization of

total cost of execution etc. [16].

In a DCS, an allocation policy may be either static or

dynamic, depending upon the time at which the allocation

decisions are made. In a static task allocation, the information

regarding the tasks and processor attributes is assumed to be

known in advance.

System performance can be improved by transferring work

from nodes that are heavily loaded to nodes that are lightly

loaded. One of the objectives of using load balancing is to

minimize the execution cost of the application. Efficient load

balancing method can increase performance. Load – balancing

algorithms can be generally classified as centralized or

decentralized, dynamic or static, periodic or non-periodic, and

those with thresholds or without thresholds [1]. In this work

Static Load Balancing (SLB) is used. In SLB, the decision of

assignment of tasks to processors is taken before the

commencement of execution. Expected execution time and

resource requirements are known a priori. Task is executed on

the processors to which it is assigned at the beginning of

execution as there is no task migration in SLB. The main

purpose of the static scheduling is to minimize execution time

and communication overhead [16, 17].

The heuristic-based scheduling techniques are the most

common approaches for task scheduling. These are usually

classified into three classes,

 Priority-based scheduling,

 Duplication-based scheduling and

 Cluster-based scheduling

In priority-based scheduling, priorities are calculated and

assigned to the tasks which are then scheduled onto

processors according to the priorities. In duplication – based

scheduling, while tasks are allocated to a processor, its parent

(and predecessor) tasks are duplicated to occupy the idle times

of the processor to eliminate the communication delay that

occurs when message is passed from the parent tasks to the

allotted task.

In cluster-based scheduling, some tasks, that need to

communicate among themselves, are grouped together to form

a cluster. Each of these tasks – clusters is then scheduled onto

an available processor. The main problem arises when the

number of clusters is more than the number of available

International Journal of Computer Applications (0975 – 8887)

Volume 77– No.7, September 2013

33

processors. This leads to the scheduling of more than one

cluster onto the same processor and unavoidably increases the

overall schedule length. Approaches, that are used to

minimize the total sum of execution and communication

costs, are discussed in [3, 7, 13, 14, 15,].

In this paper, a task allocation algorithm based on clustering,

that finds a near optimal solution to the problem, is proposed.

The developed algorithm tries to minimize the total system

cost by forming cluster of tasks in such a way that the cluster,

having minimum execution cost, is allocated first. The

communication cost of the tasks in the same cluster is

assumed to be zero. Using this strategy it has been observed

that the total system cost is less as compared to that which is

obtained by the heuristic reported in [5].

2. RELATED WORK
The basic idea of clustering based algorithm is to group

heavily communicating tasks into the same cluster. The tasks

that are grouped into the same cluster are assigned to the same

processor in an effort to avoid communication costs. There are

basically two types of clusters; linear and nonlinear. Two

tasks are called independent if there are no dependent paths

between them. A cluster is called nonlinear if there are at least

two independent tasks in the same cluster, otherwise, it is

called linear.

A class of directed acyclic graph scheduling algorithms is

based on clustering [4, 8, 20]. The work done by Liou et al.

indicates that if task clustering is performed prior to

scheduling, the clusters are assigned to the processors in a

balanced way, giving the benefit of load balancing [10].

Similar work is done by Palis et al. [11] to reduce the overall

execution cost by using a simple greedy algorithm for task

clustering. In the task clustering approach, proposed by

Vidyarthi et al. [19], task modules are clustered on the basis

of their communication overhead. Modules, having high

communication overhead, are clustered to decrease the

communication delays. The approach of clustering the heavily

communicating tasks is used in [8, 17]. In [8], the authors

choose those modules for clustering which are maximally

linked from the point of view of the processor on which the

assignment is to be done. Sharma et al. in [17] formed clusters

on the basis of their communication cost to reduce the

communication delays. In the work, done by Raii et al. [12],

the total number of tasks in a cluster is not more than the total

number of tasks divided by the total number of processors.

Initially, all tasks are considered to be in a single cluster and

stored in an array. The tasks, from this array, are selected for

merging to form various clusters.

