
International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.17, September 2013

19

An Efficient Approach to Keystroke Saving

for the Blinds

Bharat Kapse

G. H. Raisoni College of Engineering (MS),
India.

Urmila Shrawankar

G. H. Raisoni College of Engineering (MS),
India.

ABSTRACT

Today many computer applications are available for the

Blinds to interact with computer systems. Although computer

interaction through keyboard is time consuming for visually

impaired, their efforts can be minimized. Keystroke

minimization or Keystroke saving is one of the approaches in

minimizing the efforts of Blinds. The paper describes the

work to achieve Keystroke saving. As the word prediction

requires large database, in this work set of domain specific

databases are constructed, where each domain database

contains thousands of most commonly used words of that

domain. It also construct prefix tree dynamically by

modifying the Trie data structure. This dynamic prefix tree

structure is used to perform prefix matching. The prefix

matching is then analyzed to predict the required words from

several domain specific databases used in this work. The

paper describes the implementation and working of prefix

matching and word prediction. The work presented in the

paper is particularly useful for the blinds, as the work has

considered all the difficulties of Blinds in interaction to

computer through keyboard.The results of word prediction

using modified trie are improved than trie based

implementation.

General Terms

Human Computer Interaction, Data Structure.

Keywords

Keystroke saving, Word prediction, prefix matching, Trie,

Domain database

1. INTRODUCTION
Today, the increasing pace in technology is fulfilling the

needs of all users, including the Blinds. Over the years several

researches have been carried out by Human Computer

Interaction to develop the applications for the Blinds [4]. A

portable e-book reader for the blinds is one of them given by

Ramiro Vel’azquez [2].

This paper explains the working and implementation of

Keystroke minimization system. The input to the system is

prefix value entered by Blind users. Braille keyboard [1] is the

important contribution for the blinds to interact with computer

system. For each entered letter, the system forms the prefix by

appending each letter. When the minimum possible prefix

value is formed, the system predicts all the possible words,

corresponding to entered prefix value. The mechanism by

which words are predicted is called as Word Prediction.

Keystroke Minimization system achieve it by implementing

Prefix matching mechanism.

Nowadays, an auto complete feature is found in most text

editors, in a large variety of browsing GUIs, for example, in

browsers, in the Microsoft Help suite, or when entering data

into a web form. The auto complete minimizes the keystrokes

by predicting the required words. Recently, auto completion

has been integrated into a number of (web and desktop) search

engines like Google. Most of the above mention applications

are using longest common subsequence approach, described

by Bergroth [6].

To measure the ideal performance of the system, it considers

the interaction by perfect user that never makes typing

mistakes and will select a word from the predictions as soon

as it is synthesized. The work has also considered the issue of

time consumption in the selection of second or third word

when predicting multiple words.

Although the system considers an ideal user interaction, word

predictive interface designing is a complicated task. One of

the features of Auto complete is the Inline word replacement.

This work does not implement inline mechanism because the

system users are visually impaired.

The utilization of digital resources [3] has started when the

Braille language was developed by Louis Braille for the

Blinds. Braille language is the best medium for the visually

impaired to get the content in readable form. The development

of speech synthesizer [5] was the major contribution in text to

speech conversion.

The next section (II) describes the comparative study of prefix

matching techniques. System architecture of the project is

described in Section-III. Section-IV describes the

methodology used in the project work.

Implementation details are explained in section-V. Section VI

discusses the results obtained in the project implementation.

Project conclusion is mention in Section VII.

2. COMPARITIVE STUDY OF PREFIX

MATCHING TECHNIQUES
Previous section has explained the need and importance of

word prediction system, as well as given the brief introduction

of the work.

This section briefly categorizes the prefix matching

techniques which were reviewed in the previous paper “prefix

matching for keystroke minimization using B+ tree” [17]. The

section also provides the analysis of various prefix matching

techniques.

2.1 Prefix Matching
Prefix is nothing but the initial substring of a word. When the

prefix is matched the word associated with that prefix is

considered to be the desirable word. All the string matching

techniques are also applicable for prefix matching. Also there

are some special data structures designed for the prefix

International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.17, September 2013

20

matching. This section describes them one by one. The prefix

matching can be done by following two approaches.

