
International Journal of Computer Applications (0975 – 8887)

Volume 77– No.3, September 2013

47

Space and Time Analysis on the Lattice of Cuboid for
Data Warehouse

Anjana Gosain
University school of Information Technology,

GGSIPU, New Delhi-110006, India

Suman Mann
Maharaja Surajmal Institute of Technology, GGSIPU,

New delhi-110006, India

ABSTRACT
Multidimensional analysis requires the computation of many

aggregate functions over a large volume of collected data. To

provide the various viewpoints for the analysts, these data are

organized as a multi-dimensional data model called data cubes.

Each cell in a data cube represents a unique set of values for the

different dimensions and contains the metrics of interest. The

different abstraction and concretization associated with a

dimension may be represented as lattice. The focus is to move

up and drill down within the lattice using an algorithm with

optimal space and computation. In the lattice of cuboids, there

exist multiple paths for summarization from a lower to an upper

level of cuboid. The alternate paths involve different amounts

of storage space and different volume of computations. Thus

objective of this paper is to design an algorithm for formal

analysis leading towards detection of an optimal path for any

two given valid pair of cuboids at different levels. Algorithm is

proposed based on branch and bound method for selection of

optimal path. Experimental results in the last show that the

solution obtained by the algorithm gives the optimal solution in

terms of space and time computation.

Keywords: Multidimensional Database, Data Cube,

Cuboid, Lattice, Branch and Bound.

1. Introduction

A data warehouse (DW) is a repository of integrated

information available for querying and analysis. The

information in the data warehouse is stored in the form of

multidimensional model[23]. The multidimensional model view

data in the form of data cube. Data cube computes the

aggregates along all possible combinations of dimensions [5]. It

is defined by dimensions and facts. Dimensions are the entities

with respect to which an organization wants to keep records [4].

Facts are the numerical measures/ quantities by which we want

to analyze relationship between dimensions [20]. In general

term we consider data cube as 3-D geometric structures, but in

data warehousing it is n-dimensional [23]. The data cube is a

metaphor for multidimensional data storage. Each cell of data

cube shows a specific view in which users are interested. Given

a set of dimensions, we can generate a cuboid for each of the

possible subsets of the given dimensions which result in a

lattice of cuboid. Figure 1 shows a lattice of cuboid for the

dimensions time, product, market and supplier. For the n

number of dimensions we may find 2n cuboid and main

challenge is to understand how the cuboids are related to each

Figure 1. Lattice of Cuboid

P,M,S

ALL

P
S

M T

T,P,M,S

T,P,M

T.P

T,M,S T,P,S

T,M

T,S P,S
M

,S

P,M

0-D (apex)

 cuboid

1-D

 cuboid

2-D cuboid

3-D cuboid

4-D (base)

 cuboid

International Journal of Computer Applications (0975 – 8887)

Volume 77– No.3, September 2013

48

other[3]. As shown in figure1 different paths are available for a

particular cuboid. These paths consider different amount of

storage space and time computation. Various researchers

proposed number of algorithms for the selection and

computation of data cubes [3][4][12][13][21][22]. In this paper

an algorithm is proposed for computing the cuboid that

minimizes the storage space and computation. Algorithm is

proposed based on branch and bound method for selection of

optimal path. The proposed algorithm gives the optimal solution

in terms of space and time computation.

Rest of the paper is organized as follows: Section 2, presents

the related works. Section 3, discusses definitions and

properties related to lattice. Section 4, defines lemmas related to

cube lattice. Section 5, presents the algorithm for cube

computation. Section 6, explains the implementation of the

proposed algorithm. Section 7, shows the result. Last section

presents the conclusion.

2.Related Work
There has been some concurrent work on the problem of

computing and selection of data cube [23][3][6][20][4][25]. V.

Harinarayan et al. [23] proposed a greedy algorithm that work

on lattice and pick the right views to materialize, subject to

various constraints for the selection of data cube. A. Shukla et

al. [2] proposed a modified greedy algorithm namely PBS (pick

by size) that selects data cube according to the cube size. This

algorithm was more efficient as compared to Harinarayan’s

greedy algorithm. A polynomial time greedy heuristic

framework that uses AND view (each view has a unique

evaluation), OR view (any view can be computed from any of

its related views), and AND-OR view graph is proposed by H.

