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ABSTRACT 

The process of exploring and analyzing data from different 

perspective, using automatic or semiautomatic techniques is 

called Data mining. Data mining extracts knowledge or useful 

information and discovers correlations or meaningful patterns 

and rules from large databases [1, 2]. Using these patterns and 

rules it is possible for business enterprises to identify new and 

unexpected trends, subtle relations in the data and use them to 

increase revenue and cut cost. In this paper we proposed a 

comparative study over Progressive Partition Miner (PPM) 

and Progressive Weighted miner (PWM). 
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1. INTRODUCTION 
The traditional data mining techniques not have ability to 

analyse variation of data over time and treat them as ordinary 

data.  Temporal datasets includes stock market data, 

manufacturing or production data, maintenance data, web 

mining and point-of-sale records. Temporal data mining 

means mining or discovering knowledge and patterns from 

temporal databases. Temporal data mining is an extension of 

data mining with ability to include time attribute analysis. Due 

to the significance and complexity of the time attribute, a lot 

of different kinds of patterns are of interest [3, 5]. 

Two time aspects are included in temporal databases namely, 

valid time and transaction time. The time period during which 

a fact is true with respect to the real world is considered as 

valid time and the time period during which a fact is stored in 

the database is called transaction time. According to these two 

time aspects temporal databases allow the division of three 

different forms [4, 25]. They are  

a. A historical database stores data with respect to 

valid time. 

b. A rollback database stores data with respect to 

transaction time. 

c. A bitemporal database stores data with respect to 

both valid and transaction time, that is, they store 

the history of data with respect to valid time and 

transaction time. 

 

2. TEMPORAL DATA MINING TASKS 
A main question is how to apply traditional data mining 

techniques on a temporal database. Temporal data mining 

may involve the following areas of investigation. Temporal 

data mining tasks includes: 

i. Temporal association rules 

ii. Temporal data classification and comparison 

iii. Temporal pattern analysis 

iv. Temporal clustering analysis 

v. Temporal prediction and trend analysis 

vi. Temporal classification [6] 

3. RELATED WORK 
A temporal association rule is defined as the frequency of an 

itemset over a time period T and is the number of transactions 

in which it occurs divided by total number of transaction over 

a time period. To solve the problem on handling time-series 

by including time expression into association rules temporal 

association rule mining has been introduced. Temporal 

association rule mining is first introduced by Wang, Yang and 

Muntz in years 1999-2001.Temporal association rule mining 

is introduced together with the introduction of the TAR 

(Temporal Association Rule) algorithm. With the help of 

Temporal association we can finds the valuable relationship 

among the different item sets, in temporal database. There are 

several types of temporal association rules defined by various 

researcher e  such as inter transaction rules, episode rules, 

trend dependencies, sequence association rules [6, 7, 8].  

 

Roddick and Spiliopoulou (2002) have presented a 

comprehensive overview of techniques for the mining of 

temporal data using three dimensions: data type, mining 

operations and type of timing information (ordering). 

 

Winarko and Roddick, 2005 proposed a non Apriori-based 

technique that avoids multiple database scans, this methods 

not only avoid multiple data scan but efficiently mine 

arrangements and rules in a temporal database. The main 

drawback of this method is that it do not consider any 

constraints for the temporal relations and do not examine any 

measures for their rules other than the traditional confidence 

[9]. 

 

Tansel and Imberman (2007) proposed a method where 

association rules were extracted for consecutive time intervals 

with different time granularities. They proposed a simple 

operation that extracts portions of a temporal relation was 

used during mining process and was combined with the first 

step of discovering association rules. Using this approach, the 

process of knowledge discovery can observe the changes and 

variation in the association rules over the time period when 

these rules are valid [10, 11].  

 
Gharib et al. (2010) proposed a method for generating 

temporal association rules to solve the problem of handling 

time series by including time expressions into association 

rules. To solve this they extended an incremental algorithm to 

maintain the temporal association rules in a transaction 

database, at the same time maintains the benefits from the 

results of earlier mining to derive the final mining output [7, 

12, 14]. 

 

C. H. Lee et proposed progressive partition miner (PPM). In 

PPM the database is first partitioned the dataset by the size of 

time granularity. Then it applies filtering threshold 

mechanism on each partition of the database and prune out 
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infrequent 2-itemsets. PPM efficiently reduction extra 

scanning process. PPM works efficiently with temporal 

datasets. However, the limitation of this technique is its ability 

to deal with problems of incremental mining [7, 9, 17]. 

