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ABSTRACT 

This article investigates the infinite-time ruin probabilities in a 

discrete-time stochastic economic environment platform 

under the assumption that the insurance risk-the total net loss 

within one time period is absolute-repeatedly-varying or 

suddenly-varying tailed, a different accurate estimates for the 

ruin probabilities are derived. In particular, some estimates 

found are standardized with respect to the time horizon, and 

so utilize in the case of infinite-time ruin. 
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1. INTRODUCTION 
In examining the nature of the risk associated with a 

portfolio of business, it is often of interest to assess how the 

portfolio may be expected to perform over an extended period 

of time. One approach concerns the use of ruin theory 

introduced by Panjer and Willmot in the year of 1992. Ruin 

theory is concerned with the excess of the income (with 

respect to a portfolio of business) over the outgo, or claims 

paid. This quantity, referred to as insurer's surplus, varies in 

time. Specifically, ruin is said to occur if the insurer's surplus 

reaches a specified lower bound, e.g. minus the initial capital. 

One measure of risk is the probability of such an event, 

clearly reflecting the instability natural in the business. In 

addition, it can serve as a useful tool in long range planning 

for the use of insurer’s funds. We recall now a definition of 

the standard mathematical model for the insurance risk has 

been addressed [1] and [2]. The initial capital of the insurance 

company is denoted by u, the Poisson process  Nt  with 

intensity (rate)  λ  describes the number of claims in (0, 

t) interval and claim severities are random, given by i.i.d. non-

negative sequence   with mean value  µ  and 

variance , independent of  Nt. The insurance company 

receives a premium at a constant rate   per unit time, where 

  and θ ≥ 0 is called the relative safety 

loading. The classical risk process {Rt} t ≥ 0 is given by                     
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Define a claim surplus process {St}t ≥ 0 as 
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The time to ruin is defined as 
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Let }{sup0 tt SL 
,
 and }{sup0 tTtT SL   . The 

ruin probability in infinite time, i.e. the probability that the 

capital of an insurance company ever drops below zero can be 

then written as  
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Note that the above definition implies that the relative safety 

loading  has to be positive, otherwise  would be less 

than   and thus with probability 1 the risk business would 

become negative in infinite time. The ruin probability in finite 

time  is given by 

 

               )())((),( uLPTuPTu T  
         (5) 

 

Also note that obviously )(),( uTu   . However, the 

infinite time ruin probability may be sometimes also relevant 

for the finite time case. From a practical point of 

view, ),( Tu , where  is related to the planning horizon 

of the company, may perhaps sometimes be regarded as more 

interesting than )(u . Most insurance managers will closely 

follow the development of the risk business and increase the 

premium if the risk business behave badly. The planning 

horizon may be thought of as the sum of the following: the 

time until the risk business is found to behave ``badly'', the 

time until the management reacts and the time until a decision 

of a premium increase takes effect. Therefore, in non-life 

insurance, it may be natural to regard  equal to four or five 

years as reasonable. Also note that the situation in infinite 

time is markedly different from the finite horizon case as the 

ruin probability in finite time can always be computed directly 

using Monte Carlo simulations.  Also remark that 

generalizations of the classical risk process, where the 

occurrence of the claims is described by point processes other 

than the Poisson process (i.e., non-homogeneous, mixed 

Poisson and Cox processes) do not alter the ruin probability in 
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infinite time. This stems from the following fact. Consider a 

risk process tR
~

 driven by a Cox process tN
~

  with the 

intensity process )(
~

t , namely  
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Define now dss

t

t )(
~

0

   and )(
~ 1 tt RR . Then, 

the point process )(
~ 1 tt NN  is a standard Poisson 

process with intensity 1. Therefore, 

)()0}{(inf0}
~
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The time scale defined by 
1 t   is called the operational time 

scale. It naturally affects the time to ruin, hence the finite time 

ruin probability, but not the ultimate ruin probability. The ruin 

probabilities in infinite and finite time can only be calculated 

for a few special cases of the claim amount distribution. Thus, 

finding a reliable approximation, especially in the ultimate 

case, when the Monte Carlo method cannot be utilized, is 

really important from a practical point of view. Note that ruin 

theory has been also recently employed as an interesting tool 

in operational risk. In the view of the data already available on 

operational risk, ruin type estimates may become useful [3]. 

Finally note that all presented explicit solutions and 

approximations are implemented in the Insurance library of 

explore. All figures and tables were created with the help of 

this library.   