 Fixed Length Prefix Matching

 Variable Length Prefix Matching

2.1.1. Fixed Length Prefix Matching
In the fixed length prefix matching, the prefix length is kept

fixed and then the matched is performed. This type of

matching can be performed using indexing mechanism

efficiently. The indexing mechanism also takes the help of

Hash functions to generate the indexes. Many tree

technologies come under fixed length prefix matching. The

following are some commonly used approaches.

i. Rabin Karp Algorithm

Rabin-Karp string searching [7] algorithm calculates a

numerical (hash) value for the pattern p, and for each m-

character substring of text t. Then it compares the numerical

values instead of comparing the actual symbols. If any match

is found, it compares the pattern with the substring by naive

approach. Otherwise it shifts to next substring of t to compare

with p.

ii. Best Matching Prefix

In this approach hash values are used in the form of prefixes

and hence hash tables are created. Binary search mechanism is

used in searching the required prefix as the hash tables are

sorted.

Adding or deleting a single prefix can change the BMP [8]

values of a large number of markers, and hence updating the

forwarding table are expensive in the scheme.

2.1.2. Variable Length Prefix Matching

In the variable length prefix matching, the prefix length is not

fixed and the match is performed depending on the number of

words are associated with that prefix. This type of matching

can be performed using Tree based mechanism efficiently.

The Tree techniques are quite efficient and allow us to vary

the length of prefix dynamically.

Many tree technologies can be configured to perform variable

length prefix matching. The following are some commonly

used approaches

i. Leaf-attaching

ii. Binary Search Tree

iii. Arbitrary length string matching

iv. Dynamic m-way prefix tree

v. TRIE structure

i. Leaf-attaching [8] algorithm takes a prefix tree as the

input, and outputs a set of disjoint patterns. All the child

(or non-leaf) patterns are merged with their parent (or

leaf) patterns. Note that a pattern can be the child

(prefix) of more than one parent pattern.

ii. In this approach, a memory efficient data structure based

on a complete binary search tree (BST) [9] is presented.
Each node in the BST includes a pattern and a match

vector. With the corresponding BST built, the string

matching is performed by traversing left or right,

depending on the result of the comparison at each node.

iii. In this approach, the resulting prefix-patterns and suffix-

patterns are merged into a split-pattern database, or

dictionary. A prefix tree [10] is built for this database.

The prefix tree is then leaf-attached and the leaf-patterns

are extracted into a set of disjoint patterns.

iv. DMP tree [11] is a superset of B-tree. DMP tree does not

support the repetition of pointers. To search all strings

with the specified prefix, DMP tree applies all string

search procedure. In the DMP tree all the prefixes of the

data strings are at higher level. DMP tree support both

the Longest Prefix Match [12] and Shortest Prefix Match

approaches. DMP tree overcomes the worst case time

complexity of Binary prefixes [13].

v. A Trie [15] is a data structure that allows strings with

similar character prefixes to use the same prefix data and

store only the tails as separate data. One character of the

string is stored at each level of the tree, with the first

character of the string stored at the root.

2.2. Analysis of Techniques

2.2.1. Advantages of Fixed Length Prefix

Matching

 Same amount of time is required to predict any word.

 Searching is faster because of indexing and hashing

mechanism.

 Fixed length prefix matching can be implemented with

any tree mechanism.

2.2.2. Limitations of Fixed Length Prefix

Matching

 Fixed amount of keystroke saving percentages, which are

high compare to variable length prefix matching.

 Efficiency is reduced when too many words are available

for the single prefix.

 Complexity increases when number of word increases.

2.2.3. Advantages of Variable Length Prefix

Matching

 Words are predicted with high keystroke saving

percentages.

 Variable length prefix matching provides flexibility in

word prediction list.

 Updating of words does not increase the complexity.

In the prefix matching approaches variable length prefix

matching is best suitable for word prediction. TRIE is the data

structure designed to perform prefix matching by forming

prefix tree [14]. TRIE has several advantages over other tree

structures, particularly for variable length prefix matching.

With the advantages TRIE has some possible limitations.

International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.17, September 2013

21

2.2.4. Limitations of TRIE

 No count of words associated with prefix node.

