
International Journal of Computer Applications (0975 – 8887)

Volume 77– No.3, September 2013

26

Measurement of Design Complexity of Different types of
Inheritance using Cohesion Metrics

Ankita Mann
Mtech Scholar,

DCSA, M.D. University
Rohtak, Haryana, India

Sandeep Dalal
Assistant Professor, DCSA,

M.D. University Rohtak,
Haryana, India

Neetu Dabas, Ph.D
Maharshi Dayanand University

Rohtak, Haryana, India

ABSTRACT
Main aim of Software Engineering is to increase quality and

maintain Software Product. Inheritance reflects the degree of

reusability of existing classes and reuse increases

productivity. Most Cohesion Metric tool do not consider

inherited elements while measuring cohesion but we can

measure design quality by including the concept of

inheritance in Cohesion metrics. In this paper values of all

cohesion metrics (LCOM1, LCOM2, LCOM3, LCOM4,

LCOM5, CO, TCC and LCC) is calculated including the

concept of inheritance for Single, Multiple, Multilevel and

Hierarchical Inheritance and compare results to determine

design complexity of various types of Inheritances.

Keywords
Single inheritance, multiple inheritance, multilevel inheritance

and Hierarchical Inheritance.

1. INTRODUCTION
Most important goal of Software Engineering is to develop a

good quality Software that is stable and maintainable.

“Software quality is the degree to which software

possesses a desired combination of attributes such as

maintainability, testability, reusability, complexity,

reliability, interoperability etc.” - IEEE 1992.

Inheritance is an necessary concept in which a class acquires

access of all attributes and methods of class it inherits from

and can revolutionize. Effective reuse increase productivity

and measurements are essential for this. All existing work

evaluates Inheritance in terms of Depth but there are more

aspects that are not covered by existing Inheritance Metrics.

Classes may depend on each other in various ways and some

dependencies do not violate quality. Highly Cohesive module

reflects Good Quality. In this paper Cohesion in all types of

Inheritances is evaluated to measure design complexity of

program that implement Inheritance.

2. INHERITANCE
In inheritance, the derived class inherits public and protected

members of the base class and all new members. In class

hierarchies derived class has a "kind of" relationship with the

base class.

“Inheritance is a mechanism of reusing and extending

existing classes without modifying them, thus producing

hierarchical relationships between them.”- IBM

With the help of Inheritance a Class can be defined in terms of

another class without modifying existing class. Use of

inheritance avoids redefining the inherited information from

the base class in our derived classes.

2.1 Types of Inheritance

 Single Inheritance is a common form of inheritance

in which classes have only one base class. Single

inheritance is safe to use as compared to other types of

Inheritances.

 Multilevel Inheritance is the hierarchy in which

subclass acts as a base class for other classes means a

class be can derived from a derived class.

 Hierarchical Inheritance is the hierarchy in

which multiple subclasses inherit from one base class. It

is a method of in which one or more derived classes are

derived from common base class.

 Multiple Inheritance is the hierarchy in which one

derived class inherits from multiple base class/es. With

the help of multiple inheritance program can be

structured as a set of inheritance lattices instead of a set

of inheritance trees.

2.2 Visibility Mode and Inheritance
Visibility mode controls the scope of inherited base class

members in the derived class. It can be either private or

protected or public. Private is used as access modifier if we

want confidential data.

 Private Inheritance: In private inheritance

protected and public members of base class become

private members of the derived class.

 Public Inheritance: In public inheritance, the

protected members of base class become protected

members and public members of the base class become

public members of derived class.

 Protected Inheritance: In protected inheritance,

the protected and public members of base class become

protected members of the derived class.

International Journal of Computer Applications (0975 – 8887)

Volume 77– No.3, September 2013

27

Table 1: Cohesion metrics used in this research

Metrics Description

LCOM1 Total numbers of pairs of methods that share common attribute.

LCOM2 |P|-|Q|, P is pair of method without common attribute and Q is pair of method with common attribute.