Gupta [7]. A. Shukla et al. [1] considered the view selection

problem for multi-cube data models and proposed three

different algorithms, SimpleLocal, SimpleGlobal, and

ComplexGlobal which pick aggregates for precomputation from

multi cube schemas. C. Zhang et al. [4] proposed a heuristic

algorithm for determining a set of materialized views based on

the idea of reusing temporary results from the execution of

global queries with the help of Multiple View Processing Plan

(MVPP). However, this algorithm did not consider the system

storage constraints. Himanshu Gupta et al. [8] designed an

approximation greedy algorithm for the special case of OR view

graphs. For the general case of AND-OR view graphs, they also

designed A*heuristic that deliver an optimal solution.

J. Yang et al. [4] used, Genetic Algorithm, to choose

materialized views and demonstrate that it is practical and

effective as compared to heuristic approaches. Again to select

the set of materialized cubes W. Yang [15] proposed a greedy-

repaired genetic algorithm and found that solution can greatly

reduce the amount of query cost as well as the cube

maintenance cost. A constraint programming based approach

has been presented by I. Mami et al. [9] to address the view

selection problem. More specifically, the view selection

problem has been modeled as a constraint satisfaction problem.

Its resolution has been supported automatically by constraint

solver embedded in the constraint programming language. The

authors proved experimentally that a constraint programming

based approach provides better performances compared with a

genetic algorithm (randomized) in term of the solution quality

and cost saving. K. Aouiche et al. [14] proposed a framework

for materialized view selection that exploits a data mining

technique (clustering), in order to determine clusters of similar

queries. They also proposed a view merging algorithm that

builds a set of candidate views, as well as a greedy process for

selecting a set of views to materialize. Surveys of technique for

selection of cube are given by the I. Mami [10].

For computing the cube, M.P. Deshpande [2][16] proposed a

sorting based algorithm that overlap the computation of

different group-by operations using the least possible memory

for each computation of cube in the lattice of cuboid. Object

oriented conceptual model based data cube is designed by A

Lvanova and R. Boris [11]. For finding the optimal path in the

lattice of cuboid, an algorithm proposed by S. Sen [21][22] is

based on two operations roll-up and drill-down for finding the

optimized path to traverse between two data cube of valid

dimension in term of intermediate cuboid sizes. A galois

connection is identified on the lattice structure with the well

defined abstraction and concretization function based on the

concept hierarchy. Recently researchers are focusing on

designing efficient algorithms for the computation of the

complete cube. In this paper we have proposed an algorithm for

cube computation based on branch and bound technique.

3. Definition and Properties of Lattice
Theory
Some important definitions related to lattice are given below:

1. Lattice: A partial order set (POS) (A, ≤) is called a lattice if,

 x, y ε A, there exist sup(x, y) and inf (x, y) [27]. For

supermum we use the symbol and for infimum we use the

symbol .In the lattice theory, these operations are called

binary operations.

2. POS: Partially ordered set is a set with a binary relation ≤

that, for any x, y, and z, satisfies the following conditions:

(1) x ≤ x (reflexivity);

(2) if x ≤ y and y ≤ x, then x = y (anti_symmetry);

(3) if x ≤ y and y ≤ z, then x ≤ z (transitivity).

 If, for a POS (A, ≤), x, y ε A: x ≤ y or y ≤ x, then this set is

called a linearly ordered set, or chain.

3. Supremum or Least Upper Bound: Let (A, R) be a POS. An

element l ε A is called supremum of a and b in A if and only

if

i. aRl and bRl i.e. l is the upper bound of a and b.

ii. If an element l’ ε A such that aRl’ and bRl’then lRl’

 That is if l’ is another upper bound of a and b then l’ is also the

upper bound of l. Thus l is the least upper bound of a and b.

4. Greatest Lower Bound(GLB) or Infimum

Let (A, R) be a POS. An element l ε A is called infimum of a

and b in A if and only if

i. lRa and lRb i.e. l is the lower bound of a and b.

ii. If there exist one element l’ ε A such that l’ is also a

lower bound of a and b then l’Rl that is if l’is also a lower

bound of a, b then l’ is the lower bound of l also i.e. l is the

greatest of all lower bounds of a and b.

That is if l’ is another upper bound of a and b then l’ is also the

upper bound of l. Thus l is the least upper bound of a and b.