 Extra searching over link of nodes.

 Missing linking to previous node.

The limitations of TRIE are the scope for further

improvement in word prediction system. The modified TRIE

structure which overcomes these limitations can be helpful to

speedup word prediction, which will indirectly reduce the

time required in word prediction.

3. SYSTEM ARCHITECTURE

The previous section has explained the need to develop

keystroke minimization system for the Blinds. This section

describes system architecture and also explains the

functioning of each mechanism used in the project work.

Fig 1: System Architecture for Keystroke Minimization

The project work is mainly divided into two parts.

 Keystroke Minimization System

 History Checking Mechanism (HCM)

 Keystroke Minimization System

3.1.Keystroke Minimization System

The Keystroke Minimization System is implemented using

Keyboard Interface Mechanism, History Checking mechanism

and the Domain Analyzer mechanism.

 The Keyboard Interface Mechanism accepts prefix

values from the Braille keyboard.

 The History checking mechanism predicts the word

using history words.

 DA mechanism is used to select the domain specific

database which is further used to build the prefix tree.

Keystroke Minimization system is integrated with Speech

Synthesizer which synthesizes the predicted word by making

the use of system sound. It is using the concept of dictionary

adaptive speech driven interface.

Speech Synthesis is a mechanism which reads the text input

and translates it into the audio output. By using the Speech

Synthesizer user can listen any document like a speech. The

implementation of architecture requires the use of

methodologies. The next section describes the methodologies

used in the system implementation.

The two important mechanisms implemented in this system is

explained below.

3.1.1. History Checking Mechanism (HCM)
History Checking Mechanism (HCM) maintains and controls

the history words used by the user in Keystroke minimization

approach. The HCM not only keeps the history words but also

contribute in word prediction by using efficient Binary search

methodology [16]. HCM maintains the priority queue to store

the words, where the priorities are assigned on the basis of

frequency of occurrence of a particular word.

The words in the priority queue are updated as the size of

queue is fixed. Queue is updated by replacing the words based

on “Least recently used” policy. The History Checking

Mechanism is based on the following criteria.

 If there is only one word for the entered letter then it is

the predicted word.

 If there is more than one word for the single letter then

return only one word with the criteria of most recently

used and smallest in length. And put the other words in

the wait queue,

The wait queue is priority queue which keep the most recently

used words by considering the length of the word.

3.1.2. Domain Analyzer Mechanism (DA)

Domain Analyzer is a special design provides the guidelines

to find a substring match related to specific domain. Domain

analyzer not only provides the domain specific match but also,

it speeds up the substring match by reducing the searching

area.

4. METHODOLOGY USED

The limitations of best available methodology motivate the

research work to improve the efficiency and performance of a

system. If the limitations are overcome by modifying the

existing structure with improved performance, then the

research is successful.

In the analysis of methodologies TRIE is found to the best

available methodology.

The limitations of TRIE methodology are the scope for further

improvement in word prediction system. The modified TRIE

structure which will overcome these limitations can be helpful

to speedup word prediction, which will indirectly reduce the

time required in word prediction. The project names this

modified TRIE as Dynamic Prefix Tree mechanism.

The main research contribution in this project is the design of

Dynamic Prefix Tree, which is a modified version of TRIE. It

overcomes the limitations of TRIE and improves the Word

prediction performance. The DPT is described as follows.

International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.17, September 2013

22

4.1 DPT based Prefix Matching
All the String matching techniques mentioned in section 2 or

other available can be used as a prefix matching techniques.

Here also the work implements most commonly used prefix

matching technique by modifying according to the system

requirement. This work implements prefix matching using

modified “prefix tree”, also give the name as “dynamic prefix

tree” and compares it with the prefix matching using B+ tree

[12] and prefix tree. This section explains the modified prefix

tree structures as follows.

Dynamic Prefix Tree: Dynamic Prefix Tree (DPT) is shown in

fig.3. DPT is a modified form of prefix tree. DPT is designed

here especially for the word prediction for Braille users. But

this modified structure can be used for other systems also. The

only difference between Prefix tree and the BPT is the storage

structure.

Fig 2: Dynamic Prefix Tree for the dataset shown in table

1.

