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ABSTRACT 

A finite element method involving Galerkin method with 

quartic B-splines as basis functions has been developed to 

solve a general fifth order boundary value problem. The basis 

functions are redefined into a new set of basis functions which 

vanish on the boundary where Dirichlet type of boundary 

conditions and Neumann boundary conditions are prescribed. 

The proposed method was applied to solve several examples 

of fifth order linear and nonlinear boundary value problems. 

The solution of a non-linear boundary value problem has been 

obtained as the limit of a sequence of solution of linear 

boundary value problems generated by quasilinearization 

technique. The obtained numerical results are compared with 

the exact solutions available in the literature.   
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1. INTRODUCTION 
In this paper, we consider a general fifth order linear 

boundary value problem given by  
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xyxaxyxaxyxaxyxa
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subject to boundary conditions 

21100 )(,)(,)(,)(,)( AcyCdyAcyCdyAcy       (2)             

where A0, C0, A1, C1 and A2 are finite  real constants and a0(x), 

a1(x), a2(x), a3(x), a4(x), a5(x) and b(x)  are all continuous 

functions defined on the interval [c, d].  

Generally, this type of fifth order boundary value problem 

arises in the mathematical modeling of viscoelastic fluids and 

other branches of mathematics, physical and  engineering 

sciences [1, 2]. The existence and uniqueness of the solution 

for these problems have been discussed in Agarwal [3]. 

Solving such boundary value problems analytically is possible 

only in very rare cases. So, many numerical methods have 

been developed overs the years to approximate the solution  

for these type of boundary value problems. Some of the 

already established methods are Finite difference method, 

Homotopy analysis method, Optimal homotopy analysis 

method, Spectral shifted jacobi tau and Collocation method, 

Variation of parameters method, Variational iteration method, 

Homotopy perturbed method, Residual correction method,  

Local polynomial regression method, Decomposition method, 

Sinc Galerkin method, Adomain decomposition method  etc. 

In the following, the attention is paid to the spline functions 

technique which has been developed to solve these type of 

boundary value problems. Davies A.R et al. [1, 2] were 

developed two numerical techniques namely, Spectral 

Galerkin and Spectral Collocation methods to solve fifth order  

boundary value problems, Fyfe [4] used spline functions to 

solve fifth order boundary value problems, who used quintic 

polynomial spline functions to develop consistency relation 

connecting the values of solution with fifth order derivative at 

the respective nodal points, Siddiqi et al. [5] presented the 

solution of special case of fifth order boundary value 

problems  by using quartic spline functions, Siddiqi  and 

Gazala [6,7] presented the solution of special case of fifth 

order boundary value problems  by using sextic polynomial  

and non-polynomial spline functions respectively,  Rashidinia 

et al. [8, 9] developed the solution of fifth order boundary 

value problems with mixed boundary conditions and 

boundary conditions of the type (2) by using sextic B-spline 

Collocation method and non-polynomial sextic spline off step 

method respectively, Caglar et al. [10] developed the solution 

of special type of fifth order boundary value problems by  

Collocation method with sixth degree B-splines, Siraj ul-Islam 

and Muhammad Azam Khan [11] presented the solution of 

special case of fifth order boundary value problems by using 

sextic spline functions,  Feng-Gong Lang and Xiao-Ping Xu 

[12, 13] developed the solution of special case of fifth order 

boundary value problems by using cubic and quartic B-spline 

Collocation methods respectively, Lamnii  et al. [14] applied  

sextic B-spline Collocation method to solve special case of 

fifth order boundary value problems, Kasi Viswanadham and 

Murali krishna [15] developed the quintic B-spline Galerkin 

method to solve special case of fifth order boundary value 

problems, Kasi Viswanadham and Showri raju [16, 17] 

developed the  cubic and quartic B-spline Collocation 

methods to solve fifth order boundary value problems, Kasi 

Viswanadham et al. [18] developed the sextic B-spline 

Collocation method to solve special case of fifth order 

boundary value problems. So far, fifth order boundary value 

problems have not been solved by using Galerkin method 

with quartic B-splines. This motivated us to solve a general 

fifth order boundary value problem by Galerkin method with 

quartic B-splines. 