3. PROBLEM FORMULATION
The problem, being addressed in this paper, is concerned with

an optimal allocation of the task - cluster of an application on

the processors in a DCS. An optimal allocation is considered

as one that minimizes the system cost function subject to the

system constraints.

3.1 Problem Statement
Let the given DCS consist of a set of n processors P = {p1,

p2,……..pn}, interconnected by communication links and a set

of m tasks T = { t1,t2,……..tm}. The processing efficiency of

individual processor is given in the form of Execution Cost

Matrix, ECM(,), of order m x n and Inter Task

Communication Cost Matrix, ITCCM(,), of order m x m. This

technique can generate an optimal solution by minimizing

overall computational cost and allowing large number of

computing tasks.

3.2 Notations
T : a set of tasks of a parallel program to be executed

P : the set of processors

n : the number of processors

m : total number of tasks that constitute the program.

ECM(,) : Execution cost matrix of order m x n

ITCCM(,) : Inter Task Communication Cost Matrix of order

 m x m

COSTEX() : Array to store execution cost of clusters on

processors.

COSTCC() : Array to store the communication cost of a

cluster with all other clusters.

TOC : Total Optimal Cost

ACL(,) : contains all the possible clusters that are formed.

SUM(,) : contains corresponding ECs of all the clusters that

are in ACL(,).

TPIN(,) : contains all the clusters that are finally selected from

ACL(,).

FIN(,) : contains corresponding ECs of the cluster stored in

TPIN(,).

ALLOC(,) : contains the position of the processor on which a

cluster is assigned.

eij : EC of task ti on processor pj. When any task is unable to

get executed on any processor its execution cost is assumed to

be infinity.

ccik : ITCC between task ti and task tk

3.3 Definitions
Execution cost (EC): The execution cost ‘eij’ (where 1≤ i ≤ m

and 1≤ j≤ n) of a task ti, running on a processor pj is the

amount of the total cost needed for the execution of ti on pj.

Inter Task Communication Cost (ITCC): The Inter Task

Communication Cost depends on the amount of data units

exchanged between the tasks. If the interacting tasks ti and tk

are assigned to different processors, the communication cost

‘ccik’ is incurred due to the data units exchanged between

them during the execution.

Total Optimal Cost (TOC): The total optimal cost is the

overall system cost incurred when tasks are executed on

various processors.

3.4 Assumptions
The present technique is based on the following assumptions:

(i) Whenever two or more tasks are assigned to the

same processor, the ITCC between them is assumed to be

zero.

(ii) If a task is not executable on a certain processor,

due to absence of some resources, the Execution Cost of that

task on that processor is taken to be very large (infinite).

(iii) The completion of a program from computational

point of view means that all related tasks have got executed.

(iv) Reassignment of task is not possible i.e. the

allocation policy is static.

International Journal of Computer Applications (0975 – 8887)

Volume 77– No.7, September 2013

34

4. PROPOSED TASK ALLOCATION

METHOD AND ALGORITHM
Since it is assumed that m>n, implying that more than one

task may be allocated to a processor at a time. So, a task is

allocated to a processor in such a way that total system cost is

minimized. This inspires us to form clusters of tasks to make

them equal to the number of processors. The task clusters

Ci(i= 1,2,…….n) having (tr1, tr2 ……… trk) tasks are formed

by making possible combination of tasks and adding the

corresponding ECs. The cluster, having minimum EC, is

selected and stored in final matrix, FIN(,). The process

continues until number of clusters equals the number of

processors. The remaining tasks are merged to the existing

cluster having the maximum ITCC ‘ccij’. At last, Hungarian

Algorithm is applied to the FIN(,) and optimum system cost is

obtained.

Once the final task clusters are selected, for each task tr1, tr2

……… trk (ri, i=1,2,…k) in cluster Ci(i= 1,2,…….n), the same

tasks is merged in ITCCM(,). The communication between all

the tasks in the same cluster is considered as zero. The

procedure for merging is achieved by adding r1
th, r2

th, … .. rk
th

row on r1
th row and remove all the other rows. Similarly

r1
th, r2

th, ……. rk
th column are merged on r1

th column and all

other columns are removed. The reduced ITCCM(,) is stored

in NTT(,).