In DPT links do not contain the character value of linked

nodes in alphabetical order, where as it contains the link on

first come first served basis.

DPT also contains the storages for the links but the node

character value is stored in the link sequentially and not

according to character position as shown in the fig.2.

Next section describes the implementation work of Keystroke

minimization system

5. IMPLEMENTATION

The Keystroke minimization system is entirely focused on

Blind users. The system achieves word prediction using prefix

matching methodology. Prefix matching is implemented by

optimizing the “prefix tree”. Prefix tree is the most commonly

used methodology in word completion.

The project constructs a database of more than 3000 words

which are most commonly used. These words are retrieved

from standard dictionary web sites. The prefix tree is modified

to further reduce the time required for the word prediction.

This work accepts minimum possible keys to predict the

word.

This approach provide maximum of three options to select the

predicted word. These maximum three words are chosen from

the retrieved word through database by considering their word

rating.

5.1 History Checking Mechanism

Fig 3: Priority Queue structure for HCM

The history checking mechanism is implemented in several

small tasks, which are described as follows:

5.1.1. HCM range search
The HCM keep the recently predicted words in alphabetical

order and there can be multiple words started with same letter.

Hence range of predicted words is decided through the binary

search, by using the following algorithm.

ALGORITHM 1. HCM Range Search

Input: The algorithm accepts values for low1, low2, high1,

high2, mid.

Output: Most frequently used word which contains the entered

prefix.

repeat until low1 is less than or equal to high1

if low1=high1,

high1=mid-1;

else,

if low1>high1

low1= mid+1;

end

repeat until low2 is less than or equal to high2

if low2=high2,

high1=mid-1;

else,

 if low2>high2

low2= mid-1;

end

The algorithm Range_Search is implemented to get the list of

history words from history database. The algorithm range

search implements nested binary search mechanism, where for

every character match the search area becomes half of total

area. As shown in the figure, algorithm first locates the range

of all the words and then it searches for the prefix match in

the found range.

When the range search is completed, we get the list of most

predicted words. The list has a lower end and an upper end.

A

A …

B

A D N O R U C …

C

A C …

N …

N D N O R U C

D … I … O … L … U … S … I …
D

A … I O

C … R … L U S I

A I … P … E … D …

N … C R

A … M … I P E D

N S … T … D … E …

E … A M

T … A … S T D E
E H … L … … N …

D … T A

E I … L … H L N

D I E … Y … T …

… E O … L

D … … E Y T

O D … … …
D N …

… D

N …

…

International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.17, September 2013

23

Fig 4: Working of HCM range search

5.1.2. HCM Prefix Matching

 When the user enters 1st letter of the prefix value, the

letter position is identified in the priority queue as shown

in fig 3. Here it is referred as first match.

 Then for the next (2nd) letter of the prefix (depending on

the number of words for the particular prefix), range

search is done which identify the words which are to be

predicted. This range search identifies low and high

region for the prefix matching.

 When user enters the 3rd prefix value, maximum of three

words are selected out of the searched range by

considering the priority of the word.

 Finally the selected three words are synthesized through

speech synthesizer. The words are spoken one by one to

the user in the form of choice.

In the History Checking Mechanism following parameters are

used.

 HCM count: is the approximate value in history

checking mechanism, calculated by counting total

number of correct predicted words from a particular

domain.

 Domain num: is a variable: contains the value 1 if the

last predicted word is from domain 1. It contains value 2

if last predicted word is from domain 2 and same for 3.

 Session rating: decides which domain is currently in use.

It is given from the title rating and maximum num of

keywords used in particular domain.

5.2 Domain Analysis and Word Prediction

Fig 5: Design of DA Mechanism

Domain Analyzer is the mechanism where the complete

database is connected. The database is split into three

domains. The role of domain analyzer is the selection of a

particular domain to build the prefix tree. In Domain Analyzer

some priorities are set for the selection of domain. Domain

analyzer receives the feedback from history checking

mechanism to select the proper database.

ALGORITHM 2. Word Prediction

Input: alphabet, tree root node, current node.

Output: list of predicted words.