LCOM3 |Connected component of Graph G|

LCOM4 |Connected component of Graph G|+ Additional edge for method-method invocation

LCOM5 (a – kℓ) / (ℓ – kℓ), ℓ- number of attributes, k- number of methods, a- Total number of distinct attributes

accessed by each method in a class.

Co a / kℓ or 1 – (1 – 1/k)LCOM5

TCC NDC/NP, NDC- Directly connected public methods, NP- Number of possible connections

LCC NIC/ NP, NIC- Indirectly connected public methods

3. DESCRIPTION OF CASES

DISCUSSED
In this research Design Complexity for four different types of

Inheritances: Single, Multilevel, Hierarchical and Interfaces is

discussed and measured with the help of eight different

Cohesion Metrics (LCOM1, LCOM2, LCOM3, LCOM4,

LCOM5, Co, TCC and LCC) and Compare results. Cases

Discussed are as follows:

Case 1: Single Inheritance:
In this case Base class contain attribute “X”, method

“Basemethod” and derive class contain method

“Derivemethod”. Attribute “X” ia accessed by method of base

class as well as for derived class.

Figure1: Single Inheritance

Figure2: Relation between methods and attribute of case1

Code:

Using System;

Class Base

{

Public int X;

Public void basemethod (int Z)

{

Z=X;

Console.WriteLine(“X=”,X);

}

}

 Class Derive:Base

 {

Public void Derivemethod (int Z)

{

Z=X;

Console.WriteLine(“X=”,X);

}

 }

 Class Simple Inheritance

 {

Public void static Main()

{

Base base= new Base();

Derive derive= new derive();

base.BaseMethod(10);

derive.DeriveMethod(20);

derive.BaseMethod(30);

}

}

Case2: Multilevel Inheritance
In this case three Clsses are there A, B and C. C inherit all

public and protected members of B which inherit A. A

implement attribute “a” and “Amethod()”, B implement “b”

and “Bmethod()” and C implement “Cmethod()”. C inherit all

public and protected elements of both A and B. in this

example “a” is accessed by “Amethod()” and “Bmethod()”

and “Cmethod”.

Base Class

• X

• Basemethod()

Derive Class

• Derivemethod()

Basemethod X Derivemethod

International Journal of Computer Applications (0975 – 8887)

Volume 77– No.3, September 2013

28

Figure3: Multilevel Inheritance

Figure4: Relation between methods and attribute of case2

Code:

Using System.Text;

Namespace Multilevel_Inheritance

{

Class A

{

Protected int a;

Public Amethod(int x)

{

a=x;

Console.WriteLine(“a=”,+a);

}

}

Class B: A

{

Public Bmethod(int y)

{

a=y;

Console.WriteLine(“a=”,+a);

}

}

Class C: A

{

Public Cmethod(int z)

{

a=z;

Console.WriteLine(“a=”,+a);

}

}

Class MultiLevelInheritance

{

C c= new C;

c.Amethod(10);

c.Bmethod(20);

c.Cmethod(30);

}

}

Case 3: Hierarchical Inheritance
In this case two classes C and D inherit A and D and E inherit

C. Class A contain “A” and “Amethod()”, Class B contain

“Bmethod()”, C contain “c”,”Cmethod()”, D contain

“Dmethod()” and E contain “Emethod()”. “a” is accessed by

Amethod(), Bmethod(), Cmethod(), Dmethod() and

Emethod(). “C” is accessed by Cmethod(), Dmethod() and

“Emethod()”. “Cmethod()”, “Dmethod()” and “Emethod()”

access both variables “a” and “c”.