5. Roll Up & Drill Down: The roll-up operation performs

aggregation on a data cube, may be climbing up a concept

hierarchy for a dimension or by dimension reduction. Drilldown

navigates from less detailed data to more detailed data. It is the

International Journal of Computer Applications (0975 – 8887)

Volume 77– No.3, September 2013

49

reverse of roll-up operation. Drill down is realized by stepping

down a concept hierarchy or adding a new dimension.

3.1 Some Characteristics of Lattices
If A is any lattice, then for any a, b, c ε L the following

properties hold:

i. a a = a Idempotent Law

 a a = a

ii. a (b c) = (a b) c Associative Law

 a (b c) = (a b) c

iii. a b = b a Commutative Law

 a b = b a

iv. a (a b) = a Absorption Law

 a (a b) = a

4. Lemmas of Cube Lattice
Lemma1. In the cube lattice, the possible number of

combinations of dimensions in each level r may be defined by

the following permutation formula:

 C (n, r) =n! /r! (n-r)!

Here in the cube lattice n= number of maximum dimensions

 r= no of dimension taken at any level

In the cube lattice we start from zero level and total number of

level will be equal to maximum number of dimension.

Now from this formula we may find number of nodes at any

level in the cube lattice. Suppose we have four dimensions like

product, time, market, and promotion. For these four

dimensions we may find the following information

1. Number of levels is 4 because total number of

dimension is four.

2. Number of nodes at level 0 = 1 as C (4, 1) = 4! / 0!

(4-0) != 1

3. Number of nodes at level 1 = 4 as C (4, 1) = 4! / 1!

(4-1) != 4

4. Number of nodes at level 2= 6 as C (4, 2) = 4! / 2! (4-

2) != 6

5. Number of nodes at level 3=4 as C (4, 3) = 4! / 3! (4-

3) != 4

6. Number of nodes at level 4=1 as C (4, 4) = 4! / 4! (4-

4) != 1

Lemma2. Total number of possible nodes in the cube lattice

will be equal to 2n where n is the maximum number of

dimensions. For the lattice of four dimensions total nodes are

16.

Lemma3. The number of dimensions for a cube in level i is the

n-i for the base cuboid on n dimensions.

Lemma4. The number of cuboid produced by any particular

cuboid for the next level will be equal to number of dimension

in that particular cuboid. For example suppose we have the

cuboid ABCD then number of cuboid produced for the next

level is equal to 4 namely BCD, ACD, ABD and ABC.

5. Computation of Data Cube
For Computation of each cube, there exist multiple paths for

summarization from a lower to an upper level cuboid. The

alternate paths involve different amount of memory and

different volume of computations. Our challenge is to find a

path which take minimum space and minimum number of

computation. Thus computation of cube is to find an optimal

path in terms of number of computation and storage space.

Here we have proposed an algorithm using branch and bound

designing approach for computing the data cube. Before

defining the algorithm, let us take a brief discussion about the

branch and bound approach.

5.1 Branch and Bound Approach
In this approach we search for a set of solutions or we ask for

an optimal solution satisfying some constraints. The desired

solution is expressed as an n-tuple

 (x1, x2, -------xn) where xi is taken from some finite set Si. For

any problem constraint are divided into two categories:

1. Explicit constraint

2. Implicit constraint

1. Explicit constraint: These are the rules that restrict each xi to

take on values only from a given set. All tuples that satisfy the

explicit constraints define a possible solution space for a

particular problem[5].

2. Implicit Constraint: These are the rules that determine which

of the tuple in the solution spaces satisfy the criterion

functions[5]. Thus implicit constraints describe the way in

which the xi must relate to each other.

Branch and bound algorithm determine problem solutions by

systematically searching the solution space for the given

problem. This search is facilitated by using a tree organization

for the solution space.

Once tree is conceived, the problem is solved by systematically

generating the problem states, determining which of these are

solution states and finally find out which solution states are

answer states. Every problem state starts with the root node and

then generates other nodes. A node which has been generated

and all of whose children have not yet been generated is called

the E-node i.e. note being expanded. A dead node is a generated

node which is not to be expanded further or all of whose

children have been generated. Now bounding functions are used

to kill live nodes without generating all their children. In the

branch and bound technique E-node remains the E-node until it

is dead.