1. repeat until all links of the current node are checked.

 if user letter=letter of current link,

 link to subtree;

 go to step 2;

 else,

 move to next link;

 end

2. if sub tree count>3

wait for next user letter;

 else,

 retrieve all the words of sub tree with their word

rating and store it into

 priority queue;

 else,

 retrieve top two words;

 end

Word prediction algorithm implementation require following

sub tasks to be performed. These are:

 Words Retrieval

 Tree Building

 Prefix Matching

 Word Pronunciation

5.2.1. Words Retrieval
When the Braille user enter the first letter of the word, this

letter is given to getWord() function. The function getWord()

retrieve all those words from database which are started with

the user entered letter. These words are stored in the “word

log file”. This word log file is then further use for the tree

building.

International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.17, September 2013

24

5.2.2. Tree Building
In this project we are modifying prefix tree to build at run

time and also to save unnecessary comparisons. This dynamic

prefix tree is built when the first letter is entered by the user.

Dynamic prefix tree overcome the problem of unnecessary

comparison after prefix match to extract the remaining

characters.

In the prefix tree after the prefix matched is done, all the links

of the current node of prefix are checked to retrieve the

remaining characters of the different words. This checking is

done 26 times for each node. This overwork is reduced by

dynamic prefix tree.

In the dynamic prefix tree, we are keeping 26 links and one

separator. The separator will move from left to right

depending on the number of entries.

It is observed that, for the four character prefix, very few

numbers of words are predicted. This number may go up to 7

or 8. In such situation if we provide random linking by storing

the links as first come must get first position, then

unnecessary checking of remaining links is avoided, as we

know that before separators, all links are available.

5.2.3. Prefix Matching
Following is the procedure to form prefix tree:

i. Node Creation

In this step node is created for every character of the word.

Each node has 10 link elements and one data element. The

data element stores the character for which the node is created

and the link element keeps the position for each upcoming

node to be connected to the current node.

As we have total 10 links so the each pointer will point to 10

different nodes.

ii. Node Linking

This method runs for each next word to be connected in the

prefix tree. When Build tree function gets the word, it first

extracts all the characters from the word and then check each

character for the match with the previous nodes available in

the sub-tree tree. If available, the current character is skipped.

If the same character is not available in the sub-tree then new

node is created with the current character.

5.2.4. Word Pronunciation
Word pronunciation task is accomplished by customizing

speech synthesizer. The speech synthesizers are most

commonly used tools in text to speech converters. The project

customizes Free TTS which is developed in java.

6. RESULTS & DISCUSSION

The work implements Word Prediction by following two

ways.

6.1 Word Prediction using B+ Tree

The part of this work is presented in the previous paper

“Word Prediction using B+ Tree for Braille Users” [18]. In

the B+ tree based implementation we get the following results

for each of the technique.

Table 1: Database Structure for word retrieval

Sr .No. Word

Word

Rating

Initial

Prefix

1 ABANDON 5 A

2 ABANDONED 3 A

3 ABDICATED 2 A

4 ABDICATION 2 A

5 ABNORMAL 5 A

6 ABOLISH 5 A

7 ABOLISHED 3 A

8 ABRUPT 5 A

9 ABRUPTLY 4 A

The above table shows the database structure for the B+ tree.

Num field shows the serial number of the word stored in the

database. It is auto generated number. Word field contains all

the commonly used words of length greater than or equal to 5

characters. Wr field shows the word rating of each word

stored in the database.

At the time of word prediction, multiple words are arranged

according to their wr and words with higher word rating are

predicted first. Prefix field contains the name of first letter of

the word. This field is necessary to create dynamic prefix tree.

When the first letter is hit by the user, all the words of that

letter are retrieved by the use of prefix field.

Indexing mechanism [17] is used to speed up access to desired

data. The simple example is the author catalogue in Library.

When indexing need to be used in place of prefix value, to

match the strings, unique index generation is really a

challenging task. Here we present prefix indexing technique

designed by using bitwise X-OR operation.

Function getIndex() initially performs the X-OR operation

between two initial characters, then the result is shifted by 4

bit position using bitwise left shift.

Fig 6: Results of prefix index generation

Fig 6 shows the generation of prefix indexes. As discussed

earlier, the X-OR operation is performed to generate unique

indexes for unique prefix value.

