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ABSTRACT 

This paper presents a simple approach for the design of a 

wideband microwave integrator. The design consist of two 

steps; in step one, accurate and optimized representation of 

stable and causal discrete-time integrator system function is 

obtained using optimization algorithm. In step two, chain 

scattering parameters or T-parameters are used to represent 

microwave equivalent of transmission line system function. 

Upon equating and optimizing the error between the discrete-

time and chain scattering parameter system function, the 

optimized value of characteristic impedance of transmission 

line network is obtained. Here optimization technique like 

pattern search has been used to ameliorate error.   
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1. INTRODUCTION 
The operation of a time integral of a signal is represented by 

an inverse of complex-frequency variable in the Laplace 

transform representation (1). Neglecting the attenuation 

factor, transfer function is equal to 1/ jω, where, ω is the 

signal angular frequency. As a result, an integrator is a low-

pass filter and the amplitude of its system function is inversely 

proportional to signal frequency. Integrator has been used 

extensively in many areas of digital communication and 

digital signal processing such as correlation estimation, 

coherent detector, accumulator analysis, and waveform 

shaping. In the Fourier spectral analysis, the spectral of a 

measured signal is the output of an integrator that takes the 

time integration of the multiplication of the measured signal 

by harmonic signals [2]. 

The frequency response of an ideal integrator is given by 
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where,       , Ki is the proportional constant of an 

integrator and ω is the angular frequency in radians. 

Almost all the traditional integrators are derived by taking Z-

transform of the class of Newton-cotes interpolation formulas 

[1, 3-4]. Newton-cotes interpolation formula is basically a 

technique of computing a definite integral/curve by replacing 

that curve by a more integrable and simpler curve, thus 

introducing some error in the equation, but still approximating 

the result to a great extent. Several integrators has been 

proposed [2, 5] in the study of discrete-time signal processing 

(DSP), however their magnitude response can only 

approximate that of ideal response for a fraction of full band 

nyquist frequency range. Few of the classical integrators that 

are worth mentioning are Trapezoidal integrator, Simpson 1/3 

integrator, Simpson 3/8 integrator and Bool’s integrator.  
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A new class of integrators has been developed in the recent 

past known as recursive digital integrators. Several methods 

have been used for their design. This include putting different 

values of m and n for Newton-Cotes digital integrators (2), 

which is basically arrived at by applying Z-transform to 

closed form Newton-Cotes integration formula [1], use of 

linear interpolation between the magnitude responses of the 

classical rectangular, trapezoidal and Simpson digital 

integrators [6-7] and use of linear programming approach in 

the design [8]. Every design has its own advantages and 

limitations. Newton-Cotes digital integrators, although 

applicable over a wideband and a maximum error margin of 

6.5% compared to ideal analog integrators, are fit for use in 

higher frequency ranges. On the other hand, two integrator 

designs proposed by Al-Alaoui based on linear interpolation 

between magnitude responses of basic integrators [6-7] have 

lower error than Newton-Cotes Integrators but also have a 

lower operational bandwidth where the error margin is 

negligible. The design proposed by Papamarkos and Chamzas 

[8] based on the linear optimization techniques again suffer 

from a narrow bandwidth problem. However none of the 

above stated integrators and differentiator are near the ideal 

integrator and differentiator as far as the magnitude response 

is concerned.  

 

Fig 1: Design process block diagram   

Final Microstrip Integrator in Agilent Momemtum 

Final Tuning in Agilent Ads 

Optimization T-matrix to Match Digital System 
Function 

 Define Chain Scattering Matrix Prototype 

Optimization Algorithm for Digital 
Differentiator/Integrator 

Define Initial Discrete System Function Prototype 

Define  Specification 
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To overcome these limitations a new discrete-time integrator 

designing approach is proposed in this paper. The design 

procedure for integrator involves first obtaining multivariable 

system function and then modifying its system function 

approximately to obtain a wideband microwave integrator. 

The proposed design technique comprises several steps 

sketched in block diagram figure1. 

2. DISCRETE-TIME INTEGRATOR 

2.1 Design of Stable Discrete-time 

Integrator 
The system function (3) for linear, time-invariant, causal 

digital filter can be expressed in the Z-domain in the form [2]:  
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For optimization of the discrete-time system function 

prototype, an error function is defined as: 
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 Error function (4) is basically an objective function for 

optimization algorithm, which is calculated by integrating the 

error between ideal response and proposed system function 

response. The integration is performed over normalized 

frequency Ω over the range of 0 to π. 