5.2 Algorithm for Cube Computation
Before defining the algorithm, first we make the state space

diagram of the problem. Our problem is finding the aggregation

over the dimensions according to the user queries. Now suppose

we have five dimensions, Product, Time, Market, Promotion

and Supplier. State space diagram for these five dimensions is

given in figure1.The constraint for the problem is:

Explicit Constraint: Each dimension xi to take only from a

given set of dimensions (x1,x2,- xn).

Implicit Constraint: An implicit constraint in our problem is that

aggregation of dimensions according to the user queries must be

present in the subset of cuboid while selecting the cuboid.

In the state space diagram, we want to find a path which require

the generation of minimum number of data values, which

eventually result in better space utilization. Starting from 4-D

cuboid we may move to upper level i.e. 3D level through a

number of ways to find a particular cuboid of certain

dimensions.

International Journal of Computer Applications (0975 – 8887)

Volume 77– No.3, September 2013

50

For selecting the path following algorithm is used, which gives

smallest number of computation among all possible paths.

Algorithm

1. Initialize the parameters;

2. Define a recursive function ()

 initialise subsets, index, i, j, k to 0

 temp[]<-{1,1,1,1,1},number of dimensions

 loop until i<totalno

 initialise k and flag to 0

 do subsets++

 loop until j<n

 if(i+index=j)

 then{}

 else

 arr[i][k]<-a[j][0] if(arr[i][k]<-f[0] or

 arr[i][k]<-f[1]) do

 flag++

 k++;

 end loop

 if(flag=1) do

 if(temp[i]<min) do

 min<-temp[i]

 smin<-value at that position

 else

 temp[i]<-1

 i<-i-1

 tno<-tno-1

 index<-index+1

 nsub<-nsub-1

 endif

3. Repeat the above step to n-l times and get desired

path

4. [END]

Figure 2. State Space Diagram for Proposed Algorithm

PTMP’S

TMP’S(

B)

PTMS

 (OS) PTP’S

 (B)

PMP’S

 (S)

PTMP’
(B)

TM

S(B

))

PM

S(s)

PTS

(B)

TM

P(B

)

M

S(

B)

PS

(B

)

PM

S

(s)

9

(B)

MP’

S(B

)

PP’

S(B

)

PM

P’(s

)

PM

P’(s

)

PTP’

(B)

PT

M(

s)

PT

M(

os)

P

M

(S)

P

M

(S)

PS

(B

)

M

E(

B)

AP’

(B)

A

M

(B

)

M

P

(B)

M

P’(

B)

PM

(O

S)

(O

S)

PT

(B

)

T

M

(B

)

PP

(B

)

’

P

M

(S)

TM

(B)

P

M

(S)

PT

(B

)

International Journal of Computer Applications (0975 – 8887)

Volume 77– No.3, September 2013

51

6. Implementation
For implementing the algorithm, we have considered five

dimensions i.e. Product (P), Time (T), Market (M), Promotion

(P’) and Supplier (S) whose state space diagram is given in

figure 2. In the state space diagram the solution nodes are

represented by S and other nodes are represented by symbol B

i.e bound. Now let us find the optimal path from (P, T, M, P’, S)

to (P, M) i.e aggregation over product and market. (P, T, M, P’,

S) is the base cube at lowest level. Let us suppose the attribute

value of various dimensions, P has 25 values, T has 20 values,

M has 35values, P’ has 40 values and S has 10 values. Our

algorithm starts with materialization of base cuboid and then

algorithm materialize the following cuboids:

1. T, M, P’, S

2. P,M, P’, S

3. P, T, P’, S

4. P,T,M,S

5. P,T,M,P’

Now in these options, algorithm will check the feasible solution

and cuboid with minimum number of computation. Feasible

solution is the cuboid that contain the dimension P,M. Number

of computation is the multiplication of attribute value of

considered cuboid. The cuboid which have the minimum

number of computation in the above cuboid is P,T, M,S. Next

this cube is materialized for getting the optimal solution and

cuboid, from which the solution like T,M,P’,S is not possible

will be bounded. Bound node is represented by inserting B in

the materialized cuboid. Other nodes are the solution nodes,

which are represented by putting S in the materialized

cuboid.From P,T,M,S we get the following :