Cheng. Y. Chang et al Segment Progressive Filter (SPF) was 

introduced after PPM. SPF is based on the Segmentation and 

progressive filtering. It was introduced. SPF first divide the 

database into certain imposed time granularity. It further 

segments the database based on their common starting and 

ending times. For each part of the database it finds the 2-

candidate item set with appropriate filtering threshold. After 

generating all candidates it generates the sub-candidate and 

counts for the value of support. Temporal databases are 

continuously updated or appended [13, 16]. 

Ru Miao et al presented the idea of Apriori-extended mining 

periodic temporal association rules (MPTAR). MPTAR 

solved this problem, by considering the exhibition period of 

individu.al item.  MPTAR is also a two-step periodic rule 

mining method. The first step is mining the trend of continues 

attribute through cycle curve and the second step is 

calculating the period of the attribute. MPTAR did not define 

the cumulative threshold, and it is short of embracing 

upcoming transaction entries in the association rule mining 

[15, 18, 25].  

4. BASIC CONCEPTS 
Temporal association rule adds time constraint (it can be time 

point or time range) on association rule.  A transaction with 

time information can be described as: {TID, I1, I2 …In, Ts, 

Te}. TID is the ID for each transaction; n-itemsets means 

there are n items in the itemset; Ts and Te represent the start 

and the end of valid time respectively (or the start and the end 

of transaction). Valid time means the event occurring time, 

while transaction time the database time. Ts may equal Te, 

such as sale records in the supermarket (the transaction occurs 

at one moment). According to the definition of strong 

association rule “association rule strictly satisfies minimum 

support threshold and minimum confidence threshold”, we 

can give the definition of strong temporal association rule [6, 

19, 10].  

Let min_s and min_c represent minimum support threshold 

and minimum confidence threshold respectively, if and only if 

during [ts, te], support ≥ min_s, confidence ≥ min_c, rule 

X→Y is a temporal association rule, which could be described 

as X→Y (support, confidence, [ts, te]). 

5. TEMPORAL ASSOCIATION RULE 

MINING METHODOLOGY 
Temporal data mining has become a core technical data 

processing technique to deal with changing data. Temporal 

Association Rules (TAR) is an interesting extension to 

association rules by including a temporal dimension. No 

matter what kinds of tools or algorithms you select, strong 

temporal association rule mining can be divided into 3 steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Working process of mining temporal association 

rule 

 First step is Data pre-processing. Data pre-processing 

performs several steps to improve the quality of the input 

dataset. This is an important step of data mining. Data pre-

processing include removal of unwanted or irrelevant data, 

integration of databases and data exchange and data reduction. 

By processing, we can get high quality data mining objects.  

 

Seconds step uses time constraints on the two parameters 

support and confidence to generate temporal frequent 

itemsets.  All the generated temporal frequent itemsets have 

the support no less that min support. 

 

Third step generate association rules with frequent itemsets. 

Here the association rules are temporal ones. Since it is 

different to generate association rules without time, because it 

adds time information on frequent itemsets.  

6. PROGRESSIVE PARTITION MINER 

(PPM) 
Basic steps used in PPM are [3, 24] 

A. It Stores candidate 2-itemsets from previous mining 

process with their support counts using time. 

B. It employs the skeleton of the incremental 

procedure of the Sliding-Window Filtering 

algorithm.  

Working of PPM is shown by following flowchart 

 

 

 

 

 

 

 

 

 

 

 

Data preprocessing  

(Data Cleaning) 

 

Generate temporal frequent 

pattern using Time constraint, 

confidence and support  

Identify temporal association 

rules and Generate rules set and 

output. 

2nd scan 

1st scan 

Partition database according to exhibition period 

Generate frequent candidate 2-itemset for first 

partition by considering minimum support 

Generate 2 itemsets for next partition and use 

generated frequent itemsets to find frequent 

itemsets in both partitions 

Generate frequent itemsets for all partitions in 

similar manner  
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Consider a simple transaction database 

             Table 1. Simple transaction database 

Transactional database 
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Date  TID Transactio

ns  

 

 

Jan 01 

T1 B, D 

d
b

 1
,3

 

T2 B, C ,D 

T3 B, C 

T4 A, D 

 

 

P2 

 

 

 

