
International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.6, September 2013

14

XDC Support in Synthesis Tool using YACC

Sandeep Kumar Mittal
Research Scholar

University Institute Of Engineering And
Technology

Kurukshetra University

Sanjeev Dhawan, PhD
Assistant Professor

University Institute Of Engineering And
Technology

Kurukshetra University

ABSTRACT

With progressive FPGA technology, XILINX required a

need for new format to provide needful assistance as a part

of their tool set for design constraints. In order to achieve

the same, XDC (Xilinx Design Constraints) was

introduced. In this paper, we describe a generalized

technique to integrate XDC in synthesis tool using YACC.

Proposed system not only tokenizes the input XDC

commands but syntactically and semantically validates

them to generate desired lexeme. This paper shows the

parsing mechanism to generate desired lexeme which can

be used by several synthesis subsystems for further

computations.

General Terms

Synthesis tool, lexeme, XDC

Keywords

Syntax, Semantic, YACC

1. INTRODUCTION
This paper presents an abstraction layer which accepts

XDC commands as input, parses it using YACC & TCL

and creates the desired lexeme to retrieve the constraint

commands be used by synthesis subsystems. This method

can convert an annotated context-free input into a

deterministic LR output.

XDC commands are checked for syntactic and semantic

correctness. Hardware and software requirement for

implementation is C++ language on any 32/64 bit operating

system along with YACC and TCL to generate desired

lexeme [10]. Lexeme is proposed to generate output in a

predefined sequential ordering along with sub-commands

of a given XDC command.

2. ICFIT
To meet the requirement of this fast paced modern era,

smarter algorithms are being used and developed to collect

required system information. So, it is easier to have

validated information, in a manner to support the existing

system more efficiently than before. The proposed

algorithm in this paper can be viewed as generalized

overview of input stream being computed through set of

rules via YACC, pre-analyzed and verified for their

R
E

F
IN

E
M

E
N

T
S

TESTING

How lexeme is validated?

IMPLEMENTATION

How to implement the

system via specifications?

Rules

CONCEPTUALIZATION

Which concepts are needed

to produce a solution?

Concepts

IDENTIFICATION

How can problem be

characterized?

Requirements

FORMALIZATION

How can important aspects

of problem be presented?

Structure

R
E

F
O

R
M

U
L

A
T

IO
N

S

R
E

D
E

S
IG

N
S

Figure 1: ICFIT stages and roles

International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.6, September 2013

15

syntactic and semantic relationship with XDC constrained

taken as fundamental for computation in a synthesis tool.

This paper presents the proposed algorithm broadly into

five categories which are collectively labeled under ICFIT.

2.1 Identification
This stage [8] helps in identifying the XDC commands set

and its subcommands as stock of list. This way we are able

to find the overall complexity and size of commands set, on

which input is being required to be computed. This is the

first and most important requirement required for

conceptualization stage.

2.2 Conceptualization
It relates [6] the concepts and relation among the main

XDC commands and subcommands. Here we prepare the

flow plan for the grammar rules to be used for implement a

XDC command. The flow takes into account the specific

sub-commands as specified in XDC standard for each

command along with the specific values incorporated by it

during run time.

2.3 Figures Formalization
Stage [4] expresses the key concepts and relations in formal

way i.e. values based on setup and hold time. It helps in

modulation of data models and methods in digital system

and converts it into respective logical structural or

programmable model. In our discussion we limit our self’s

till “-to”, “-from” and “-through” sub-commands. This help

to detect any clock period miss-match.

Here we finally implement the proposed discussion into a

system where grammar rules are written as per

conceptualization phase. Major emphasis is laid in to

validate the commands before being further computed.

2.4 Implementation
This step determines the actual development of a system

based on features and algorithm as analyzed at

Identification and conceptualization stage. Here the

grammar rules are implemented and user-friendly error

messages and variables are used.

2.5 Testing
This stage [5] is responsible for analyzing and searching

any ambiguity among the grammar rules written for parsing

the input stream of tokens. Ambiguity can be shift reduce

conflicts or reduce-reduce conflicts. Shift reduce conflicts

occur when a non terminal symbol can either shift to new

rule or can be reduced to a terminal symbol. Reduce –

reduce conflict occurs when a token can be reduced to two

terminal symbols at any given instant of parsing in the

same flow.

Shift-reduce conflicts can be removed by using LR parser

(Bottom Up) where as reduce-reduce conflicts can be

removed by using LL parser (Top Down). Basic over view

of two parsing types are:

a) LR parser => list: item

 | list item ;

b) LL parser => list: item

 | item list ;

3. LOGICAL CONVERSION
XDC commands are written specifically for synthesis tool

by Xilinx [1]. So to parse the command input, we need to

first convert the electronic circuit into the logical equivalent

XDC command form. These commands are then read by

using LL (1) logic, where each command is separated from

its respective sub-commands in form of tokens by TCL.

Token are the matched first for the command and then for

its respective sub-commands by using LR (1) logic. Here

Yacc is used to parse the inputs as it helps in making BNF

rules fit for processing and validating the lexical and

semantic nature of the constraints commands [3].