Figure5: Hierarchical Inheritance

Class A:

a

Amethod()

Class B:

Bmethod()

Class C:

Cmethod()

a

Amethod()

Cmethod() Bmethod()

Class: A

a

Amethod()

Class: C

C

Cmethod()

Class: D

Dmethod()

Class: E

Emethod()

Class: B

Bmethod()

International Journal of Computer Applications (0975 – 8887)

Volume 77– No.3, September 2013

29

Figure6: Relation between methods and attribute “a”

Figure7: Relation between methods and attribute “c”

Code:

Using System.Text;

Namespace Multilevel_Inheritance

{

Class A

{

Protected int a;

Public Amethod(int x)

{

a=x;

Console.WriteLine(“a=”,+a);

}

}

Class B: A

{

Public Bmethod(int y)

{

a=y;

Console.WriteLine(“a=”,+a);

}

}

Class C: A

{

Protected int c;

Public Cmethod(int i, int j)

{

a=i;

c=j;

Console.WriteLine(“a=”,+a);

Console.WriteLine(“c=”,+c);

}

}

Class D: C

{

Public Dmethod(int i, int j)

{

a=i;

c=j;

Console.WriteLine(“a=”,+a);

Console.WriteLine(“c=”,+c);

}

}

Class E: C

{

Public Emethod(int i, int j)

{

a=i;

c=j;

Console.WriteLine(“a=”,+a);

Console.WriteLine(“c=”,+c);

}

}

Class MultiLevelInheritance

{

E e= new E;

e.Amethod(10);

e.Bmethod(20);

a

Amethod()

Bmethod()

Cmethod() Dmethod()

Emethod()

c

Cmethod()

Dmethod() Emethod()

International Journal of Computer Applications (0975 – 8887)

Volume 77– No.3, September 2013

30

e.Cmethod(30,40);

e.Dmethod(50,60);

e.Emethod(70,80);

}

}

Case 4: Interface
In this case base class implement Interface, here interface

“Display” contain method “Print()”, Class “A” and Class “B”

override method “Print()”. Class “A” inherits Interface

Display and Class “B” inherits Class “A”. In this type of

situation object of sub class converted to interface type.

Figure8: Interface

Code:

Using System;

Interface Display

{

Void Print();

}

Class B: Display

{

Public void print()

{

Console.WriteLine(“Base Class

Method”);

}

}

Class D: B

{

Public void print()

{

Console.WriteLine(“Base Class

Method”);

}

}

Class Interacetest

{

Public static void main()

{

B b= new b();

b.print();

Display d= (Display) d;

d.print();

}

}

4. RESULTS
Table 2 represents calculated values for all Cohesion metrics

in four type of inheritance. Here we compare values of

different Cohesion metrics min all Cases.

LCOM1: Value of LCOM1 is zero in all cases except

Hierarchical Inheritance means performance for LCOM1 is

good in Single, Multiple and Multilevel Inheritance because

LCOM1 should be low for highly cohesive module.

LCOM2: LCOM2 is zero for all cases, means performance

of all types of Inheritance is same for LCOM2.

LCOM3: LCOM3 give number of independent components

in program which should be one. Value of LCOM3 is one for

all cases except multiple inheritances.

LCOM4: LCOM4 is one for all so performance is

similar in all cases. And one indicates that code is

highly cohesive.

LCOM5: LCOM5 is zero for Single, multiple and multilevel

cohesion which is a good value. Increasing LCOM5 above 0

towards 1 means worsening cohesion. So we can say that

performance of hierarchical inheritance is poor for LCOM5.

Co: Co is little variation of LCOM5.

TCC and LCC: For TCC and LCC one is considered as

highly cohesive module and if value is less than half module

is considered as non cohesive. Here TCC and LCC is one for

all cases except hierarchical inheritance.

Interface: Display

Print()

Class: A

Print()

Class: B

Print()

International Journal of Computer Applications (0975 – 8887)

Volume 77– No.3, September 2013

31

Table2: Calculated values of Cohesion metrics for Single, Multiple, Hierarchical and Interface