Therefore, in this paper it is to propose to investigate the 

infinite-time ruin probabilities in a discrete-time stochastic 

economic environment platform under the assumption that the 

insurance risk-the total net loss within one time period is 

unmitigated-repeatedly-varying or suddenly-varying tailed at 

different conditions. 

The organization of this paper is as follows. Section 2 

presents detailed derivation and various comparisons of the 

light and heavy tailed distributions.  The conclusions are listed 

in section 3. 

 

2. LIGHT AND HEAVY TAILED 

DISTRIBUTIONS 

      First distinguish here between light and heavy tailed 

distributions. A distribution )(xFX  is said to be light tailed, 

if there exist constants 0,0  ba  such that 

bx

XX aexFxF  )(1)(
~

 or equivalently, if there 

exist 0z , such that )(zM X  , where )(zM X  is 

the moment generating function, . Distribution )(xFX   is 

said to be heavy-tailed, if for all 

0,0  ba : ,)(
~ bx

X aexF   or equivalently, 

if 0 z  .)( zM X  We study here claim size 

distributions as in Table 1.  

In the case of light-tailed claims the adjustment 

coefficient (called also the Lundberg exponent) plays a key 

role in calculating the ruin probability. Let 

 )}({sup zM Xz  and let  be a positive 

solution of the equation. 

Table 1. Typical claim size distributions in all 

cases 0x   

Light-tailed distributions 

Name Parameters pdf 

Exponenti

al 
0  )exp()( xxf X    
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Heavy-tailed distributions 

Name Parameters pdf 

Weibull 0 , 

10   
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If there exists a non-zero solution  to the above equation, 

we call it an adjustment coefficient. 

Clearly,  satisfies the equation (6), but there may 

exist a positive solution as well (this requires that  has a 

moment generating function, thus excluding distributions such 

as Pareto and the log-normal). To see the possibility of this 

result, note that 

 

0)(,0)(,1)0(  zMzMM XXX    

and  )0(XM  . Hence, the curves )(zMy X  and 

zy  )1(1   may intersect, as shown in Fig.1. 



International Journal of Computer Applications (0975 – 8887)  

Volume 77– No.4, September 2013 

10 

 

 
 

Fig 1: Illustration of the existence of the adjustment 

coefficient. The solid blue line represents the curve 

zy  )1(1   and the dotted red one 

)(zMy X . 

An analytical solution to equation (6) exists, only for few 

claim distributions. However, it is quite easy to obtain a 

numerical solution. The coefficient  satisfies the 
inequality: 

                                                 (7) 

 

 

where )( 2)2(

iXE , see  Asmussen (2000). 

Let )()1(1)( zMzzD X  . Thus, the 

adjustment coefficient 0R  satisfies the equation 

0)( RD .In order to get the solution one may use the 

Newton-Raphson formula 
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with the initial condition 
)2(

0 2 R , where 

)()1()( zMzD X
   . 

Moreover, if it is possible to calculate the third raw moment 
)3( , we can obtain a sharper bound than (1.4),Panjer and 

Willmot (1992) . 

 

 
 

and use it as the initial condition in (8). 

 

In order to present a ruin probability formula we first use the 

relation (1) and express  as a sum of so-called ladder 

heights. Let L1 be the value that the process {Si} reaches for 

the first time above the zero level. Next, let L2 be the value 

which is obtained for the first time above the level 

,,, 431 LLL   are defined in the same way. The values 

kL  are called ladder heights. Since the process }{ tS  has 

stationary and independent increments, 


1}{ kkL   is a 

sequence of independent and identically distributed variables 

with the density 

 

 

                             (9) 

 

 

One may also show that the number of ladder heights  is 

given by the geometric distribution with the 

parameter )1(  q . Thus, the random variable  

may be expressed as 
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and it has a compound geometric distribution. The above fact 

leads to the Pollaczek-Khinchin formula for the ruin 

probability: 
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Where )(*

1

uF n

L
 denotes the th convolution of the 

distribution function
1LF . One can use it to derive explicit 

solutions for a variety of claim amount distributions; 

particularly those Laplace transform is a rational function. 

These cases will be discussed in this section. Unfortunately, 

heavy-tailed distributions like e.g. the log-normal or Pareto 

one are not included. In such a case various approximations 

can be applied or one can calculate the ruin probability 

directly via the Pollaczek-Khinchin formula using Monte 

Carlo simulations. A briefly present a collection of basic exact 

results on the ruin probability in infinite time [4]and[8]. The 

ruin probability )(u  is always considered as a function of 

the initial capital . 