In this paper, the aim is to present a simple finite element 

method which involves Gelerkin approach with quartic B-

splines as  basis functions to solve a general fifth order two 

point boundary value problem of the type  (1)-(2). This paper 

is organized as follows. Section 2, deals with the justification 

for using Galerkin Method, In Section 3, a description of 

Galerkin method with quartic B-splines as basis functions is 

explained. In particular the definition of quartic B-splines has 
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been presented and followed by the proposed method with 

subject to boundary conditions. In Section 4, the procedure to 

solve the nodal parameters has been presented. In section 5, 

the proposed method is tested on several linear and nonlinear 

boundary value problems. The solution to a nonlinear problem 

has been obtained as the limit of a sequence of solution of 

linear problems generated by the quasilinearization technique 

[19]. Finally, in the last section, the conclusions are presented. 

2.  JUSTIFICATION FOR USING 

GALERKIN METHOD 
For the few decades, the finite element method has become 

very powerful, useful tool to solve the boundary value 

problems in the complex dynamical systems. In finite element 

method (FEM) the approximate solution can be written as a 

linear combination of basis functions which constitute a basis 

for the approximation space under consideration. FEM 

involves variational methods like Rayleigh Ritz, Galerkin, 

Least Squares and Collocation etc. 

In Galerkin method, the residual of approximation is made 

orthogonal to the basis functions. When one uses Galerkin 

method, a weak form of approximation solution for a given 

differential equation exists and is unique under appropriate 

conditions [20, 21] irrespective of properties of a given 

differential operator. Further, a weak solution also tends to a 

classical solution of given differential equation, provided 

sufficient attention is given to boundary conditions [22]. That 

means the basis functions should vanish on the boundary 

where the Dirichlet type of boundary conditions are 

prescribed. Hence in this paper the use of Galerkin method 

with quartic B-splines as basis functions has been employed 

to approximate the solution of fifth order boundary value 

problems. 

3. DESCRIPTION OF THE METHOD 

Definition of quartic B-spline: 
The quartic B-splines are defined in [23-25]. The existence of 

quartic spline interpolate s(x) to a function in a closed interval 

[c, d] for spaced knots (need not be evenly spaced) of a 

partition dxxxxc nn  110 ...    is 

established by constructing it. The construction of s(x) is done 

with the help of the quartic B-splines. Introduce eight 

additional knots x-4, x-3, x-2, x-1, xn+1, xn+2, xn+3 and xn+4  in such 

a way that 

x-4<x-3<x-2<x-1<x0           and     xn<xn+1<xn+2<xn+3 <xn+4. 

Now the quartic B-splines    sxBi )'(     are defined by 
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where  {B-2(x), B-1(x), B0(x), B1(x),…,Bn-1(x), Bn(x), Bn+1(x)} 

forms  a  basis  for  the  space  )(4 S  of quartic polynomial 

splines. Schoenberg [25] has proved that quartic B-splines are 

the unique nonzero splines of smallest compact support with 

the knots at 

x-4<x-3<x-2<x-1<x0<x1<…<xn-1<xn<xn+1<xn+2<xn+3<xn+4.              

To solve the boundary value problem (1) and (2) by the 

Galerkin method with quartic B-splines as basis functions, the 

approximation for y(x) can be defined as 

          





1

2

)()(
n

j

jj xBxy       (3)                                

where sj '  are the nodal parameters to be determined. In 

Galerkin method the basis functions should vanish on the 

boundary where the Dirichlet type of boundary conditions are 

specified. In the set of quartic B-splines {B-2(x), B-1(x), B0(x), 

…, Bn-1(x), Bn(x), Bn+1(x)} the basis functions B-2(x), B-1(x), 

B0(x), B1(x), Bn-2(x), Bn-1(x), Bn(x) and Bn+1(x) do not vanish at 

one of the boundary points. So, there is a necessity of 

redefining the basis functions into a new set of basis functions 

which vanish on the boundary where the Dirichlet type of 

boundary conditions are specified. Since, the fifth order 

boundary value problem is going to be approximated by 

quartic B-spline polynomial, the basis functions are to be 

redefined into a new set of basis functions which vanish on 

the boundary where the Dirichlet and Neumann type of 

boundary conditions are prescribed. The procedure for 

redefining the basis functions is as follows. 