4.1 Proposed Algorithm
Step 1: Input m and n.

Step 2: Input ECM(,)and ITCCM

Step 3: Calculate the total number of tasks in a cluster

 k = |_ (m/ n) _|

Step 3.1: Calculate total number of possible clusters, cl

Step 3.2: Obtain total number of remaining task

rm = m mod n

Step 4: Form clusters as follows:

Step 4.1: Task – clusters (say, C) are created by forming

possible task combinations having k tasks in each cluster. The

first cluster is formed by combining 1st, 2nd, 3rd …..upto kth

task. These clusters are stored in ACL(,).

Step 4.2: For all tasks that are in cluster C, calculate the sum

of ECs, on each processor and store these values in SUM(,).

Step 5: Store SUM(,) to SUMNEW(,).

Step 5.1: Find the minimum EC in SUMNEW(,) and store it

in min.

Step 5.2: The cluster, corresponding to min, is stored in

TPIN(,) and the corresponding ECs from SUMNEW(,) are

stored in FIN(,).

Step 5.3: Remove all the rows from ACL(,) containing either

of the tasks that are in cluster C.

If the number of clusters in TPIN(,) is n and rm is zero then,

go to Step 7.

Step 6: If rm is not equal to zero, then

Step 6.1: Find the remaining tasks by comparing the list

consisting of all tasks, (say REM()) with TPIN(,), which

contains the list of tasks that are included in any of the cluster.

Remove all the tasks from REM() that are present in TPIN(,).

The leftover tasks in REM() are the remaining tasks.

Step 6.2: For each remaining task, its communication with

each cluster is calculated and stored in COM().

Step 6.3:
maxcom = Max
Step 6.4: Merge the remaining task with the cluster which

corresponds to maxcom.

Step 6.4.1: Update FIN(,) and TPIN(,).

For load balancing no two remaining tasks are merged to the

same cluster.

Step 7: According to the clusters, stored in TPIN(,), the

corresponding tasks are merged in ITCCM(,) and the result is

stored NTT(,).

Step 8: Store FIN(,) to COST(,) and apply Hungarian

Algorithm [5] to FIN(,).

The positions of the allocations of clusters on the processors

are saved in ALLOC(,).

Step 9: According to the positions stored in ALLOC(,), the

ECs of each cluster is found from COST(,) and result is taken

in COSTEX().

Step 10: Corresponding to each of the cluster the ITCC is

found from FITCCM(,) and results are stored in COSTCC(,).

Step 11:

 COE =

 COC =

Step 12: TOC = COE + COC

Step 13: Stop.

4.2 Implementation of Algorithm

Example – 1 In this example, we have considered a typical

program made up of 7- executable tasks {t1, t2, t3, t4, t5, t6, t7} to

be executed on a DCS having three processors {p1, p2, p3}.

The execution cost of each task on different processors and

ITCC between the tasks is taken in the form of matrices

ECM(,) and ITCCM(,) respectively. This example deals with

the more general situation where the case of remaining task(s)

is taken care of. The processors connections are shown in

Figure 1. The task execution and inter task communication

graphs are illustrated in Figure 2 and Figure 3.

Step 1: Input m = 7, n = 3

Step 2: Input

International Journal of Computer Applications (0975 – 8887)

Volume 77– No.7, September 2013

35

 t1 t2 t3 t4 t5 t6 t7

 t1 0 7 2 10 9 7 10

 t2 7 0 7 1 1 8 8

 ITCCM(,) = t3 2 7 0 3 4 7 9

 t4 10 1 3 0 2 1 1

 t5 9 1 4 2 0 4 2

 t6 7 8 7 1 4 0 4

 t7 10 8 9 1 2 4 0

 p1 p2 p3

 t1 12 18 15

t2 9 18 8

 ECM(,) = t3 19 7 15

t4 5 11 10

t5 12 17 5

t6 10 7 11

 t7 17 2 12

Step 3: k = 2

Step 3.1: cl = 21

Step 3.2: rm = 1

Step 4:

 p1 p2 p2

 t1 t2 21 36 23

 t1 t3 31 25 30

 t1 t4 17 29 25

 t1 t5 24 35 20

 t1 t6 22 25 26

t1 t7 29 20 27

t2 t3 28 25 23

t2 t4 14 29 18

t2 t5 21 35 13

 ACL(,) = t2 t6 SUM(,) = 19 25 19

t2 t7 26 20 20

 t3 t4 24 18 25

 t3 t5 31 24 20

 t3 t6 29 14 26

 t3 t7 36 9 27

 t4 t5 17 28 15

 t4 t6 15 18 21

 t4 t7 22 13 22

 t5 t6 22 24 16

 t5 t7 29 19 17

 t6 t7 27 9 23

Step 5: SUMNEW(,) = SUM(,)

Step 5.1: min = 9

Step 5.2:

 TPIN(,) = t3 t7

 p1 p2 p3

FIN(,) = 36 9 27

Step 5.3: Remove the cluster that consists of either t3 or t7

from ACL(,) and corresponding ECs from SUMNEW(,).

Now, the ACL(,) and SUMNEW(,) are:

 p1 p2 p2

 t1 t2 21 36 23

 t1 t4 17 29 25

 t1 t5 24 35 20

 t1 t6 22 25 26

 ACL(,)= t2 t4 SUMNEW(,) = 14 29 18

 t2 t5 21 35 13

 t2 t6 19 25 19

 t2 t7 26 20 20

 t4 t5 17 28 15

 t4 t6 15 18 21

 t5 t6 22 24 16

Again select the next minimum value, i.e. 13 from the

remaining rows of ACL(,) and corresponding cluster t2 t5 from

SUMNEW(,). So, TPIN(,) and FIN(,) become:

 t3 t7

 TPIN(,) = t2 t5

 p1 p2 p3

FIN(,) = 36 9 27

 21 35 13

Remove the clusters that either contains task t2 or t5 from

ACL(,) and their corresponding ECs from SUMNEW(,).

Now, the ACL(,), SUMNEW(,) are:

 ACL(,) = t1 t4

 t4 t6

 p1 p2 p3

SUMNEW(,) = 17 29 25

 15 18 21

Again, select the next minimum value, i.e. 15 from the

remaining rows of ACL(,) and corresponding cluster t4t6 from

SUMNEW(,) resulting into TPIN(,) and FIN(,) as

 t3 t7

 TPIN(,) = t2 t5

 t4 t6

 p1 p2 p3

FIN(,) = 36 9 27

 21 35 13

 15 18 21

Here, the number of clusters in TPIN(,) is 3 and rm is not zero

hence,

Step 6: rm = 1

Step 6.1: REM() = t1

International Journal of Computer Applications (0975 – 8887)

Volume 77– No.7, September 2013

36

Step 6.2: The communication cost of t1 is calculated with each

cluster as:

 COM(1) = 12

 COM(2) = 16

 COM(3) = 17

Step 6.3: maxcom = 17

Step 6.4: So, the third cluster, having tasks t4 t6, is selected for

final merging resulting in

 t3 t7

 TPIN(,) = t2 t5 and

 t4 t6 t1

 p1 p2 p3

36 9 27

 FIN(,) = 21 35 13

 27 36 36

Step 7:
 t3 t7 t2 t5 t4 t6 t1

 t3 t7 0 21 31

 ITCCM(,) = t2 t5 21 0 27

 t1t4 t6 31 27 0

NTT(,) = ITCCM()

Step 8: COST(,) = FIN(,). On applying Hungarian Algorithm

[5] to the FIN (,). We get

 0 1 0

ALLOC(,) = 0 0 1

 1 0 0

The allocations obtained after implementing the row and

column assignment processes is shown in Table 1.

Step 9: COSTEX= (9, 13, 27)

Step 10: COSTCC = (21, 31, 27)

Step 11: COE = 9 + 13 + 27

 = 49

 COC = 21+ 31+ 27

 = 79

Step 12: TOC = COE + COC

 = 49 + 79 = 128.

 Step 13: Stop.

The optimal assignment graph is shown in Figure 4. The

performance comparison of proposed algorithm and the

algorithm discussed in [5] on the same data set is shown in

Table 2.