Parser maintains its own stack for each new XDC

command encountered till parsed successfully or a user-

friendly message is reported. Successfully parsed tokens

are then dumped based the manner decided at the figure

formulization of ICFIT process.

For the sake of simplicity and generalization of the logical

conversation, combinational circuit is taken into account

without any link to sequential circuit. Hence the paper tries

the present the broad overview of the representation of

electronic circuit into set of rules.

So, as per figure 2 the final expression obtained considering

G as output is G = (A + B) * (C – D) + E * F. The input is

read via LL (1) logic, thus obtain a SDT as in figure 3.

Syntactic and semantic analysis through YACC is done for

each command passed as input via LR (1) logic, thus obtain

their respective SDT [9] as in figure 4.

RULES

t1 = A+B;

t2 = C-D;

t3 = t1*t2;

t4 = t3+E;

t5=t4*F;

G = t5;

t5

A

B

C

D

E

F

t1

t2

t3

t4

G

Figure 2: Generalized Logical Conversion

International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.6, September 2013

16

4. PROPOSED ALGORITHM
a. Allow the system to iterate on stream on input using

stream reader. Through this any developer or user can

send the collection of commands so to perform a

particular job.

b. Input stream is tokenized into small string fragments

which are groped as per their priorities in YACC.

c. After one full command string is identified it is

abstracted via program logic so to interface with the

synthesis tool. If ambiguous or error prone strings are

encountered, support algorithm triggers the error code

which is the controlled by error handler. [7]

d. If scanned and parsed successfully, output is displayed

else respective error should be displayed.

5. PROPOSED DESIGN
System flow proposed through this paper is an overview

flow of tokens [1, 2] as in figure 5. Input stream is first

being tokenized by Tcl and XDC commands are matched

for their existing in the reserve keyword set. If command

exists, respective grammar rules are being applied to

validate lexeme. The lexeme is then used by constraint

handler to further interact with the sub-system of synthesis

process.

G

=

+

E F

*

-

C D

*

+

A B

G

=

+

*

+

A B

-

C

E

F

D

*

Figure 3: Parsing the expression via LL (1) logic

Figure 4: Parsing the expression via LR (1) logic

Figure 5: Overall System Flow

Error Handler

Input stream of
commands.

Tokenizing input via

TCL.

Parsing

grammar rules

through YACC

Constraint Handler

Constraint Set

Interface Handler

Validate for

constraint command.

Object collection

Validate respective

sub classes.

Validated Lexeme

as Output

International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.6, September 2013

17

6. CONCLUSION
Through this paper, it is concluded that by semantic

analysis and type checking even before start of the

command execution of timing engine eventually boosts up

the performance as lexeme is being validated. Through

syntactic and semantic analysis it can not only trace the

errors beforehand but also reduce development and

shipment time.

7. REFERENCES

[1] XILINX, “Plan Ahead Tcl Command Plan Ahead Tcl

Command”, XILINX, 2012.

[2] M. Milford and J. McAllister, “Valved dataflow for

FPGA memory hierarchy synthesis”, In Proc. of IEEE

International Conference on Acoustics, Speech and

Signal Processing (ICASSP’ 2012), on 25-30 March

2012 at Kyoto, pp. 1645 – 1648.

[3] Stallman, Charles Donnelly and Richard, book on

Bison 2012.

[4] Tarun Kumar Jain, D. S. Kushwaha, A. K. Misra,

“Optimization of the Quine-McCluskey Method for

the Minimization of the Boolean Expressions”, In

Proc. of 4th International Conference on Autonomic

and Autonomous Systems (ICAS’ 2008), on 16-21

March 2008 at Gosier, pp. 165 – 168.

[5] Raimundo Barreto, Lucas Cordeiro and Bernd Fischer,

“Verifying Embedded C Software with Timing

Constraints using an Untimed Bounded Model

Checker 2011 Brazilian Symposium on Computing

System Engineering”, In Proc. of Brazilian

Symposium on Computing System Engineering

(SBESC’ 2011), on 7-11 Nov. 2011 at Florianopolis,

pp. 46 – 52.

[6] Srinivas Devadas, Hi-Keung Tony Ma and A. Richard

Newton, “On the Verification of Sequential Machines

at Differing Levels of Abstraction”, in Design

Automation, In Proc. of 24th Conference on Design

Automation, ACM, 28-1 June 1987, pp. 271 – 276.

[7] Minying Sun, Hua Wang, “The Memetic Algorithm

for The Minimum Spanning Tree Problem with

Degree and Delay Constraints”, In Proc. of 15th

International Conference on Advanced

Communication Technology (ICACT’ 2013), on 27-30

Jan. 2013 at Pyeong Chang, pp. 78 – 82.

[8] Ka Boon Kevin Ng, Chiu Wo Choi and Martin Henz,

“A Software Engineering approach to Constraint

Programming Systems”, In Proc. of 9th Asia-Pacific

Software Engineering Conference-2002, ISBN: 0-

7695-1850-8, pp. 167 – 175.

[9] Julie Zelenski, “Syntax Directed Translation”, Maggie

Johnson, 2008.

[10] “http://www.mentor.com/”, [Online] MENTOR

GRAPHICS.

IJCATM : www.ijcaonline.org