Using the definition of quartic B-splines and the Dirichlet 

boundary conditions of (2), the approximate solution at the 

boundary points can be written as  

)()()()( 0000110220 xBxBxBcyA     

                                    )( 011 xB    (4)                                                                 
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Eliminating 2  and 1n from the equations (3), (4) and 

(5), the approximation for y(x) can be written as 
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Using the Neumann boundary conditions of (2) to the 

approximate solution y(x) in (6), we get        
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Eliminating  1  and n  from the equations (6), (9) and 

(10), we get approximation for y(x) as            
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Now the new set of basis functions for the approximation y(x) 

is }1,...,2,1,0),(
~

{  njxB j . Applying the Galerkin 

method to (1) with new set of basis functions, we get 
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Integrating by parts the first two terms on the left hand side of 

above equation and after applying the boundary conditions 

prescribed in (2), the above equation can be written as  
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Substituting (15), (16) in (14) and using the approximation for 

y(x) given in (11) and after rearranging the terms for resulting 

equations, a system of equations involving unknown nodal 

parameters αi’s can be written in the matrix form as  

                            Aα = B                                         (17)                                                                                                 
where  A = [aij ]; 
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4. PROCEDURE TO FIND SOLUTION 

FOR NODAL PARAMETERS 
A typical integral element in the matrix A is  

                                                    



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


1
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jim dxxZxrxrI   and   

)(,)( xrxr ji  are the  quartic B-spline basis functions or 

their derivatives. It may be noted that 0mI if 

  ),(),(),( 13232 mmjjii xxxxxx . To 

evaluate each mI , the 5-point Gauss-Legendre quadrature 

formula has been employed. Thus the stiff matrix A is a nine 

diagonal band matrix. The nodal parameter vector   has 

been obtained from the system BA  using a band 

matrix solution package. The boundary value problems (1) 

and (2) have been solved by the proposed method with the 

help of a computer program written in FORTRAN 90 code. 

5. NUMERICAL RESULTS 
To demonstrate the applicability of the proposed method for 

solving the fifth order boundary value problems of the type 

(1) and (2), we considered three linear boundary value 

problems and a nonlinear boundary value problem. The 

obtained numerical results for each problem are presented in 

tabular forms and compared with the exact solutions available 

in the literature. 

Example 1: Consider the linear boundary value problem 

 
10),sin3sin34sin3(

)cos9cos2cos(4
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2)5(
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

xxxxxxe

xxxxxeyy

x

x

    (20) 

subject to ,1)0(,0)1(,0)0(  yyy                     

.2)0(,0)1(  yy  

The exact solution for the above problem is 

.sin)1( 2 xxey x   The proposed method is tested on 

this problem where the domain [0, 1] is divided into 10 equal 

subintervals. The obtained numerical results for this problem 

are given in Table 1. The maximum absolute error obtained 

by the proposed method is 8.34465x10-7. 

Table 1: Numerical results for Example 1 

x Exact Solution Absolute error by 

proposed method 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

8.936972E-02 

1.552994E-01 

1.954662E-01 

2.091398E-01 

1.976098E-01 

1.646153E-01 

1.167566E-01 

6.386021E-02 

1.926672E-02 

1.490116E-08 

1.788139E-07 

6.854534E-07 

7.599592E-07 

8.195639E-07 

8.344650E-07 

7.227063E-07 

4.321337E-07 

1.229346E-07 

Example 2: Consider the linear boundary value problem 

        10,)72()4()5(  xexyy x
     (21)               

subject to ,1)0(,0)1(,0)0(  yyy  

.0)0(,)1(  yey  

The exact solution for the above problem is y = x(1-x)ex. The 

proposed method is tested on this problem where the domain 

[0, 1] is divided into 10 equal subintervals.  The obtained 

numerical results for this problem are given in Table 2. The 

maximum absolute error obtained by the proposed method is 

1.251698x10-6. 