5. RESULTS AND CONCLUSIONS
In this paper, the problem of task allocation, considering load

balancing using task clustering, is discussed. As the task

allocation problem is known to be NP- hard, the proposed

technique finds near optimal system cost. Static load

balancing task allocation policy is used to achieve this

objective. The proposed algorithm tries to form clusters of

tasks and then allocate these clusters to the processors. The

effectiveness of the proposed algorithm is compared with the

static version of the algorithm proposed in [5]. For several

sets of input data (m, n), the comparison is shown in tabular

form as well as in graphical form. The Table 3 and Table 4

illustrated in the form of Figure 5 and Figure 6 respectively.

It can be observed from Figure 5 that the values of total

optimal cost obtained by the present algorithm are less as

compared to those obtained in [5], in the case, when the

number of processors is kept fixed and number of tasks are

taken in increasing order. The similar observation can also be

made from Figure 6 in the case when the number of tasks is

fixed and number of processors is taken in increasing order.

Thus, it is concluded that the present algorithm results into

better optimal cost in both the cases.

Figure 1: Processors Connections of Example 1

p3 p2

p1

International Journal of Computer Applications (0975 – 8887)

Volume 77– No.7, September 2013

37

Figure 2: Inter Task Communication Graph of Example 1

Figure 3: Task Execution Graph of Example 1

9

t5

t6
t7

t4

t3 t2

t1

p1

p2 p3

15

5

11

10

12

5

11

12

15

18

18

8 1

9

7

17

10

7

17

2

12

t7

t5

7

10

10

7

9

7

1

8
8

1

3

9
7

4

1

1 2

4

2

4

2

t2

t1

t4

t6

t3

International Journal of Computer Applications (0975 – 8887)

Volume 77– No.7, September 2013

38

Figure 4: Optimal Assignment Graph of Example 1

Table 1: Optimal Allocation Table of Example 1

Table 2: Comparison of Results for Example 1

Table 3: Comparison of TOC When Number of Tasks is in

Increasing Order

Table 4: Comparison of TOC When Number of Processors

is in Increasing Order

Tasks Processors EC

t1t4 t6 p1 27

t2 t5 p3 13

t3 t7 p2 9

Model

Result

Proposed

Algorithm

 [5]

Algorithm

ALLOCATIONS

t1 t4 t6 p1

t2 t5 p3

t3 t7 p2

t1 t3 t7 p2

t2 t6 p1

t4 t5 p3

COSTEX 49 61

COSTCC 79 76

TOC 128 137

Tasks

m

Processors

n

Proposed

Algorithm

 [5]

Algorithm

6 4 104.8 110.7

7 4 138.2 142.5

8 4 178.2 184

9 4 217 226.6

10 4 238.1 257.8

11 4 316.7 333.8

12 4 366.3 378.1

13 4 394.1 423.4

Tasks

m

Processors

n

Proposed

Algorithm

[5]

Algorithm

13 4

420.9 443.1

13 5

443.2 475.6

13 6

440 468.5

13 7

451.8 473.5

13 8

450.2 475.8

13 9

446.5 470.9

13 10

457 497.3

13 11

461.1 491.5

13 12 453.2 475

27

27
31

2

1

t1t4

t6

t3 t7 t2 t5

9

1

3

p1 p3

p2

International Journal of Computer Applications (0975 – 8887)

Volume 77– No.7, September 2013

39

Figure 5: TOC When Tasks are in an Increasing Order

and Number of Processors is 4

Figure 6: TOC When Processors are in an Increasing

Order and Number of Tasks is 13

6. REFERENCES
[1] Alakeel Ali M. 2010. A guide to dynamic load

 balancing in distributed computer systems.

 International Journal of Computer Science and

 Network Security, 10 (6), 153 -160.

[2] Bokhari, S. H. 1987. Assignment problems in parallel

and distributed computing.

[3] Chu, W. W., Holloway, L. J., Lan, M.T., and Efe, K.

1980. Task allocation in distributed data processing.

IEEE Computer, 13(11) (Nov. 1980), 57-69.