Figure 9: Graphical representation of all Cohesion metric values

Figure 10: Graphical representation for of TCC and LCC in all Cases

5. CONCLUSION
Figure 9 represent difference between Cohesion Metric values

for different types Inheritances. Conclusion generated from

these values is that Hierarchical Inheritance is worst

inheritance and interface is best. Values for all other cases are

almost similar except hierarchical Inheritance. LCOM1 is zero

for all types of inheritances except hierarchical inheritance

and LCOM2 is zero for all cases. LCOM3 is one for all cases

except interface. LCOM4 is one in all cases and LCOM5

0

1

2

3

4

5

6

LCOM1 LCOM2 LCOM3 LCOM4 LCOM5 Co TCC LCC

Single

Multilevel

Hierchical

Interface

1 1

0.5

1 1 1

0.4

1

0

0.2

0.4

0.6

0.8

1

1.2

Simple Inheritance Mulilevel Inheritance Hierarchical Inheritance Multiple Inheritance or
Interface

TCC and LCC

TCC

LCC

Metrics LCOM1 LCOM2 LCOM3 LCOM4 LCOM5 Co TCC LCC

Single

Inheritance

0 0 1 1 0 1/4 1 1

Multilevel

Inheritance

0 0 1 1 0 1 1 1

Hierarchical

Inheritance

5 0 1 1 3/5 3/5 ½ 2/5

Multiple

Inheritance

0 0 2 1 0 0 1 1

International Journal of Computer Applications (0975 – 8887)

Volume 77– No.3, September 2013

32

show variation only for hierarchical inheritance. Co is

different in all cases and similarly TCC and LCC are also

different for hierarchical Inheritance. TCC and LCC should

be one for highly cohesive and effectively designed code.

According to these results this is we want to show that there is

also discrepancy in types of Inheritance and quality of design

vary with type of Inheritance. According to this research use

of hierarchical inheritance should be avoided and using

Interfaces for better design and due to its good results with

TCC, LCC LCOM1 an LCOM4. In future this topic can be

extended by working on the concept of overloading and

overriding of methods and use of public, private, protected

and internal members of class.

6. REFERENCES
[1] Aine Mitchell’s ” An Empirical Study Of Run-Time

Coupling And Cohesion Software Metrics” 2005

[2] Danial C. Halbert And Patrick D. O’brian’s “Using Type

And Inheritance In Object Oriented Metricss”

[3] Safwat M. Ibrahim, Sameh A. Salem, Manal A. Ismail,

And Mohamed Eladawy’s “Identification Of Nominated

Classes For Software Refactoring Using Object-Oriented

Cohesion Metrics”, Ijcsi International Journal Of

Computer Science Issues, Vol. 9, Issue 2, No 2, March

2012

[4] M.V.Vijaya Saradhi 1 B.R.Sastry “A Quality Indicator For

Software Interoperability”, International Journal Of

Engineering Science And Technology Vol. 2(7), 2010,

2587-2594

[5] G. Sri Krishna And Rushikesh K. Joshi’s “Inheritance

Metrics: What Do They Measure?”

[6] Serge Demeyer And St´Ephane Ducasse’s “Metrics, Do

They Really Help?”

[7] Seyyed Mohsen Jamali’s “Object Oriented Metrics”

[8] Ferderick T. Sheldon, Kshamta Jerath And Hong Chung

“Metric For Maintainability Of Class Inheritance

Hierarchy”

[9] Alan Snyder’s “Encapsulation And Inheritance In Object-

Oriented Programming Languages”

[10] Ferid Cafer‘S “Estimating Complexity Of A Software

Code”

[11] Randy Charles Morin’s “Oop Concepts By Example”

[12] Kenneth Baclawski And Bipin Indurkhya’s “The Notion

Of Inheritance In Object-Oriented Programming”

[13] Al Lake’s “Use Of Factor Analysis To Develop Oop

Software Complexity Metrics”

[14] Letha Etzkorn, Carl Davis, And Wei Li “A Statistical

Comparison Of Various Definitions Of The Lcom

Metric”

[15] Luca Cardelli’s “A Semantics Of Multiple Inheritance”,

Information And Computation 76, 138-164,1988

[16] Dirk Beyer, Claus Lewerentz And Frank Simon’s

“Impact Of Inheritance On Metrics For Size, Coupling,

And Cohesion In Object Oriented Systems”

[17] E Da-Wei’s “The Software Complexity Model And

Metrics For Object-Orient

IJCATM : www.ijcaonline.org