Table 2: Numerical results for Example 2 

x Exact Solution Absolute error by 

proposed method 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

9.946539E-02 

1.954244E-01 

2.834704E-01 

3.580379E-01 

4.121803E-01 

4.373085E-01 

4.228888E-01 

3.560865E-01 

2.213642E-01 

1.490116E-08 

1.490116E-08 

1.788139E-07 

6.258488E-07 

1.221895E-06 

1.251698E-06 

6.854534E-07 

2.384186E-07 

1.043081E-07 

 

Example 3: Consider the linear boundary value problem 

,sinsinsin5cos)1( 2)5( xxxxxxxxyy 

     10  x                     (22) 

subject to ,1)0(,0)1(,0)0(  yyy  

.2)0(,1sin)1(  yy  

The exact solution for the above problem is y= (1-x) sin x. The 

proposed method is tested on this problem where the domain 

[0, 1] is divided into 10 equal subintervals. The obtained 

numerical results for this problem are given in Table 3. The 

maximum absolute error obtained by the proposed method is 

3.427267x10-7. 

            Table 3: Numerical results for Example 3 

x Exact Solution Absolute error by 

proposed method 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

8.985008E-02 

1.589355E-01 

2.068641E-01 

2.336510E-01 

2.397128E-01 

2.258570E-01 

1.932653E-01 

1.434712E-01 

7.833266E-02 

7.450581E-09 

7.450581E-08 

3.278255E-07 

0.0000000000 

2.831221E-07 

3.427267E-07 

1.490116E-07 

4.470348E-08 

2.235174E-08 
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Example 4: Consider the nonlinear boundary value problem 
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The exact solution for the above problem 

is 22 )
4

1
(  xxy . The nonlinear boundary value problem 

(23) is converted into a sequence of linear boundary value 

problems generated by quasilinearization technique [19] as 
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Here y(n+1) is the (n+1)th  approximation for y. The domain 

]
2

1
,

2

1
[


 is divided into 10 equal subintervals and the 

proposed method is applied to the sequence of linear problems 

(24). The obtained numerical results for this problem with  

01.0 are presented in Table 4. The maximum absolute 

error obtained by the proposed method is 1.569279x10-7. 

 

Table 4: Numerical results for Example 4 

x Exact Solution Absolute error by 

proposed method 

-0.4 

-0.3 

-0.2 

-0.1 

0.0 

0.1 

0.2 

0.3 

0.4 

3.240000E-03 

7.680000E-03 

8.820000E-03 

5.760000E-03 

0.0000000000 

-5.760001E-03 

-8.820000E-03 

-7.680000E-03 

-3.240000E-03 

1.569279E-07 

2.095476E-08 

8.847564E-08 

5.727634E-08 

5.945729E-08 

5.820766E-08 

5.587935E-09 

8.800998E-08 

1.240987E-07 

 

 

6. CONCLUSIONS 
In this paper, a Galerkin method with quartic B-splines as 

basis functions has been developed to solve a general fifth 

order boundary value problem. The quartic B-spline basis set 

has been redefined into a new set of basis functions which 

vanish on the boundary where the Dirichlet boundary 

conditions and Neumann boundary conditions are prescribed. 

The proposed method has been tested on three linear 

boundary value problems and a nonlinear fifth order boundary 

value problem. The numerical results obtained by the 

proposed method are in good agreement with the exact 

solutions available in the literature. The objective of this paper 

is to present a simple and efficient method to solve a general 

fifth order boundary value problem. 
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