An infinite impulse response system function is selected for 

designing first order discrete time integrator. The design 

specifications include designing an integrator with time 

constant Ki = 2 sec and maximum value of magnitude 

response equals to unity. The proposed digital integrator 

prototype is given as: 
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The order of system (5) is selected on the basis of minimum 

order for stable response. The defined system function (4) has 

six order zeros at z = 0. The location of zeros is pre-assigned 

in order to make the discrete-time system function compatible 

with chain scattering parameter transfer function of cascaded 

network of serial transmission line as shown in Table 2. The 

poles of system function are optimization variable coefficients 

that are determined by multivariable optimization algorithm 

scheme. The pole location is selected between the ranges of 0 

≤ z ≤ 1, so that system function obtained after optimization is 

stable and causal.  

Upon using optimization, the error between ideal and 

proposed integrator is given as Err = 6.18x10-6 as shown in 

figure 2. 

 

 

Fig 2: Err function plot using pattern search optimization 

process 

 The optimized value of system function coefficient obtained 

by pattern search optimization is tabulated in Table 1. 

Table 1. Optimized coefficient values of proposed first 

order integrator 

First order Discrete-Time Integrator 

S. No. Coefficient Value 

1 x1 2.378 

2 x2 -2.221 

3 x3 0.524 

4 x4 -0.156 

5 x5 0.123 

6 x6 -0.036 

7 x7 0.036 

 System function obtained after substituting the optimized 

coefficient is given by: 

1 2 3 4 5 6

1
( )

2.378 2.221 .0.524 0 0.123 0 0.0156 .036  36
IntH z
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 The ideal integrator is assumed to have amplitude response 

inversely proportional to all frequency as shown in figure 3. 

The poles obtained (6) are p1 = 0.6416 + 0.1870j, p2 = 0.6416 

- 0.1870j, p3 = -0.2974 + 0.3109i, p4 = -0.2974 - 0.3109i, p5 = 

0.1226 + 0.4099j and p6 = 0.1226 - 0.4099j which shows the 

stability of designed discrete-time integrator. The proposed 

integrator (6) is suitable to be adopted as the system function 

of a wide-band integrator as shown in figure 3. 

 

Fig 3: Frequency response of proposed integrator for 

sampling frequency normalized to π radian  
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Upon using (6), the integrator implemented by using 

transmission line, the maximum value of the transfer function 

Hint(z) is given as unity for the frequency range 0 ≤ Ω ≤ 0.6 . 

The rest part of the transfer function in the range 0.5 ≤ Ω ≤ π 

satisfies (6). Under such circumstance, the circuit thus 

obtained behaves as an integrator over the frequency range 0.5 

≤ Ω ≤ π.  

3. WIDEBAND MICROWAVE 

INTEGRATOR 

3.1 Chain Scattering Parameter 
For design of an integrator that have the operating frequencies 

up to 10GHz using microstrip configuration, a network 

consist of six sections of serial transmission lines has been 

used. It is to be noted that if a network obtained by cascading 

four section of serial transmission line, there is practical 

limitation of a maximum frequency operation of 5GHz. The 

number of sections or device length of microstrip network 

determines the time constant and frequency response of an 

integrator. The number of sections of integrators is 

determined by the optimization process that involves the 

curve fitting of transfer function of transmission line to the 

amplitude response of the discrete-time integrator (6) which 

represents a good approximation of an ideal integrator.  

Table 2. Basic Transmission-Line Element’s Chain 

Scattering-Parameter Matrices 

Transmiss-

ion Line 
Chain Scattering Parameter or T- parameter 

Serial 

Transmi-

ssion Line 
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The system function is obtained by cascading the chain 

scattering matrix [10] (Table2) and choosing the network 

element in order to compatible with (6), given as 
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where, α1, α2, α3, α4, α5, α6, and α7 coefficients are functions 

of reflection coefficient of each serial transmission lines given 

by Γ1, Γ2, Γ3, Γ4, Γ5 and Γ6 respectively. The design variables 

Γ1, Γ2, Γ3, Γ4, Γ5 and Γ6 are optimization variables. The 

system function (7) obtained for six sections serial 

transmission line network is optimized with respect to 

discrete-time integrator system function obtained in (8).  