Feb 01 

T5 B, C ,E 

d
b

  
2

,3
 

T6 D, E 

T7 A, B, C 

T8 C, D, E 

 D
b

(I
n

cr
em

en
t)

  

 

P3 

 

 

 

Mar 01 

T9 B, C, E, F 

d
b

 3
,3

 T10 B, F 

T11 A, D 

T12 B, D, F 

 

i. Let minimum is support 30% now generate two 

item set for P1 

Table 2. Candidate item set for p1 

P1 

C2 Start Count 

AD 1 1 

BC 1 2 

BD 1 2 

CD 1 1 

 

ii. Now check candidate item set for P1 minimum 

support 4*0.3=1.2 

Table 3. Frequent item set for P1 

P1 

C2 Start Count 

BC 1 2 

BD 1 2 

 

iii. Generate two item set for P1+P2 

Table 4. Candidate item set for P1+P2 

P2 

C2 Start Count 

AB 2 1 

AC 2 1 

BC 2 2 

BE 2 1 

CD 2 1 

CE 2 2 

DE 2 2 

+ 

P1 

C2 Start Count 

BC 1 2 

BD 1 2 

 

P1+P2 

C2 Start Count 

AB 2 1 

AC 2 1 

BC 1 4 

BD 1 2 

BE 2 1 

CD 2 1 

CE 2 2 

DE 2 2 

 

iv. Support count for P1+P2= (4+4)*.03 = 2.4 

Table 5.  Frequent item set for P1+P2 

P1+P2 

C2 Start Count 

BC 1 4 

CE 2 2 

DE 2 2 

 

v. Now generate candidate item set for P3+P2+P1 

Table 6. Candidate item set for P1+P2+P3 

P3 

C2 Start Count 

AD 3 1 

BC 3 1 

BD 3 1 

BE 3 1 

BF 3 3 

CE 3 1 

CF 3 1 

DF 3 1 

  EF 3 1 

+ 
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P1+P2 

C2 Start Count 

BC 1 4 

CE 2 2 

DE 2 2 

 

P1+P2+P3 

C2 Start Count 

AD 3 1 

BC 1 5 

BD 3 1 

BE 3 1 

BF 3 3 

CE 2 3 

CF 3 1 

DE 2 2 

DF 3 1 

EF 3 1 

 

vi. Minimum support for P1+P2+P3= 

(4+4+4)*0.3=3.6 

Table 7.  Frequent item set for P1+P2+P3 

P1+P2+P3 

C2 Start Count 

BC 1 5 

BF 3 3 

CE 2 3 

 

vii. General temporal itemset in DB+db 

Table 8.  General temporal itemset in DB+db 

Itemset Start End Start End TI 

 B C  
BC 1 3 1 3 BC1,3 

 B F  

BF 1 3 3 3 BF3,3 

 C E  

CE 1 3 2 3 CE 2,3 

 

 

 

 

 

 

 

 

viii. General sub temporal item set in DB+db 

Table 9. General subtemporal itemset in DB+db 

TI SI 

BC1,3 B1,3 

C 1,3 

BF3,3 B 3,3 

F 3,3 

CE 2,3 C 2,3 

E 2,3 

 

7. PROBLEM STATEMENT 
In our opinion, the existing model of the constraint based 

association rule mining is not able to efficiently handle the 

time-variant database due to two fundamental problems 

1. Lack of consideration of the exhibition period of 

each individual transaction  

2.  Lack of an intelligent support counting basis for 

each item [20, 21]. 

8. PROGRESSIVE WEIGHTED MINER 

(PWM) 
In Partition Weighted Miner the importance of each 

transaction period is first reflected by a proper Weight 

assigned by the user. Then time-variant database in light of 

weight periods of transactions and performs weight mining. 

Explicitly, Progressive Weighted Miner explores the mining 

of weighted association rules, denoted by (X → Y) w, which 

is produced by two newly defined concepts of weight support 

and weight confidence in light of the corresponding weight in 

individual transactions [22, 23]. 

Basically, an association rule X → Y is termed to be a 

frequent weight association rule (X → Y )w if and only if its 

weight  support is larger than minimum support required, i.e., 

supp_w (X → Y) > min_supp, and the weight confidence 

conf W (X → Y) is larger than minimum confidence needed, 

i.e., conf_w (X → Y ) > min_conf. Instead of using the 

traditional support threshold min_sT = {d|D|×min_sup} as a 

minimum support threshold for each item, a weight minimum 

support, denoted by min_Sw = {Σ|Pi|×W (Pi)} ×min_supp, is 

employed for the mining of weight association rules, where 

|Pi| and W (Pi) represent the amount of partial transactions 

and their corresponding weight values by a weight function 

W (·) in the weight period Pi of the database D. 