The above indexes are generated by considering 4 character

prefix value.

Getting Word=bankrupt

After X-OR between 1st and 2nd character index value=3

After left shift of result index value=48

After X-OR between result and 3rd character index

value=94

After left shift of result index value=24064

After X-OR between result and 4th character index

value=24171

For the String: bankrupt, index=24171

Getting Word=bankruptcy

After X-OR between 1st and 2nd character index value=3

After left shift of result index value=48

After X-OR between result and 3rd character index

value=94

After left shift of result index value=24064

After X-OR between result and 4th character index

value=24171

For the String: bankruptcy, index=24171

Getting Word=barred

After X-OR between 1st and 2nd character index value=3

After left shift of result index value=48

After X-OR between result and 3rd character index

value=66

After left shift of result index value=16896

After X-OR between result and 4th character index

value=17010

International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.17, September 2013

25

Fig 7: Results of B+ tree generation

The process of B+ tree generation is shown in fig 7. The result

shows the node structure. The brackets indicate the node size

and comma separates the node keys. The single node can

contain any number of keys. It depends on the amount of

element to be stored in the B+ tree.

The fig. 8 shows the results of word prediction using B+ tree

when the user enter the prefix value. From the user entered

prefix, prefix index is generated. This generated index is

searched for the match over the generated B+ tree.

Fig 8: Results of word prediction using B+ tree

When the match is found, all the words from database which

are linked to the matched index are retrieved. As the database

table contains only 3 words for the entered prefix, total

numbers of found words are also 3 and predicted words are

also 3. In case where number of words found are more than 3,

top 3 words are predicted based on their word rating stored in

the database with respective words.

6.2 Word prediction using Dynamic Prefix

tree
In the Dynamic Prefix Tree based implementation we get the

following results for each of the technique.

The database structure of Dynamic Prefix Tree is same as

shown in table.1.

Fig 9: generated Dynamic prefix tree for day-to-day

database structure

Fig.9 shows the dynamic prefix tree formed for the initial

prefix ‘a’. The look of the dynamic prefix tree is same as that

of prefix tree, the modification is only in the internal structure.

If we take the example of prefix “barr”, there are three words

associated with this prefix as per the above tree. These words

are “barred”, “barrier” and “barriers”. The word “barred” with

highest word rating is synthesized first.

Fig 10: log file contains retrieved words from database

Fig10 shows the list of words stored in the word log file.

These are the words which are retrieved from the database for

the prefix letter ‘a’. Dynamic prefix tree is formed by reading

this file. The word log file is maintained to avoid the

repetition of tree building for the same prefix.

Fig 11: log file of predicted words

Fig 11 shows the log file which contains all the predicted

words synthesized for the Braille users. These words are then

stored in the history log file so that history mechanism can

help in prediction of most commonly used words.

Accomplished

Bankruptcy

Adjourned

ABANDON

ABANDONED

ABDICATED

ABDICATION

ABNORMAL

ABOLISH

ABOLISHED

ABRUPT

ABRUPTLY

ABUSE

ABUSED

ACCIDENT

ACCIDENTAL

ACCOMPLISH

ACCOMPLISHED

ACCOMPLISHES

ACCUSATION

ACCUSED

ACHIEVE

ACHIEVEMENT

ADJOURN

ADJOURNED

ADMISSION

ADULTERATE

ADULTERATED

ADVANCEMEN

ADVANCES

ADVANTAGE

ADVANTAGES

ADVERSE

AFFIDAVIT

AGAINST

AGGRAVATE

AGGRAVATED

ALLEGATION

ALLEGATIONS

ALLIANCE

ALMOST

ALTERATION

AMBIGUITIES

AMBIGUITY

AMENDABLE

AMENDED

b a n k r u p t

 t c y

 a r r e d

 r i e r

 r s

 b e a u t i f u l

 e l i e v e

 e d

 e n e f i c i a l

 i t

 t e d

 e t t e r

 b o o s t e d

 o t t l e n e c k

 o y c o t t

 b r e a c h

 h e d

 a k

 k d o w n

 k t h r o u g h

 r i b e

 e d

 i d g e

 i l l i a n t

 r o k e n

 b u r d e n

Total Keys=40

Entered Prefix=acco

For the prefix acco index=17263

word=accomplish

word=accomplished

word=accomplishes

Time taken to predict the word= 125 ms

Total number of words found=3

Predicted Words are

word1=accomplish

word2=accomplished

word3=accomplishes

Entry[24171,]