1. T, M, S

2. P, M, S

3. P, T, S

4. P, T, M

Here again it will check the feasible solution and in feasible

solution will select the path with minimum number of

computation which here is P, T, M. Now P, M, S will be

selected and following option we get:

1. M,S

2. P, S

3. P, M

Now feasible solution is P,M and this is the required optimal

path.This is represented by OS(optimal solution) in the state

space diagram Thus selected path is:

(P, T, M, P’, S) P, T, M, S P, M, S P,M

Before applying the algorithm the possible solutions are the

following:

1. P, T, M, P’,S P, M, P’,S P, M,S P, M 359625

2. P, T, M, P’,S P, M, P’,S P, M,P’ P, M 385875

3. P, T, M, P’,S P, T, M, S P, M,S P, M 184625(os)

4. P, T, M, P’,S P, T, M’,S P,T, M P, M 193375

5. P, T, M, P’,S P, T, M, P’ P, M,P’ P, M 735875

6. P, T, M, P’,S P, T, M, P’ P, T, M P, M 718375

In these options we see that 3rd alternative is optimal as

compared to others in term of storage space and computation

time. This same we get from our algorithm. The optimal

solution is represented by the arrow line in state space diagram

of figure 2.

7. Experimental Result
To validate the effectiveness of the proposed cube selection

algorithm, we compared it with alternative path of cube

selection. For this we find the aggregation of two dimensions

over five dimensional cube. Two dimensional cubes are PT,

PM, PP’, PS, TM, TP’, TS, MP’, MS, P’S. For these two

dimensional cubes, we considered 10 different values set as 5%,

10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% as a space

utilization in memory. We have aggregated all two dimensions

according to our proposed algorithm. For the same solution, we

have aggregated according to their independent path. Then

graph is made of the independent solutions and from the

solution of our algorithm. This is depicted in figure3.

In figure 3 horizontal line shows the space limit and vertical line

indicates the number of computation in lakhs. Blue line i.e.

series 1 is the result of our algorithm. In this diagram, we may

see the improvement over space as well as total response time in

terms of number of computation. In the graph first blue line is

the result of our algorithm, which is minimum for all the two

dimensional aggregations i.e. PT, PM, PP’, PS, TM, TP’, TS,

MP’, MS, P’S.

Figure3 Result Analysis of the Algorithm

0

2

4

6

8

5% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Series 1 Series 2 Series 3 Series 4 Series 5 Series 6

International Journal of Computer Applications (0975 – 8887)

Volume 77– No.3, September 2013

52

8. Conclusion
In this paper, we have analyzed the roll-up and drill-down

operations on the multidimensional data cube. The proposed

algorithm is based on the roll-up and drill-down operations for

finding the optimized path to traverse between two data cube of

valid dimensions in term of intermediate cuboid sizes.

References
[1] A. Shukla, Deshpande PM, Naughton JF, “materialized view

selection for multicube data models” 7th international

conference on extended database technology, Germany,

March 2000, Springer, pp 269-284.

[2] A. Shukla, PM Deshpande, JF Naughton, “materialized view

selection for multidimensional datasets”, Proceeding of 24th

international conference on very large databases, NEW York,

August 1998,pp 488-499.

[3] Antoaneta Ivanova, Boris Rachev, “Multidimensional

models – Constructing data cube”, International Conference

on Computer Systems and Technologies-

CompSysTech’2004.

[4] C. Zhang and J. Yang, “Genetic algorithm for materialized

view selection in data warehouse environments,”

Proceedings of the International Conference on data

Warehousing and Knowledge Discovery, LNCS,

vol.1676,pp. 116-125, 1999

[5] Ellis Hororwitz, Sartaj Sahni, Sanguthevar Rajasekaran,

"fundamentals of computer algorithms" Galgotia publication,

1999.

[6] G. Sanjay, C. Alok, “Parallel Data cube Construction for

high performance On_line analytical processing”, IEEE

.Inter. Confer.1997, pp10-14

[7] H. Gupta, “selection of views to materialize in a data

Warehouse”, ICDT, January 1997, Delphi Greece.