 

2.1 No initial capital  

When  it is easy to obtain the exact formula: 

.
1

1
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
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Notice that the formula depends only on , regardless of the 

claim frequency rate  and claim size distribution. The ruin 

probability is clearly inversely proportional to the relative 

safety loading. 

 

 

2.2 Exponential claim amounts 
One of the historically first results on the ruin probability is 

the explicit formula for exponential claims with the 

parameter, namely 

 

  (11) 

From the Table 2, we present the ruin probability values for 

exponential claims with 
910.3789.6   and the 

relative safety loading %30  with respect to the initial 

capital . Observe that the ruin probability decreases as the 

capital grows. When  million USD the ruin 

probability amounts to 18%, whereas  million USD 
reduces the probability to almost zero. 

Table 2: The ruin probability for exponential claims with 
910.3789.6   and  (  in USD million) 

u  0      

)(u

 

0.769

231 

0.176

503 

0.040

499 

0.009

293 

0.002

132 

0.000

489 

 

2.3 Gamma claim amounts 
 

            Grandell and Segerdahl (1971) showed that for the 

gamma claim amount distribution with mean 1 and 

1   the exact value of the ruin probability can be 

computed via the formula: 
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Where, 
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The integral “I” has to be calculated numerically. Also notice 

that the assumption on the mean is not restrictive since for 

claims  with arbitrary mean    we have 

that )()(   uu XX  . As the gamma distribution is 

closed under scale changes we obtain that 

)()( ),(),(   uu GG  . This correspondence 

enables us to calculate the exact ruin probability via equation 

(10) for gamma claims with arbitrary mean. Table 3 shows 

the ruin probability values for gamma claims 

with 9185.0 ,
910.1662.6     and the relative 

safety loading %30  with respect to the initial 

capital . Naturally, the ruin probability decreases as the 

capital grows. Moreover, the probability takes similar values 

as in the exponential case but a closer look reveals that the 

values in the exponential case are always slightly larger. 

When  million USD the difference is about 1%. It 

suggests that a choice of the fitted distribution function may 

have a an impact on actuarial decisions. 

Table 3: The ruin probability for gamma claims 

with 9185.0 ,
910.1662.6    and  

( u  in USD million) 

u  0      

)(u
 

0.769

229 

0.174

729 

0.039

857 

0.009

092 

0.002

074 

0.000

473 

 

2.4  Mixture of Two Exponentials Claim 

Amounts 

For the claim size distribution being a mixture of two 

exponentials with the parameters 21 ,   and 

weights ,1, aa   one may obtain an explicit formula by 

using the Laplace transform inversion (Panjer and Willmot , 

1992). 
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Where, 

   

   
,

)1(2

)1(4)(

,
)1(2

)1(4)(

2
1

21

2

2121
2

2
1

21

2

2121
1


















r

r

 

 

and 

.)1(,
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Table 4  shows the ruin probability values for mixture of two 
exponentials claims  

with 
9

2

9

1 10.5088.7,10.5900.3     , 

  and the relative safety 
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loading %30  with respect to the initial capital . As 

before, the ruin probability decreases as the capital grows. 

Moreover, the increase in the ruin probability values with 

respect to previous cases is dramatic. When  million 

USD the difference between the mixture of two exponentials 

and exponential cases reaches 240%. As the same underlying 

data set was used in all cases to estimate the parameters of the 

distributions, it supports the thesis that a choice of the fitted 

distribution function and checking the goodness of fit is of 

paramount importance. 

Table 4. The ruin probability for mixture of two 

exponentials claims  

u  0      

)(u
 

0.7692

31 

0.5879

19 

0.3596

60 

0.1948

58 

0.0571

97 

0.0014

47 

Finally, note that it is possible to derive explicit formulae for 

mixture of  ( 3n ) exponentials (Wikstad, 1971, Panjer 

and Willmot, 1992). They are not presented here since the 

complexity of formulae grows as  increases and such 

mixtures are rather of little practical importance due to 

increasing number of parameters. 

3. CONCLUSIONS 
In this paper, the infinite-time ruin probabilities in a discrete-

time stochastic economic environment in under the 

assumption that the insurance risk-the total net loss within one 

time period is unmitigated-repeatedly-varying or suddenly-

varying tailed at different cases has been successfully derived 

and also compared with their results.  
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