Entry[24171,]

Entry[17010,24171,]

Entry[17010,24171,]

Entry[17010,24171,]

Entry[4469,17010,24171,]

Entry[4469,7273,17010,24171,]

Entry[4469,7273,17010,24171,]

Entry[4469,7273,7781,17010,24171,]

Entry[4469,7273,7781,17010,24171,]

Entry[4469,7273,7781,17010,24171,]

Entry[1140,4469,7273,7781,17010,24171,]

Entry[1140,4469,7273,7781,17010,24171,49011,]

Entry[1140,4469,7273,7781,17010,24171,42100,49011,]

Entry[1140,4469,7273,7781,17010,24171,42100,43363,4901

1,]

Entry[24171,]

 Entry[1140,4469,7273,7781,17010,]

 Entry[24171,42100,43363,49011,91489,]

International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.17, September 2013

26

Fig 12: log file of prefix values entered by user

Process log file contain all the prefix values entered by the

Braille users. This file is used to calculate the keystroke

saving and for the selection of domain.

Fig 13: word prediction results using dynamic prefix tree

Complete results of dynamic prefix tree are shown in fig. 13.

It illustrates the total working process of word prediction

system.

7. COMPARISION OF RESULTS
Fig.14 shows the graph with prediction time in mili seconds.

B+ tree takes much time in generating prefix index and in

matching the prefix index over B+ tree as compared to prefix

and dynamic prefix tree.

Dynamic prefix tree is little faster than Trie as it is modified,

which is discussed earlier. The number of nodes and number

of word predictions are same in Trie and dynamic prefix tree,

but the architecture is little modified.

8. CONCLUSION

 Keystroke Minimization System achieves word prediction

in 3 to 4 keystrokes. That means whether the words are 8-

10 characters long the user will take the effort to type only

3 to 4 characters. This clearly indicates that at least 50%

efforts of keyboard users are minimized.

 This system saves on an average 3.5 keys behind every

word for Braille users. Although some words are smaller in

length, because of high percentage of keystroke saving, the

work saves many keys on an average.

 On an average Keystroke saving percentage is between 50-

55 %. As the system saves much keystrokes, the saving

percentage are good with the consideration of length of

prediction list. The saving percentage also analyzes the

effort reduction. It also helps in calculating the time

requirement in preparation of written documents. Although

the percentage saving is not on higher side, but the system

will maintain the performance after many user interaction.

In comparison with the existing approaches length of

prediction list is very much reduced. This indirectly save

the user time selecting the predicted word.

 The database is built with the correct lexicon, which

provides the user prediction of words with 100% correct

spelling. This is particularly an additional benefit to the

user as it needs not to worry about spelling mistakes. It has

been seen over the years that many research publications or

articles are rejected due to spellings mistakes. So the user

interacting with computer through Word Prediction can

help in getting correct words.

 The dynamic nature of tree generation helps in avoiding

complexity issues of run time updations. This ultimately

maintains the consistency of system performance,

independent of size of lexicon. The second advantage of

dynamic nature is the processing of database queries.

Database queries can be fired after user finishes its

interaction.

9. FUTURE SCOPE
Although Project results are improved, following parameters

can be addressed in future study. These are,

 Bi-gram Lexicon

 N-gram Lexicon

 Corpus Study

 POS Study

If these issues are implemented & configured in the current

system, better results may be obtained.

10. REFERENCES
[1] Guerreiro, T., Lagoa, P., Nicolau, H., Goncalves, D., and

Jorge,J.A., “From Tapping to Touching: Making Touch

Screens Accessible to Blind Users”, IEEE Multimedia,

pp.48-50,October 2008.

[2] Ramiro Vel´azquez, Hermes Hern´andez, and Enrique

Preza, “A Portable eBook Reader for the Blind”, 32nd

Annual International Conference of the IEEE EMBS

Buenos Aires, Argentina, August 31 - September 4,

2010.