Let NPi(X) be the number of transactions in partition Pi that 

contain itemset X. The support value of an itemset X can 

then be formulated as Sw(X) = ΣNPi(X)×W(Pi). As a result, 

the weight support ratio of an itemset X is suppw (X) = Sw 

(X) / [Σ|Pi|×R (Pi)]. 

Example: Let us follow Example (Table 1) with the given 

min_supp = 30% and min_conf = 75%. Consider W(P1) 

=0.5, W(P2) = 1, and W(P3) = 2, we have this newly defined 

support threshold as min_Sw = {4 ×0.5+4 ×1+4 ×2}× 0.3 = 

4.2 , we have weight association rules, i.e., (W → B)w with 

relative weight support suppw (C→ B) = 35.7% and 

confidence conf w (C → B) = suppw (C U B) /suppw (C) = 
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83.3% and (F →B)w with relative weight support suppw (F → 

B) = 42.8% and confidence conf w (F → B) = 100% [11].  

 

 

 

 

 

 

 

 

Consider the previous transactional data base candidate set 

for P1 with minimum weight support. 

i. Candidate itemset for p1 

Table 10. Candidate item set for P1 

 

 

 

 

 

 

 

ii. Candidate set for P1+P2 with minimum weight 

support  

Table 11. Candidate item set for P1+P2 

min_S C(P1+P2)=1.8,  min_S C(P2)=1.8 

C2 Start NW(X) count  

AB 2 1*1=1  

AC 2 1*1=1  

BC 1 1+2*1=3 * 

BD 1 1+0*1=1  

BE 2 1*1=1  

CD 2 1*1=1  

CE 2 1*1=1 * 

DE 2 1*1=1 * 

 

iii. Candidate set for P1+P2+P3 with minimum weight 

support 

Table 12.  Candidate item set forP1+P2+P3 

min_S C(P1+P2+P3)=4.2,  

 min_S C(P2+P3)=3.6, min_S C(P3)=2.4 

C2 Start NW(X) count   

AD 3 1*2=2  

BC 1 3+1*2=5 * 

BD 3 1*2=2  

BE 3 1*2=2  

BF 3 3*2=6 * 

CE 2 2+1*2=2 * 

CF 3 1*2=2  

DE 2 2+0*2=2  

DF 3 1*2=2  

EF 3 1*2=2  

 

iv. Final frequent itemset is 

Table 13.  Frequent item set forP1+P2+P3 

 

P1+P2+P3 

C2 Start Count 

BC 1 5 

BF 3 3 

CE 2 3 

 

Finally we can generate same frequent item set which 

generated by the PWM by using simple weight function. 

7. EXPERIMENTAL RESULTS 
For the experimental analysis, we execute the algorithm PPM 

and PWM for 25 items with 10,000 transaction .Form the 

graph it is clear that PWM takes less execution time as 

compared to PPM but PWM work more efficiently When the 

new item came for particular time interval otherwise it work 

same as PPM .One more thing that are consider with the 

PWM we have to check the one item set of the previous time 

interval to find new item set for current scanning time 

interval. 

Table 14. Comparison table 

 

 

 

   
 

 

 

 
 

Fig 2: Comparison graph 

 

min_s R(P1)=0.6 

C2 Start NR(X) count  

AD 1 1*0.5=0.5  

BC 1 2*0.5=1 * 

BD 1 2*0.5=1 * 

CD 1 1*0.5=0.5  

Minimum 

Support  PWM PPM 

0.2 20 23 

0.3 14 17 

0.4 9 10 
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8. CONCLUSION 
PPM focus on successive partition and calculate frequent 

item set and PWM assign weight to the partition in 

successive manner if new item are appears   important to note 

that if we adopt single min_supp = 30% by Apriori, then the 

itemset {BF} will not be large since its occurrence in this 

transaction database is 3 which is smaller than min_ST = 

[12×0.3] = 4. However, itemset {BF} appears very 

frequently in the most recent partition of the database of 

which the weight is relatively large, thus discovering more 

desirable information. It can be seen that the algorithm 

Apriori is not able to discover the information behind the 

new coming data in the transaction database.  
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