[8] H. Gupta, I.S. Mumick, Selection of views to materialize

under maintenance cost constraint. In Proc.7th International

Conference on Database Theory (ICDT'99) Jerusalem, Israel,

pp. 453–470, 1999

[9] I. Mami, R. Coletta, and Z. Bellahsene, “Modeling view

selection as a constraint satisfaction problem”, In DEXA, pp

396-410,2011

[10] I. Mami and Z. Bellahsene,”A survey of view selection

method” SIGMOD Record, March 2012 (Vol. 41, No. 1), pp

20-30

[11] I. Antoaneta, R Boris, “Multidimensional models-

constructing data cube” Int. conference on computer systems

and technologies-CompSysTech’2004, V-5pp1-7

[12] J.Hen, J.Pei,G.D and K. Wang, ‘Efffficient computation of

iceberg cubes with complex measures,” in proc. 2001 ACM-

SIGMOD Int. conference Management of data

(SIGMOD’01),May2001,PP1-12.

[13] J.Yang, K. Karlapalem, and Q. Li. “A framework for

designing materialized views in data warehousing

environment”, proceedings of 17th IEEE International

conference on Distributed Computing Systems, Maryland,

U.S.A., May 1997

[14] K. Aouiche, P. Jouve, and J. Darmont. Clustering-based

materialized view selection in data warehouses.In

ADBIS’06, volume 4152 of LNCS, pages 81–95, 2006.

[15] L.Y.Wen, K.I. Chung, “A genetic algorithm for OLAP data

cubes” Knowledge and information systems, January

2004,volume 6,Issue1,pp 83-102.

[16] M.P. Deshpande ,S.Agarwal, J.F. Naughton, R.

Ramakrishnan “Computation of Multidimensional

Aggregates” University of Wisconsin Madison, Technical

Report,1997

[17] M.P. Deshpande, S.Agarwal, R.Agarwal, A. Gupta, J. F.

Naughton,R. Ramakrishnan and S. Sarawagi; "On the

computation of multidimensional aggregates"; Proc. of 1996

International Conference on Very Large Data Bases

VLDB'96.

[18] S. Amit, D Prasad, N.F. Jeffrey, “Materialized view selection

for multi-cube data models, In Proc. of 7th Int.conference on

Extending database Technology: Advances in Database

Technology, Springer 2000, pp 269-284.

[19] S.D.Kuznetsov, Y.A.Kudryavtsev,“ A mathematicl model of

the OLAP cubes” Programming and computer software,

vol35,no5,2009, pp 257-265.

[20] Stefanovic, N., Han, J., Koperski, K.: Object-Based Selective

Materialization for efficient Implementation of Spatial

data cubes. IEEE transaction on Knowledge and

DataEngineering,2000,pp 938-958

[21] S. Soumya,C. Nabendu, C. Agostino, “Optimal space and

time complexity analysis on the lattice of cuboids using

galois connections for the data warehousing” In proc

2009,Inter.conf.on computer science and convergence

information technology,pp1271- 1275.

[22] S. Soumya, C.Nabendu, “Efficient traversal in data

warehouse based on concept hierarchy using Galois

Connections, In proc. of second Int. Con on Emerging

applicationsof information technology,2011,pp 335- 339

[23] V. Harinarayan, Rajaraman, A., Ullman,“ Implementing

Data Cubes Efficiently”, In ACM SIGMOD International

Conference on Management of Data, ACM Press, New York

(1996) pp. 205-216.

[24] W.H.Inmon, “building the data warehouse” Wiley, Fourth

Edition, 2005.

[25] X.Li, J.Han, and H. Gonzalez, “High dimensional OLAP: a

Minimal cubing approach,”in Proc. 2004 Int.Conf.Very

Large Databases (VLDB’04),Toronto Canada,Aug. 2004,pp.

528-539.

[26] Y.Chen, G. Dong,J.Han, B.W.Wah, and J.Wang,

“Multidimensional regression analysis of time series data

streams,” in proc.2002 International conference on very large

data Bases(VLDB’02),Hong Cong, Chiana,

Aug.2002,pp.323-334

[27] Y.A Kudryavtsev, S.D.Kuznetsov, “A Mathematical model

of the OLAP cubes”,Programming and computer

software,Vol35, No 5,2009, pp 257-265.

[28] Z. Shao., J.Han, and d.Xin, “MM-cubing: computing iceberg

cubes by factorizing the lattice space,” In Proc.2004 Int.

Conf. on Scientific and statistical Database Management

(SSDBM’04), Santorini Island, Greece, June 2004,pp.213-

22.

IJCATM : www.ijcaonline.org