[3] Pradeep Manohar, Aparajit Parthasarathy, “An

Innovative Braille System Keyboard for the Visually

0
5

10
15
20
25
30
35
40
45
50

ti
m

e
 in

 m
s

word lengths

Time vs number of characters

 B+Tree

Prefix

Tree

DPT

Total Nodes=76

Entered Prefix=acco

Number of predicted words=3

For the prefix acco

word=accomplish

word=accomplished

word=accomplishes

Time taken to predict the word =5779276 ns

The word accomplished is spoken

User switches to other word

The word accomplish is spoken

User switches to other word

The word accomplishes is spoken

Selected word=accomplishes

acco

bank

adjo

Fig 14: log file of Graph of comparison of

different word prediction techniques.

International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.17, September 2013

27

Impaired”,11th International Conference on Computer

Modelling and Simulation,UKSim 2009.

[4] Bergroth, Lasse ; Hakonen, Harri ; Raita, Timo,"A

survey of longest common subsequence algorithms",

Seventh International Symposium on String Processing

and Information Retrieval, SPIRE 2000.

[5] Coutinho, Luis Rodolfo Reboucas Girao, Anaxagoras

Maia, Frota, Joao Batista Bezerra; Silva Jr., Elias

Teodoro, “Device to documents”, 2012 Brazilian

Symposium on Computing System Engineering.

[6] Shirbahadurkar, S. D. ; Bormane, Dattatraya S. ; Kazi, R.

L, “Subjective and Spectrogram Analysis of Speech

Synrhesisizer for Marathi TTS Using Concatenative

Synthesis”, 2010 International Conference on Recent

Trends in Information, Telecommunication and

Computing (ITC).

[7] Robert Sedgewick and Kevin Wayne, “Algorithms 4th

edition” , 2012.

[8] Y.-H. E. Yang and V. K. Prasanna, “Memory-efficient

pipelined architecture for large-scale string matching”, In

FCCM, 2009, pages 104 –111, april 2009.

[9] V. Srinivasan and G. Varghese, “Fast address lookups

using controlled prefix expansion”, ACM Trans.

Comput. Syst., 17:1–40,1999.

[10] Hoang Le, Viktor K. Prasanna, "A Memory-Efficient and

Modular Approach for Large-Scale String Pattern

Matching," IEEE Transactions on Computers, vol. 62,

no. 5, pp. 844-857, May 2013

[11] Nasser Yazdani, Hossein Mohammadi, “DMP-tree: A

dynamic M-way prefix tree data structure for strings

matching”, Advances in Computing Systems Science and

Engineering, Volume 36, Issue 5, September 2010, Pages

818–834.

[12] Bayer R, McCreight C, “Organization and maintenance

of large ordered indexes”, Acta Inform 1972;1(3):173–

89.

[13] Yazdani Nasser, Min Paul S, “Fast and salable schemes

for IP lookup problem”, in: Proceedings of the IEEE

conference high performance switching and routing,

Heidelberg Germany; 2000.

[14] Black, Paul E, “"Trie" , Dictionary of Algorithms and

Data Structures”, National Institute of Standards and

Technology, Archived from the original on 2010-05-19.

[15] Yazdani Nasser, Min Paul S. “Prefix trees: new efficient

data structures for matching strings of different lengths”,

In Proceedings of the IEEE database engineering

conference (IDEAS 01). Grenoble, France; July 2001.

[16] R ramakrishnan and J. Gehrke , “Database Management

Systems”,3ed,2009.

[17] Urmila Shrawankar, Bharat Kapse, “ Prefix Matching for

Keystroke Minimization using B+ Tree”, IEEE 8th

International Conference on Computer Science &

Education. Colombo, Sri Lanka, April 2013.

[18] Bharat Kapse, Urmila Shrawankar, “ Word Prediction

using B+ Tree for Braille Users”, IEEE 2nd SCES,

Allahabad, India, April 2013.

IJCATM : www.ijcaonline.org

http://www.sciencedirect.com/science/journal/00457906/36/5
http://www.webcitation.org/5pqUULy24
http://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
http://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
http://www.nist.gov/dads/HTML/trie.html