The error function (4) minimization has been performed using 

pattern search optimization. Upon using optimization 

algorithm, the error between ideal and proposed integrator is 

given as Err = 2.2 x 10-3. The figure 4 presents the progress of 

error function minimization with respect to increasing 

iteration. The optimized values of design variables i.e. Γ1, Γ2, 

Γ3, Γ4, Γ5 and Γ6 are plotted. 

 

 

Fig 4: Error function plot versus iteration using pattern 

search optimization 

The value of designed variables of system function (6) 

obtained by pattern search optimization algorithm is tabulated 

in Table 3. 

Table 3. Optimized values of reflection coefficients 

obtained using pattern search algorithm 

First order Discrete-Time Integrator 

S. No. Reflection 

coefficient 

Value 

1 Γ1 -0.700 

2 Γ2 -0.321 

3 Γ3 0.365 

4 Γ4 0.022 

5 Γ5 0.039 

6 Γ6 -0.021 

 

 Corresponding to reflection coefficients values as mentioned 

in table 3, the value of characteristic impedance of each 

sections of transmission line can be calculated using (8). The 

characteristic impedance Zo of 50Ω has been used as standard 

transmission line. For implementation of microstrip integrator, 

RT/duroid® 5870 is used as dielectric substrate having a 

thickness of 30mil (0.762mm), dielectric loss tangent of 

0.0009 and relative dielectric constant of ε = 2.4. 

3.2 Schematic of Microwave Integrator 

using Agilent ADS 

Figure 5, represents the schematic for microwave integrator 

using Agilent ADS. Six sections of microstrip transmission 

line named as TL1 through TL6 are used to design integrator. 

The microstrip line named as TL8 and TL9 represents the 50Ω 

characteristic impedance transmission line. RT/duroid® 5870 

with dielectric substrate having a thickness of 30mil 

(0.762mm), dielectric loss tangent of 0.0009 and relative 

dielectric constant of ε = 2.4 are defined under MSUB palette. 

S_Parameter palette is used for S-parameter analysis of 

proposed wideband microwave integrator. The simulation is 

performed with linear sweep of frequency from DC to 10GHz. 

The figure 6 represents the substrate definition for microstrip 

under Agilent ADS software. 
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Fig 5: Agilent ADS Schematic of six element transmission line 1st Order Integrator 

 

 

Fig 6: RT/duroid® 5870 Substrate 

3.3 Layout of Microwave Integrator using 

Agilent Momentum  
Based on the schematic diagram the layout for six element 

integrator is generated in Agilent ADS. For characterization 

of designed integrator meshing is performed and analysis is 

done under FEM simulator. An FEM simulation mesh is a 

part of the entire 3D problem domain, which is divided into a 

set of tetrahedra (or cells). The pattern of cells is based on the 

geometry of a layout so each layout has a unique mesh 

calculated for it. The mesh is then applied to the geometry to 

compute the electric fields within each cell. It also helps to 

identify any coupling effects in the layout during simulation. 

From these calculations, S-parameters are then calculated for 

the layout. 

 

Fig 7: Layout diagram of proposed integrator with six 

sections of microstrip line 

Figure 8 represents the final optimized six section microstrip 

integrator prototype build in Agilent EMPro software. 

 

Fig 8: Agilent EMPro layout of first order integrator 

3.4 Magnitude Response of Proposed 

Integrator 
For characterization of the designed integrator, reflection 

coefficient S11 and transmission coefficient S21 parameters are 

plotted together with ideal integrator response to show to 

good degree of agreement between proposed and ideal 

integrator. It can be notice that the designed microwave 

integrator follows well the ideal integrator characteristic 

between the frequency range 2.5GHz to 10GHz. 

 

Fig 8: Frequency Response of the proposed 1st order 

integrator and ideal integrator 
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4. CONCLUSION 
In this paper a simple and novel approach has been proposed 

for the design of a wideband microwave integrator. The 

proposed method is fast and eases the design complexity of 

wideband microwave integrator. In particular, the Z-domain 

representations of scattering characteristics of equal length 

non-uniform transmission lines facilitate the implementation 

of discrete domain integrators in the microwave frequency 

range. The integrator has been implemented by using multi-

section microstrip transmission lines with appropriate 

characteristic impedance obtained by optimization algorithm. 

The designed microwave integrator is in good agreement with 

the ideal integrator characteristic for the frequency range 

2.5GHz to 10GHz. The proposed integrator can be employed 

to measure the delay times of microwave transistors [11] or it 

can be used to implement high-frequency active filters [12]. 
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