 [4] Gerasoulis, A. and Yang, T. A. 1992. A comparison of

clustering heuristics for scheduling directed acyclic

graphs on multiprocessors. Journal of Parallel and

Distributed Computing, (1992), 276 – 291.

[5] Govil, Kapil 2011. A smart algorithm for dynamic task

allocation for distributed processing environment.

International Journal of Computer Applications, 28(2),

(2011), 13-19.

[6] Gillett, Billy E. 1979. Introduction to operations

research: a computer-oriented algorithmic approach.

[7] Kafil, M., and Ahmad, I. 1998. Optimal Task

Assignment in Heterogeneous Computing Systems. IEEE

Concurrency, (1998), 42- 51.

[8] Kim, S. J., and Browne, J. C. 1988. A general approach

to mapping of parallel computations upon multiprocessor

architectures. In Proceedings of the International

Conference on Parallel Processing.

[9] Kumar, Avanish, Sharma, Abhilasha and Dhagat, Vanita

Ben 2010. Maximal link mode algorithm for task

allocation in distributed computing systems. Proceedings

of the 4th National Conference: INDIACom-2010.

 [10] Liou, J. -C. and Palis, M. A. 1996. An efficient clustering

heuristic for scheduling dags on multiprocessor. In

Proceedings of the 8th Symposium on Parallel and

Distributed Processing.

[11] Palis M. A., Liou, J. -C. and Wei, D. S. 1996. Task

clustering and scheduling for distributed memory parallel

architectures. IEEE Transactions on Parallel and

Distributed Systems (1996), 46 – 55.

[12] Raii, Anurag and Kapoor, Vikram 2012. Efficient

clustering model for utilization of processor’s capacity in

distributed computing system. International Journal of

Computer Applications, 44(23), 21- 25.

[13] Richard, R.Y., Lee, E.Y.S. and Tsuchiya, M. 1982. A

task allocation modal for distributed computer system.

IEEE Transaction on Computers 31, 41- 47.

[14] Sagar, G. and Sarje, A.K. 1991. Task allocation modal

for distributed system. International Journal of System

Science, 22(9), 1671 – 1678.

[15] Sarje, A. K. and Sagar, G. 1991. Heuristic modal for task

allocation in distributed computer systems. IEEE

Proceedings on Computers and Digital Techniques,

138(5), 313 – 318.

[16] Saxena Pankaj, Govil Kapil, Saxena Gaurav, Kumar

Saurabh and Agrawal Neha. 2012. An algorithmic

approach and comparative analysis of task assignment to

processor for achieving time efficiency in process

completion. International Journal of Applied Engineering

and Technology, 2(1), 114-119.

[17] Sharma, Manisha, Kumar, Harendra, Garg, Deepak.

2012. An Optimal Task Allocation Model through

Clustering with Inter-Processor Distances in

Heterogeneous Distributed Computing Systems.

International Journal of Soft Computing and

Engineering, 2(1), 50- 55.

[18] Srinivasan, S., and Jha, N. K. 1999. Safety and reliability

driven task allocation in distributed systems. IEEE

Transactions on Parallel and Distributed Systems. 10(3),

238 – 251.

[19] Vidyarthi, Deo Prakash, Tripathi, Anil Kumar, Sarker,

Biplab Kumer, Dhawan, Abhishek and Yang, Laurence

Tianruo. 2004. Cluster - based multiple task allocation in

distributed computing system. In Proceedings of the 18th

International Parallel and Distributed Processing

Symposium (IPDPS’04).

[20] Yang, T. and Gerasoulis, A. 1994. DSC: scheduling

parallel tasks on an unbounded number of processors.

IEEE Transactions on Parallel and Distributed Systems.

5(9), 951- 967.

0
50

100
150
200
250
300
350
400
450

6 7 8 9 10 11 12 13

C
o

st
 in

 U
n

it
s

--
>

Tasks -->

Proposed
Algorithm

[5]
Algorithm

380

400

420

440

460

480

500

520

4 5 6 7 8 9 10 11 12

C
o

st
 in

 U
n

it
s

--
>

Processors -->

Proposed
Algorithm

[5]
Algorithm

IJCATM : www.ijcaonline.org

